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ARBITRAGE IN MARKETS WITHOUT SHORTSELLING
WITH PROPORTIONAL TRANSACTION COSTS

Abstract. We consider markets with proportional transaction costs and
shortsale restrictions. We give necessary and sufficient conditions for the
absence of arbitrage and also estimate the super-replication price.

1. Introduction. Let (Ω,F ,P) be a probability space equipped with
a finite discrete-time filtration F = (Ft)Tt=0 such that FT = F . Let S =
(St)

T
t=0 = (S1

t , . . . , S
d
t )Tt=0 be an d-dimensional process adapted to F, which

has strictly positive components, i.e. Sit > 0, P-a.s. We assume that there ex-
ists a bank account or a bond on the market, which is a process B = (Bt)

T
t=0

and all transactions are calculated in units of this process. For simplicity we
assume that Bt ≡ 1 for all t = 0, . . . , T . A trading strategy on the market is a
d-dimensional process H = (Ht)

T
t=1 = (H1

t , . . . ,H
d
t )Tt=1, which is predictable

with respect to F. We denote the set of such strategies by P and define the
set of strategies without shortselling by P+ = {H ∈ P | H ≥ 0}.

Let λ = (λ1, . . . , λd), µ = (µ1, . . . , µd) and

ϕi(x) = x+ λix
+ + µix

− for i = 1, . . . , d where 0 < λi, µi < 1.

The vectors λ, µ model proportional transaction costs for buying and selling
respectively. We say that λ < µ if and only if λi < µi for all i = 1, . . . , d. We
use the notation

(H · S)t :=
t∑

j=1

Hj ·∆Sj

where · is the inner product in Rd.
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Let x = (xλ,µt )Tt=1 be the gain or loss process in the market with propor-
tional transaction costs for the strategy H starting from 0 units in bank and
stock accounts, i.e. xλ,µt is defined as follows:

xλ,µt = xλ,µt (H) = −
t∑

j=1

ϕ(∆Hj) · Sj−1 − ϕ(−Ht) · St

= −
t∑

j=1

d∑
i=1

ϕi(∆H i
j)S

i
j−1 −

d∑
i=1

ϕi(−H i
t)S

i
t

where the function ϕ is of the form ϕ = (ϕ1, . . . , ϕd) and ∆H i
j = H i

j −H i
j−1

for i = 1, . . . , d and j = 1, . . . , t, with H i
0 = 0. We will usually omit the

symbol of the inner product. We get

xλ,µt = −
t∑

j=1

∆HjSj−1 −
t∑

j=1

d∑
i=1

λi(∆H
i
j)

+Sij−1 −
t∑

j=1

d∑
i=1

µi(∆H
i
j)
−Sij−1

+HtSt −
d∑
i=1

λi(−H i
t)

+St −
d∑
i=1

µi(−H i
t)
−St

= (H · S)t −
t∑

j=1

λ(∆Hj)
+Sj−1 −

t∑
j=1

µ(∆Hj)
−Sj−1

− λ(Ht)
−St − µ(Ht)

+St.

Notice that if H ∈ P+ then

xλ,µt = (H · S)t −
t∑

j=1

λ(∆Hj)
+Sj−1 −

t∑
j=1

µ(∆Hj)
−Sj−1 − µHtSt.

We use the notation L0
+(Ft) for the set of non-negative, Ft-measurable ran-

dom variables and write L0
+ for t = T . Let R+

T (λ, µ) := {xλ,µT (H) | H ∈ P+}
and define the set of hedgeable claims to be

A+
T (λ, µ) := R+

T (λ, µ)− L0
+.

Let A+
T (λ, µ) be the closure of A+

T (λ, µ) in probability.

Lemma 1.1. A+
T (λ, µ) is a convex cone.

Proof. Notice that the function ϕi is convex for all i = 1, . . . , d.

Definition 1.2. We say that there is no arbitrage on the market if

(NAλ,µ+ ) R+
T (λ, µ) ∩ L0

+ = {0}.

Notice that the condition (NAλ,µ+ ) is equivalent to A+
T (λ, µ)∩L0

+ = {0}.
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Lemma 1.3. Let 0 < λ1 < λ2 and 0 < µ1 < µ2. Then (NAλ1,µ
+ ) ⇒

(NAλ2,µ
+ ) and (NAλ,µ1

+ )⇒ (NAλ,µ2
+ ).

Proof. Notice that xλ1,µT ≥ xλ2,µT and xλ,µ1T ≥ xλ,µ2T .

Lemma 1.4. Under (NAλ,µ+ ), i.e. A+
T (λ, µ) ∩ L0

+ = {0}, there is no ar-
bitrage on the market with any time horizon 1 ≤ t ≤ T , i.e. A+

t (λ, µ) ∩
L0
+(Ft) = {0}.

Proof. Notice that if H is an arbitrage strategy in the model with time
horizon t (so at time t we liquidate all positions in stock) then there is also
an arbitrage strategy in a model with larger time horizon, in particular with
time horizon T . It is enough to take the same strategy H up to time t and
later 0.

Now similarly to [GRS] we introduce the definition of a consistent price
system and some related notions.

Definition 1.5 ((λ, µ)-consistent price system). We say that a pair
(S̃, P̃ ) is a (λ, µ)-consistent price system ((λ, µ)-CPS) if P̃ is a probabil-
ity measure equivalent to P and S̃ = (S̃t)

T
t=0 is a d-dimensional process,

adapted to the filtration F, which is a P̃ -martingale and satisfies

1− µi ≤
S̃it
Sit
≤ 1 + λi, P-a.s.,

for all i = 1, . . . , d and t = 0, . . . , T . For λ = µ we write briefly λ-CPS.

Definition 1.6 (right-sided λ-consistent price system). We say that a
pair (S̃, P̃ ) is a right-sided λ-consistent price system (λ-CPS+) if P̃ is a
probability measure equivalent to P and S̃ = (S̃t)

T
t=0 is a d-dimensional,

strictly positive process, adapted to F, which is a P̃ -martingale and

S̃it
Sit
≤ 1 + λi, P-a.s.,

for all i = 1, . . . , d and t = 0, . . . , T .

When the process S̃ above is only a supermartingale or submartingale
we can formulate similar definitions.

Definition 1.7 ((λ, µ)-supCPS, (λ, µ)-subCPS). We say that a pair
(S̃, P̃ ) is a (λ, µ)-supermartingale (resp. submartingale) consistent price sys-
tem if P̃ is a probability measure equivalent to P and S̃ = (S̃t)

T
t=0 is a

d-dimensional process, adapted to F, which is a P̃ -supermartingale (resp.
submartingale) and

1− µi ≤
S̃it
Sit
≤ 1 + λi, P-a.s.,
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for all i = 1, . . . , d and t = 0, . . . , T . When λ = µ we write briefly λ-supCPS
(resp. λ-subCPS).

Definition 1.8 (λ-supCPS+, λ-subCPS+). We say that a pair (S̃, P̃ )
is a right-sided λ-supermartingale (resp. submartingale) consistent price sys-
tem if P̃ is a probability measure equivalent to P and S̃ = (S̃t)

T
t=0 is a

d-dimensional, strictly positive process, adapted to F, which is a P̃ -super-
martingale (resp. submartingale) and

S̃it
Sit
≤ 1 + λi, P-a.s.,

for all i = 1, . . . , d and t = 0, . . . , T .

Now we give the definition of robust no-arbitrage, similar to that intro-
duced in [S].

Definition 1.9. We say that there is robust no-arbitrage on the market
if

(rNA+)
∃ ε > 0: (ε < λ, A+

T (ε, µ) ∩ L0
+ = {0}) or (ε < µ, A+

T (λ, ε) ∩ L0
+ = {0}).

2. Main results

Theorem 2.1. The implications (a)⇒(b)⇒(c)⇒(d)⇒(e) are true where:

(a) A+
T (λ, µ) ∩ L0

+ = {0};
(b) A+

T (λ, µ) ∩ L0
+ = {0} and A+

T (ε, µ) = A+
T (ε, µ) for any ε > λ;

(c) A+
T (ε, µ) ∩ L0

+ = {0} for any ε > λ;
(d) for any ε > λ there exists an ε-CPS+ (S̃,Q) with dQ/dP ∈ L∞;
(e) for any ε > λ there exists, ε-supCPS+ (S̃,Q) with dQ/dP ∈ L∞.
Remark 2.2. Notice that the conditions (d), (e) of Theorem 2.1 mean

that there exists an ε-CPS+ (resp. ε-supCPS+) in the model with transaction
cost vectors ε > λ for buying and µ for selling.

In the proof of Theorem 2.1 will use the following lemmas whose proofs
can be found e.g. in [KS].

Lemma 2.3. Let Xn be a sequence of random vectors taking values in Rd
such that for almost all ω ∈ Ω we have lim inf ‖Xn(ω)‖d <∞. Then there is
a sequence of random vectors Yn taking values in Rd satisfying the following
conditions:

(1) Yn converges pointwise almost surely to a random vector Y taking
values in Rd,

(2) Yn(ω) is a convergent subsequence of Xn(ω) for almost all ω ∈ Ω.
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Proof. See e.g. [KS, Lemma 2] or [KRS, Lemma 1].
Remark 2.4. The above claim can be formulated as follows: there exists

an increasing sequence of integer-valued random variables σk such that Xσk

converges a.s.
Lemma 2.5 (Kreps–Yan). Let K ⊇ −L1

+ be a closed convex cone in L1

such that K∩L1
+ = {0}. Then there is a probability P̃ ∼ P with dP̃ /dP ∈ L∞

such that EP̃ ξ ≤ 0 for all ξ ∈ K.

Proof. See e.g. [KS, Lemma 3] or [KSaf, Theorem 2.1.4].
Proof of Theorem 2.1. (a)⇒(b). Let

xλ,µt,t+k(H, H̃) =
t+k∑
j=t

Hj∆Sj −
t+k∑
j=t

λ(∆Hj)
+Sj−1 −

t+k∑
j=t

µ(∆Hj)
−Sj−1

− µHt+kSt+k

where 1 ≤ t ≤ t + k ≤ T , H is predictable and H ≥ 0, H̃ ∈ L0(Rd+,Ft−1)
and ∆Ht = Ht − H̃. Define

R+
t,t+k(H̃, λ) := {xλ,µt,t+k(H, H̃) | H is predictable and H ≥ 0}

and let A+
t,t+k(H̃, λ) := R+

t,t+k(H̃, λ)− L0
+(Ft+k). We will show that the set

A+
t,t+k(H̃, ε) is closed for any ε > λ, any H̃ ∈ L0(Rd+,Ft−1) and all t, k such

that 1 ≤ t ≤ t+ k ≤ T . We prove this by induction on k.
Let k = 0. Fix t, H̃ ∈ L0(Rd+,Ft−1) and a vector ε > λ, i.e. εi > λi for

all i = 1, . . . , d. By Lemmas 1.3 and 1.4 we have A+
t (ε, µ) ∩ L0

+(Ft) = {0}.
Suppose that vnt,t → ζ in probability where vnt,t ∈ A+

t,t(H̃, ε). The sequence
vnt,t contains a subsequence convergent to ζ a.s. (see e.g. [JP, Theorem 17.3]).
Thus, possibly restricting to this subsequence we can assume that vnt,t → ζ,
P-a.s. Assume that

vnt,t = Hn
t ∆St − ε(∆Hn

t )+St−1 − µ(∆Hn
t )−St−1 − µHn

t St − rn
where ∆Hn

t = Hn
t − H̃ and Hn

t ∈ L0(Rd+,Ft−1), rn ∈ L0
+(Ft).

Consider first the situation on the set Ω1 := {lim inf ‖Hn
t ‖ <∞} ∈ Ft−1.

By Lemma 2.3 there exists an increasing sequence of integer-valued, Ft−1-
measurable stopping times τn such that Hτn

t is a.s. convergent on Ω1, and
for almost all ω ∈ Ω1 the sequence Hτn(ω)

t (ω) is a convergent subsequence
of Hn

t (ω). Notice that Hτn
t ∈ L0(Rd+,Ft−1) and rτn ∈ L0

+(Ft). Furthermore
rτn is convergent a.s. on Ω1. Let H̃t := limn→∞H

τn
t and r̃ := limn→∞ rτn .

Then
ζ = lim

n→∞

(
Hn
t ∆St − ε(∆Hn

t )+St−1 − µ(∆Hn
t )−St−1 − µHn

t St − rn
)

= lim
n→∞

(
Hτn
t ∆St − ε(∆Hτn

t )+St−1 − µ(∆Hτn
t )−St−1 − µHτn

t St − rτn
)
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where the last limit is equal to

H̃t∆St − ε(H̃t − H̃)+St−1 − µ(H̃t − H̃)−St−1 − µH̃tSt − r̃ ∈ A+
t,t(H̃, ε).

Consider now the set Ω2 := {lim inf ‖Hn
t ‖ = ∞} ∈ Ft−1. Suppose that

P(Ω2) > 0. Define Gnt := Hn
t /‖Hn

t ‖, hn := rn/‖Hn
t ‖ and notice that Gnt ∈

L0(Rd+,Ft−1). We have

Gnt ∆St− ε
(
Gnt −

H̃

‖Hn
t ‖

)+

St−1−µ
(
Gnt −

H̃

‖Hn
t ‖

)−
St−1−µGnt St−hn → 0.

Just as on Ω1, by Lemma 2.3 there exists an increasing sequence of integer-
valued, Ft−1-measurable stopping times σn such that Gσnt is convergent a.s.
on Ω2 and for almost all ω ∈ Ω2 the sequence Gσn(ω)t (ω) is a convergent
subsequence of Gnt (ω). Let G̃t := limn→∞G

σn
t and h̃ := limn→∞ hσn . Taking

into account the absence of shortselling we get

G̃t∆St−ε(G̃t)+St−1−µ(G̃t)
−St−1−µG̃tSt = G̃t∆St−εG̃tSt−1−µG̃tSt = h̃

where h̃ ∈ L0
+(Ft). From the absence of arbitrage, G̃t∆St − εG̃tSt−1 −

µG̃tSt = 0 on Ω2. Notice that

G̃t∆St − λG̃tSt−1 − µG̃tSt ≥ G̃t∆St − εG̃tSt−1 − µG̃tSt = 0.

Using once again the fact that A+
t (λ, µ) ∩ L0

+(Ft) = {0} we can replace the
inequality by an equality. Hence

∑d
i=1(λi − εi)G̃itSit−1 = 0. Because St−1 is

strictly positive we obtain G̃t = 0, P-a.s. on Ω2, which contradicts the fact
that ‖G̃t‖ = 1. It follows that P(Ω2) = 0.

Assume now that the claim is true for k − 1 where k ≥ 1. We show that
it is true for k. Fix t such that 1 ≤ t ≤ t+ k ≤ T , H̃ ∈ L0(Rd+,Ft−1) and a
vector ε > λ. By Lemmas 1.3 and 1.4 we have A+

t+k(ε, µ)∩L0
+(Ft+k) = {0}.

Let vnt,t+k → ζ in probability where vnt,t+k ∈ A
+
t,t+k(H̃, ε). The sequence v

n
t,t+k

contains a subsequence convergent to ζ a.s. (see e.g. [JP, Theorem 17.3]).
Thus, possibly restricting to this subsequence we can assume that vnt,t+k → ζ,
P-a.s. Assume that

vnt,t+k=
t+k∑
j=t

Hn
j ∆Sj−

t+k∑
j=t

ε(∆Hn
j )+Sj−1−

t+k∑
j=t

µ(∆Hn
j )−Sj−1−µHn

t+kSt+k−rn

where ∆Hn
t = Hn

t − H̃, Hn
j ∈ L0(Rd+,Fj−1), rn ∈ L0

+(Ft+k). The argument
will be similar to the case k = 0.

Consider first the situation on Ω1 := {lim inf ‖Hn
t ‖ < ∞} ∈ Ft−1.

By Lemma 2.3 there exists an increasing sequence of integer-valued, Ft−1-
measurable stopping times τn such that Hτn

t is convergent a.s. on Ω1 and
for almost all ω ∈ Ω1 the sequence Hτn(ω)

t (ω) is a convergent subsequence
of Hn

t (ω). Notice that Hτn
t ∈ L0(Rd+,Ft−1) and rτn ∈ L0

+(Ft+k). Define
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H̃t := limn→∞H
τn
t . Then ζ is equal to

lim
n→∞

(t+k∑
j=t

Hn
j ∆Sj−

t+k∑
j=t

ε(∆Hn
j )+Sj−1−

t+k∑
j=t

µ(∆Hn
j )−Sj−1−µHn

t+kSt+k−rn
)

= lim
n→∞

(
Hτn
t ∆St − ε(Hτn

t − H̃)+St−1 − µ(Hτn
t − H̃)−St−1 +

t+k∑
j=t+1

Hτn
j ∆Sj

−
t+k∑
j=t+1

ε(∆Hτn
j )+Sj−1 −

t+k∑
j=t+1

µ(∆Hτn
j )−Sj−1 − µHτn

t+kSt+k − rτn
)

= H̃t∆St − ε(H̃t − H̃)+St−1 − µ(H̃t − H̃)−St−1 + lim
n→∞

( t+k∑
j=t+1

Hτn
j ∆Sj

−
t+k∑
j=t+1

ε(∆Hτn
j )+Sj−1 −

t+k∑
j=t+1

µ(∆Hτn
j )−Sj−1 − µHτn

t+kSt+k − rτn
)

and by continuity this equals

H̃t∆St − ε(H̃t − H̃)+St−1 − µ(H̃t − H̃)−St−1

+ lim
n→∞

( t+k∑
j=t+1

Hτn
j ∆Sj − ε(Hτn

t+1 − H̃t)
+St − µ(Hτn

t+1 − H̃t)
−St

−
t+k∑
j=t+2

ε(∆Hτn
j )+Sj−1 −

t+k∑
j=t+2

µ(∆Hτn
j )−Sj−1 − µHτn

t+kSt+k − rτn
)
.

Notice that H̃t ∈ L0(Rd+,Ft−1) and by the induction hypothesis the above
limit belongs to A+

t+1,t+k(H̃t, ε). Consequently, ζ ∈ A+
t,t+k(H̃, ε).

As previously, consider now the case Ω2 := {lim inf ‖Hn
t ‖ =∞} ∈ Ft−1.

Suppose that P(Ω2) > 0. For j = t, . . . , t + k define Gnj := Hn
j /‖Hn

t ‖ and
hn := rn/‖Hn

t ‖. Notice that Gnj ∈ L0(Rd+,Fj−1) and

ṽnt,t+k :=
vnt,t+k
‖Hn

t ‖
=

t+k∑
j=t

Gnj ∆Sj −
t+k∑
j=t+1

ε(∆Gnj )+Sj−1 −
t+k∑
j=t+1

µ(∆Gnj )−Sj−1

− ε
(
Gnt −

H̃

‖Hn
t ‖

)+

St−1 − µ
(
Gnt −

H̃

‖Hn
t ‖

)−
St−1 − µGnt+kSt+k − hn → 0.

Just as on Ω1, by Lemma 2.3 there exists an increasing sequence of integer-
valued, Ft−1-measurable stopping times σn such that Gσnt is convergent a.s.
on Ω2, and for almost all ω ∈ Ω2 the sequence G

σn(ω)
t (ω) is a convergent sub-
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sequence of Gnt (ω). Define G̃t := limn→∞G
σn
t and notice that the sequence

t+k∑
j=t+1

Gσnj ∆Sj−
t+k∑
j=t+1

ε(∆Gσnj )+Sj−1−
t+k∑
j=t+1

µ(∆Gσnj )−Sj−1−µGσnt+kSt+k−hσn

is convergent and its limit equals

lim
n→∞

( t+k∑
j=t+1

Gσnj ∆Sj − ε(Gσnt+1 − G̃t)
+St − µ(Gσnt+1 − G̃t)

−St

−
t+k∑
j=t+2

ε(∆Gσnj )+Sj−1 −
t+k∑
j=t+2

µ(∆Gσnj )−Sj−1 − µGσnt+kSt+k − hσn
)
.

By the induction hypothesis the above limit belongs toA+
t+1,t+k(G̃t, ε) and fi-

nally limn→∞ ṽ
n
t,t+k ∈ A

+
t,t+k(0, ε). Moreover limn→∞ ṽ

n
t,t+k = limn→∞ ṽ

σn
t,t+k

= 0. We can assume that this limit is of the form
t+k∑
j=t

G̃j∆Sj −
t+k∑
j=t

ε(∆G̃j)
+Sj−1 −

t+k∑
j=t

µ(∆G̃j)
−Sj−1 − µG̃t+kSt+k − h̃ = 0

where ∆G̃t = G̃t. We get the equality
t+k∑
j=t

G̃j∆Sj −
t+k∑
j=t

ε(∆G̃j)
+Sj−1 −

t+k∑
j=t

µ(∆G̃j)
−Sj−1 − µG̃t+kSt+k = h̃

where h̃ ∈ L0
+(Ft+k). From the absence of arbitrage we have

t+k∑
j=t

G̃j∆Sj −
t+k∑
j=t

ε(∆G̃j)
+Sj−1 −

t+k∑
j=t

µ(∆G̃j)
−Sj−1 − µG̃t+kSt+k = 0

on Ω2. Notice that
t+k∑
j=t

G̃j∆Sj −
t+k∑
j=t

λ(∆G̃j)
+Sj−1 −

t+k∑
j=t

µ(∆G̃j)
−Sj−1 − µG̃t+kSt+k

≥
t+k∑
j=t

G̃j∆Sj −
t+k∑
j=t

ε(∆G̃j)
+Sj−1 −

t+k∑
j=t

µ(∆G̃j)
−Sj−1 − µG̃t+kSt+k = 0.

Using once again the fact that A+
t+k(λ, µ) ∩ L0

+(Ft+k) = {0} we can replace
the inequality by an equality. Hence

∑t+k
j=t

∑d
i=1(λi − εi)(∆G̃ij)+Sij−1 = 0.

Because Sj−1 has strictly positive components we obtain (∆G̃ij)
+ = 0, P-a.s.,

on Ω2 for all j = t, . . . , t + k and i = 1, . . . , d. Hence in particular G̃t = 0,
which contradicts the fact that ‖G̃t‖ = 1. It follows that P(Ω2) = 0.

As A+
1,t(0, ε) = A+

t (ε, µ), this ends the proof of closedness.
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(b)⇒(c). Notice that A+
T (ε, µ)∩L0

+ = {0} for any ε > λ by Lemma 1.3.
(c)⇒(d). Fix any ε > λ. Notice that for any random variable η there

exists a probability measure P ′ ∼ P such that dP ′/dP ∈ L∞ and η ∈ L1(P ′).
Property (c) is invariant under equivalent change of probability. This allows
us to assume without loss of generality that all St are integrable. Define Λε :=

A+
T (ε, µ)∩L1, which is a closed, convex cone in L1. Since Λε∩L1

+ = {0}, by
Lemma 2.5 there exists a probability measure Q ∼ P such that dQ/dP ∈ L∞
and EQξ ≤ 0 for any ξ ∈ Λε, in particular for

ξi = H i
t+1(S

i
T − Sit)− εiH i

t+1S
i
t − µiH i

t+1S
i
T , t = 0, . . . , T − 1,

where Ht+1 = (0, . . . ,1A, . . . , 0), P-a.s., A ∈ Ft and the value 1A is in the
ith position. This means that at time t if the event A holds we buy the ith
share at the price Sit and liquidate the portfolio at time T . Hence

EQ[(SiT − Sit − εiSit − µiSiT )1A] ≤ 0.

Since (1−µi)EQ(SiT1A) ≤ (1+εi)EQ(Sit1A) for i = 1, . . . , d and any A ∈ Ft,
we have

(1−µi)EQ(SiT | Ft) ≤ (1 + εi)EQ(Sit | Ft) = (1 + εi)S
i
t for t = 0, . . . , T − 1.

Define S̃ = (S̃t)
T
t=0 by S̃t := (1 − µ)EQ(ST | Ft) and notice that (S̃,Q) is a

right-sided ε-consistent price system (ε-CPS+).
(d)⇒(e). Trivial.

3. Further theorems and examples

Corollary 3.1. The implications (a)⇒(b)⇒(c)⇒(d)⇒(e) are true
where:

(a) A+
T (λ, µ) ∩ L0

+ = {0};
(b) A+

T (λ, µ) ∩ L0
+ = {0} and A+

T (λ, ε) = A+
T (λ, ε) for any ε > µ;

(c) A+
T (λ, ε) ∩ L0

+ = {0} for any ε > µ;
(d) for any ε > µ there exists a λ-CPS+ (S̃,Q) with dQ/dP ∈ L∞;
(e) for any ε > µ there exists a λ-supCPS+ (S̃,Q) with dQ/dP ∈ L∞.

Proof. Notice that in our model when we buy some shares we must sell
them up to time T , so using analogous arguments to the proof of Theorem
2.1 we get the theorem for transaction costs ε > µ.

Remark 3.2. Notice that the conditions (d), (e) of Corollary 3.1 mean
that there exists a λ-CPS+ (λ-supCPS+) in the model with transaction cost
vectors λ for buying and ε ∈ (µ, 1) for selling.

By Theorem 2.1 and Corollary 3.1 we obtain a straightforward corollary.

Corollary 3.3. (rNA+)⇒ ∃λ-CPS+.
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The theorem below gives a sufficient condition for the absence of arbi-
trage.

Theorem 3.4. Let (S̃,Q) be a (λ, µ)-supCPS and define R̃+
T :=

{(H · S̃)T | H ∈ P+}. Then R̃+
T ∩ L0

+ = {0} and we have the absence of
arbitrage in our model, i.e. A+

T (λ, µ) ∩ L0
+ = {0}.

Lemma 3.5. Let R̃+,b
T := {(H · S̃)T | H ∈ P+ and H is bounded}. The

condition R̃+
T ∩ L0

+ = {0} is equivalent to R̃+,b
T ∩ L0

+ = {0}.

Proof. Notice that the condition R̃+
T ∩ L0

+ = {0} is equivalent to the
absence of arbitrage for any one-step model, i.e. {η∆S̃t | η ∈ L0

+(Ft−1)} ∩
L+
0 = {0} for any t = 1, . . . , T (see e.g. [KSaf, Chapter 2.1.1]). Hence assume

that there exists Ht ∈ L0
+(Ft−1) satisfying

(A+) Ht∆S̃t ≥ 0, P-a.s., and P(Ht∆S̃t > 0) > 0.

It is enough to show that there exists H̃t ∈ L0
+(Ft−1) which is bounded and

satisfies (A+). One can take

H̃t :=

{
Ht/‖Ht‖, Ht 6= 0,
0, Ht = 0.

It is also possible to use the arguments from [KSaf, Chapter 2.1.1]. Define
Hn
t := Ht1{‖Ht‖≤n}. Then there exists a sufficiently large n ∈ N such that

Hn
t satisfies (A+).

Proof of Theorem 3.4. By Lemma 3.5 it is enough to prove that R̃+,b
T ∩

L0
+ = {0}. Let x = (H · S̃)T ∈ R̃+,b

T ∩ L0
+. Then (H · S̃)T ≥ 0 and in

particular H is a bounded strategy. We show that EQ(H · S̃)T ≤ 0. Us-
ing the assumption that S̃ is a Q-supermartingale and taking into account
shortsale restrictions we get EQ(Ht∆S̃t | Ft−1) = HtEQ(∆S̃t | Ft−1) ≤ 0.
Consequently, EQ(H · S̃)T ≤ 0. Hence x = (H · S̃)T = 0, Q-a.s., and from
the equivalence of measures x = 0, P-a.s.

We now show that A+
T (λ, µ) ∩ L0

+ = {0}. Take any ξ ∈ A+
T (λ, µ) ∩ L0

+.
Then

0 ≤ ξ ≤ −
T∑
t=1

∆HtSt−1 + (1− µ)HTST −
T∑
t=1

λ(∆Ht)
+St−1

−
T∑
t=1

µ(∆Ht)
−St−1.

Notice that −µiSit ≤ S̃it − Sit ≤ λiS
i
t , P-a.s., for any t = 0, . . . , T and
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i = 1, . . . , d. Hence

ξ ≤ −
T∑
t=1

∆HtSt−1 + (1− µ)HTST −
T∑
t=1

λ(∆Ht)
+St−1 −

T∑
t=1

µ(∆Ht)
−St−1

≤ −
T∑
t=1

∆HtS̃t−1 +HT S̃T +
T∑
t=1

λ(∆Ht)
+St−1 +

T∑
t=1

µ(∆Ht)
−St−1

−
T∑
t=1

λ(∆Ht)
+St−1 −

T∑
t=1

µ(∆Ht)
−St−1 = (H · S̃)T .

Due to the condition R̃+
T ∩L0

+ = {0} we get (H · S̃)T = 0, P-a.s., and hence
ξ = 0, P-a.s.

Lemma 3.6. Assume that the process (xλ,µt )Tt=1 is a Q-supermartingale
with respect to a measure Q ∼ P. Then there exists a stochastic process
S̃ = (S̃t)

T
t=0 such that (S̃,Q) is a λ-CPS+. Moreover, there is no arbitrage

in the model, i.e. A+
T (λ, µ) ∩ L0

+ = {0}.

Proof. Let S̃t := (1− µ)EQ(ST | Ft) for t = 0, . . . , T . We show first that
the process S̃ = (S̃t)

T
t=0 is a λ-CPS+. It is enough to take a strategy where

at time t < T we buy one share Sit and sell it at time T . Then for any
i = 1, . . . , d taking into account that (xt)

T
t=1 is a Q-supermartingale we have

EQ(xT | Ft) = EQ(SiT − Sit − λiSit − µiSiT | Ft) = (S̃it − Sit)− λiSit ≤ 0.

Clearly S̃ is a Q-martingale.
Now we show the absence of arbitrage by induction on T . Notice that

there exists a λ-CPS+ of the form constructed above. Let T = 1 and ξ ∈
A+

1 (λ, µ) ∩ L0
+(F1). Then

0 ≤ ξ ≤ x1 = H1(S1 − S0)− λH1S0 − µH1S1 = H1(1− µ)S1 −H1(1 + λ)S0.

From the form of λ-CPS+ we have S̃i0 ≤ (1 + λ)Si0 and S̃i1 = (1− µi)Si1 for
i = 1, . . . , d. Hence

EQ(x1) ≤ EQ(H1∆S̃1) ≤ 0.

Finally ξ = 0, Q-a.s., and from the equivalence of measures ξ = 0, P-a.s.
Now let T > 1 and A+

T−1(λ, µ) ∩ L0
+(FT−1) = {0}. We show that

A+
T (λ, µ) ∩ L0

+(FT ) = {0}. Take any ξ ∈ A+
T (λ, µ) ∩ L0

+(FT ). We have
0 ≤ ξ ≤ xT and hence

0 ≤ EQ(ξ | FT−1) ≤ EQ(xT | FT−1) ≤ xT−1.
Notice that xT−1 ≥ 0, P-a.s. From the absence of arbitrage in the model
with time horizon T − 1 we get xT−1 = 0, P-a.s., and EQ(ξ | FT−1) = 0,
P-a.s. Hence from the equivalence of measures EQ(ξ | FT−1) = 0, Q-a.s., and
consequently EQξ = 0. Finally ξ = 0, P-a.s.
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Example 3.7. Notice that the existence of a λ-CPS+ is not a sufficient
condition for the absence of arbitrage. Consider the following market. Let
T = 2, d = 1, λ = µ < 1/3 and S0 = 1, S1 = 1 + 1A, S2 = (1 + λ)/(1− λ)
where A ∈ F1 and 0 < P(A) < 1. Furthermore, assume that F0 = {∅, Ω},
F1 = {∅, A,Ω \A,Ω}. Notice that there exists a λ-CPS+ in this model. We
construct it as in the proof of Theorem 2.1, i.e. define S̃t := (1−µ)EQ(S2 | Ft)
where Q is a probability measure equivalent to P and t ∈ {0, 1, 2}. Here
Q can be any probability measure equivalent to P due to the fact that
(1 − λ)EQ(S2 | F1) = (1 − λ)EQ(S2 | F0) = 1 + λ and the inequalities for
λ-CPS+ are satisfied. On the other hand notice that there exists arbitrage
in the model. Define a strategy as follows: ∆H1 = H1 = 1 and ∆H2 = −1A.
Then

xλ,µ2 = −1− λ+ (2− 2λ)1A +

(
1 + λ

1− λ
− λ1 + λ

1− λ

)
1Ω\A = (1− 3λ)1A.

Finally A+
2 (λ, µ) ∩ L0

+(F2) 6= {0} despite the existence of a λ-CPS+.

Remark 3.8. Actually due to Theorem 3.4 and the above example the
existence of a λ-CPS+ does not imply the existence of a (λ, µ)-supCPS.

Example 3.9. Let d = 1, T = 1, λ = µ and S0 = 1, S1 = (1 + λ)/(1− λ)
+ 1A where A ∈ F1 and 0 < P(A) < 1. Let F0 = {∅, Ω}. Then a strategy in
the model is of the form H1 = a, P-a.s., where a ∈ R+ by shortsale restric-
tions. Notice that for any transaction costs for buying shares ε > λ we have
the absence of arbitrage. Indeed,

xε,λ1 = H1∆S1 − εH1S0 − λH1S1 = a

(
1 + λ

1− λ
− 1 + 1A

)
− εa

− λ
(

1 + λ

1− λ
+ 1A

)
= a((1− λ)1A + λ− ε).

On the other hand A+
1 (λ, µ) ∩ L0

+ 6= {0}. It is enough to take a = 1. Then
xλ,λ1 = (1− λ)1A.

4. Super-replication problem. Since we do not have equivalent condi-
tions for the absence of arbitrage in our model, we only have some necessary
and sufficient conditions, and we cannot give an exact formula for the super-
replication price. In particular under the assumption of robust no-arbitrage
we have only an upper bound for this price.

Definition 4.1. We say that C is a contingent claim when C is a random
variable, i.e. C ∈ L0(FT ).
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Let us define the set of initial endowments which hedge the payoff of the
contingent claim C:

Γ+ = Γ+(C) := {x ∈ R | ∃H ∈ P+ : x+ xλ,µT (H) ≥ C, P-a.s.}

and the sets
Q+ := {Q ∼ P | ∃S̃ : (S̃,Q) is a λ-CPS+},

D+ = D+(C) := {x ∈ R | ∀Q ∈ Q+ : EQC ≤ x}.

Using similar arguments to those [KRS] we will prove the theorem below.

Theorem 4.2. Assume that the model satisfies (rNA+). Then D+ ⊆ Γ+.

Proof. Notice that Q+ 6= ∅ by Corollary 3.3. Suppose that the inclusion
D+ ⊆ Γ+ fails, so there exists x ∈ D+ such that x /∈ Γ+. Then C − x
/∈ A+

T (λ, µ). The set A+
T (λ, µ) is a convex cone closed in probability (by

Theorem 2.1 and Corollary 3.1). Notice that for any random variable η there
exists a probability measure P̃ ∼ P such that dP̃/dP ∈ L∞ and η ∈ L1(P̃).
Hence we can assume that C is integrable with respect to P̃. The setA+

T (λ, µ)

is also closed in probability P̃. Set Λ+
T := A+

T (λ, µ)∩L1(P̃), which is a closed
convex cone in L1(P̃). Notice that Λ+

T ∩ L1
+(P̃) = {0} and C − x /∈ Λ+

T since
by the Hahn–Banach separation theorem (see [Ru] for more details) there
exists zx ∈ L∞(P̃) such that

∀ξ ∈ Λ+
T : EP̃zxξ < EP̃zx(C − x).

As Λ+
T is a cone we have EP̃zxξ ≤ 0 for any ξ ∈ Λ+

T . Furthermore, for ξ = 0
we get EP̃zx(C − x) > 0.

Now we show that zx ≥ 0, P̃-a.s. Define A := {zx < 0} and suppose that
P̃(A) > 0. Taking the sequence ξn := −λn1A ∈ Λ+

T where λn →∞ we obtain
EP̃zxξn →∞, which contradicts the inequality EP̃zxξn ≤ 0.

Normalizing we can assume that zx ≤ 1 and ‖zx‖ = 1. Notice that
Q := zxP̃ is a probability measure equivalent to P such that dQ/dP ∈ L∞
and EQξ ≤ 0 for any ξ ∈ Λ+

T , in particular for

ξi = H i
t+1(S

i
T − Sit)− λiH i

t+1S
i
t − µiH i

t+1S
i
T , t = 0, . . . , T − 1,

where Ht+1 = (0, . . . ,1A, . . . , 0), P-a.s., A ∈ Ft and 1A is in the ith position.
This means that at time t, if the event A holds we buy the ith share at the
price Sit and liquidate the portfolio at time T . Hence

EQ[(SiT − Sit − λiSit − µiSiT )1A] ≤ 0.

Since (1 − µi)EQ(SiT1A) ≤ (1 + λi)EQ(Sit1A) for i = 1, . . . , d and for any
A ∈ Ft, all in all we have

(1−µi)EQ(SiT | Ft) ≤ (1+λi)EQ(Sit | Ft) = (1+λi)S
i
t for t = 0, . . . , T −1.
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Define S̃ = (S̃t)
T
t=0 by S̃t := (1 − µ)EQ(ST | Ft) and notice that (S̃,Q) is a

λ-CPS+. Moreover EQ(C − x) = EP̃ (zx(C − x)) > 0, which contradicts the
fact that x ∈ D+.

Let us now define the super-replication price

ps := inf Γ+ = inf{x ∈ R | ∃H ∈ P+ : x+ xλ,µT (H) ≥ C, P-a.s.}.
By Theorem 4.2 we immediately get the following corollary.

Corollary 4.3. Assume that the model satisfies (rNA+). Then

ps ≤ sup
Q∈Q+

EQC.

Proof. Notice that by Corollary 3.3 we have Q+ 6= ∅ and D+ ⊆ Γ+.

As previously we can also define

Q̂+ := {Q ∼ P | ∃S̃ : (S̃,Q) is a (λ, µ)-supCPS},
D̂+ := {x ∈ R | ∀Q ∈ Q̂+ : EQC ≤ x}.

Lemma 4.4. Assume that there exists a (λ, µ)-supCPS. Then Γ+ ⊆ D̂+.

Proof. Take any x ∈ Γ+. Let (S̃,Q) be a (λ, µ)-supCPS. Then by the
definition of Γ+ and using the same arguments as in the proof of Theorem
3.4 there exists a strategy H ∈ P+ such that

C ≤ x+ xλ,µT (H) ≤ x+ (H · S̃)T .

Notice that EQ(H · S̃)T ≤ 0. Hence for any Q ∈ Q̂+ we have EQC ≤ x.
Let us define Q := {Q ∼ P | ∃S̃ : (S̃,Q) is (λ, µ)-CPS}. The following

corollary is straightforward.

Corollary 4.5. Assume that there exists a (λ, µ)-supCPS in the model.
Then supQ∈Q̂+ EQC ≤ ps. Moreover, if we assume that there exists a (λ, µ)-
CPS then

sup
Q∈Q

EQC ≤ sup
Q∈Q̂+

EQC ≤ ps ≤ sup
Q∈Q+

EQC.

Proof. Notice that Γ+ ⊆ D̂+. In addition any (λ, µ)-CPS is in particular
a (λ, µ)-supCPS and also a λ-CPS+.
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