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NUTRIENT-PHYTOPLANKTON-ZOOPLANKTON

INTERACTION WITH VARIABLE YIELDS

Abstract. A three dimensional predator-prey-resource model is proposed
and analyzed to study the dynamics of the system with resource-dependent
yields of the organisms. Our analysis leads to different thresholds in terms
of the model parameters acting as conditions under which the organisms
associated with the system cannot thrive even in the absence of predation.
Local stability of the system is obtained in the absence of one or more of
the predators and in the presence of all the predators. Under appropriate
circumstances global stability of the system is obtained in the absence of the
predator at the highest trophic level. Moreover, it is shown that the system
undergoes Hopf bifurcation if the break-even concentration crosses a cer-
tain critical value. Computer simulations have been carried out to illustrate
various analytical results.

1. Introduction. In several ecological models the consumption rate of
resource by an organism is assumed to be a constant multiple of resource
uptake. The constant of proportionality is called the growth yield constant.
Under the assumption of constant yield, mathematical models failed to de-
scribe non-linear phenomena like sustained oscillations, whereas experimen-
tal results exhibit oscillations [4, 10]. The growth of plankton on resource is
in two steps: initially it uptakes the resource in the cell, and then uses the
intracellular nutrient for the growth of cell. As a result, the ratio between
cells growth rate and nutrient consumption rate is no more constant [7, 15].

We have considered a food chain model where there is a constant flow of
input nutrient. Phytoplankton is growing on the nutrient at the first trophic
level. Zooplankton uptakes phytoplankton by means of continuous filtering.
If the yield coefficient is constant, then both these organisms are assumed
to follow Holling type II functional response [16]. As observed by Jang and
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Balgama [7], enrichment of some nutrients can inhibit the growth of phyto-
plankton. Also, proliferation of phytoplankton reduces the dissolved oxygen
content, leading to an inhibitory effect on the growth rate of zooplankton
[8]. By assuming that yield as an increasing function of resource concen-
tration, the functional response becomes unimodal and non-monotonic [12].
With this in mind, we consider a predator-prey-resource model and compare
the dynamic behaviour of the system with variable yields of the organisms.
The objective of our study is to explore the dynamics resulting from the
consideration of yields which are functions of available resource.

In the present paper the main emphasis will be put on studying the
stability of the system with variable yields. We have studied the model an-
alytically, with the proofs all deferred to the Appendix. Numerical studies
have been carried out by considering linear and quadratic yields of the or-
ganisms separately.

2. The basic model. We take the model of a simple food chain [6, 16]
in which there is a constant supply of nutrient, whose concentration at time
t is S(t). Phytoplankton is growing on that nutrient with concentration x(t)
at time t. Zooplankton is introduced in the system with concentration y(t)
at time t, predating on phytoplankton only.

The basic equations with all the parameters are

dS

dt
= (S0 − S)D1 −

m1Sx

(a1 + S)γ1(S)
,

dx

dt
= x

[
m1S

a1 + S
−D2 −

m2y

(a2 + x)γ2(x)

]
,(1)

dy

dt
= y

(
m2x

a2 + x
−D3

)
,

where S(0) = S0 ≥ 0, x(0) = x0 ≥ 0, y(0) = y0 ≥ 0.
Here S0 is the input nutrient concentration, D1 is the dilution (or wash-

out) rate of nutrient, Di (i = 2, 3) are the death rates of the organisms.
Also, mi are the maximal growth rates, ai are the half saturation constants
(i = 1, 2), which are the nutrient concentrations at which the functional
response of the organism is half maximal. γ1(S) and γ2(x) are the resource-
dependent yields of phytoplankton and zooplankton respectively; all of these
are positive quantities [2]. Also, S0 and D1 are environmental variables while
mi, ai, D2, D3, γ1(S) and γ2(x) are properties of the organisms [5].

In this paper we have taken γ1(S) = β1 + α1S
n and γ2(x) = β2 + α2x

n

(n = 0, 1, 2) where αi, βi are parameters associated with the yields so that
γi < 1 (i = 1, 2).

In the system (1), the functional response of plankton is of the form
p(u) = f(u)/γ(u), where f(u) = mu/(a+u) is Holling II functional response.
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Fig. 1. (i) For n = 0 the functional response is Holling II. (ii) The functional responses
corresponding to n = 1 (solid) and n = 2 (dotted) are unimodal and hence non-monotonic.

Taking γ(u) = β + αu, we see that p(u) is increasing for 0 ≤ u ≤
√
aβ/α

and decreasing for u >
√
aβ/α. In the non-monotonic case p(u) reaches

its maximum at um =
√
aβ/α with p(um) = m/(

√
β +
√
aα)2. Also, for

γ(u) = β+αu2, the functional response is non-monotonic and unimodal (cf.
Fig. 1).

3. A non-dimensionalization of the problem. Let us change the
variables of the system (1) to non-dimensional ones [5] by making the sub-
stitutions S̄ = S/S0, x̄ = x/S0, ȳ = y/S0, t̄ = D1t, ā1 = a1/S

0, ā2 = a2/S
0,

m̄1 = m1/D1, m̄2 = m2/D1, γ̄1(S̄) = γ1(S
0S̄), γ̄2(x̄) = γ2(S

0x̄), D̄2 =
D2/D1, D̄3 = D3/D1.

The γ̄1(S̄) = β1 + α1(S
0S̄)n and γ̄2(x̄) = β2 + α2(S

0x̄)n (n = 1, 2).
Under these substitutions, on dropping the bars the system (1) reduces

to
dU

dt
= f(U)

where U = [S x y]T and f(U) = [F G H]T with

F ≡ F (S, x, y) = 1− S − xp1(S)

γ1(S)
,

G ≡ G(S, x, y) = x(p1(S)−D2)− y
p2(x)

γ2(x)
,

H ≡ H(S, x, y) = y(p2(x)−D3),

with

p1(S) =
m1S

a1 + S
, p2(x) =

m2x

a2 + x
,

S(0) = S0 ≥ 0, x(0) = x0 ≥ 0, y(0) = y0 ≥ 0.
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The parameters have been scaled by the operating environment, determined
by S0 and Di. The variables are non-dimensional and the parameters are
scaled relative to this environment.

4. Boundedness of the system

Theorem 4.1. For all ε > 0, there exists tε > 0 such that all the solu-
tions of (1) enter into the set {(S, x, y) ∈ R3 : S(t) + x(t) + y(t) ≤ 1/D+ ε}
whenever t ≥ tε, where D = min{1, D2, D3}.

Let us define

λi =
aiDi+1

mi −Di+1
for mi > Di+1 (i = 1, 2).

Then λ1 represents the break-even concentration, the concentration of nutri-
ent for the growth of phytoplankton in the absence of zooplankton in steady
state. Thus, the break-even concentration λ1 satisfies the condition p1(λ1)
= D2; it represents the value of S for which the growth p1(S) of x is bal-
anced by the death rate D2. And λ2 represents the break-even concentration
of phytoplankton for the growth of zooplankton.

The following theorem states a condition under which the species cannot
survive even in the absence of predation:

Theorem 4.2.

(i) If m1 ≤ D2, then limt→∞ x(t) = 0 = limt→∞ y(t).
(ii) If m1 > D2 and λ1 > 1, then limt→∞ x(t) = 0 = limt→∞ y(t).

(iii) If m2 ≤ D3, then limt→∞ y(t) = 0.
(iv) If m2 > D3 and λ2 > 1/D, then limt→∞ y(t) = 0.

This theorem states that:
(i) If the maximal growth rate of phytoplankton is less than or equal to

its death rate then phytoplankton and zooplankton will go to extinction.
(ii) If the maximal growth rate of phytoplankton is greater than its death

rate and the break even concentration λ1 is greater than unity, then none
of the planktons will survive in the system.

(iii) If the maximal growth rate of zooplankton is less than or equal to
its death rate then zooplankton will not survive in the system.

(iv) If the maximal growth rate of zooplankton is greater than its death
rate and the break-even concentration λ2 is greater than 1/D, then zoo-
plankton will become extinct.

5. Equilibria and their stability. The system (1) possesses the fol-
lowing equilibria:

(i) phytoplankton and zooplankton free equilibrium E0 = (1, 0, 0);

(ii) zooplankton free equilibrium E1 =
(
λ1,

1−λ1
D2

γ1(λ1), 0
)
;
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(iii) the equilibrium of coexistence E∗ = (S∗, λ2, y
∗), where S∗ is a

positive root of the equation (S − 1)γ1(S) + λ2p1(S) = 0 and

y∗ = λ2(p1(S∗)−1)γ2(λ2)
D3

.

The organism-free equilibrium E0 always exists. The zooplankton-free equi-
librium E1 will exist if λ1 < 1. Also, the equilibrium of coexistence will exist
if λ1 < 1 and λ2 < 1/D.

We analyze the local stability of system (1) by using eigenvalue anal-
ysis of the Jacobian matrix evaluated at the appropriate equilibrium. The
detailed calculations are given in the Appendix.

Lemma 5.1. The critical point E0 = (1, 0, 0) of the system (1) is locally
asymptotically stable if λ1 > 1.

Local stability atE0 implies the non-existence of the equilibriaE1 andE∗.

Lemma 5.2. The critical point E1

(
λ1,

1−λ1
D2

γ1(λ1), 0
)
of the system (1)

is locally asymptotically stable if λ1 < 1 and D2 > D0, where

D0 = max

{
m1λ

2
1

a1

(
γ′1(λ1)

γ1(λ1)
− 1

1− λ1

)
,
(1− λ1)γ1(λ1)

λ2

}
.

Local stability at E1 implies that E0 is a saddle point and E∗ is non-
existent. All the organisms in the system will persist if limt→∞ u(t) > 0 for
each organism u(t). The condition given in the following lemma rules out
the possibility of extinction of any organism in the system [14].

Lemma 5.3. If λ1 < 1 and λ2 ≤ (1 − λ1)γ1(λ1)/D2 then all the three
organisms will persist in the system.

Having established the existence and uniqueness of the positive steady
state E∗, we now turn our attention to its local stability.

Lemma 5.4. The positive equilibrium E∗(S∗, λ2, y
∗) of the system (1) is

locally asymptotically stable if A,B,C > 0 and AB > C, where

A = D2 + 1− p1(S∗) + y∗
(
p2
γ2

)′
x=λ2

+ λ2

(
p1
γ1

)′
S=S∗

,

B = D2 − p1(S∗) + y∗
(
p2
γ2

)′
x=λ2

+D2λ2

(
p1
γ1

)′
S=S∗

+ λ2p
2
1(S
∗)
γ′1(S

∗)

γ21(S∗)
+ y∗D3

p′2(λ2)

γ2(λ2)
+ λ2y

∗
(
p1
γ1

)′
S=S∗

(
p2
γ2

)′
x=λ2

,

C = y∗D3
p′2(λ2)

γ2(λ2)

{
1 + λ2

(
p1
γ1

)′
S=S∗

}
.



332 J. Bhattacharyya and S. Pal

Lemma 5.5. The system (1) has no periodic solution around the positive
equilibrium E∗ if m1 < L where

L = min

{
D2 −D3 + y∗

(
p2
γ2

)′
λ2

, 1− y∗p′2(λ2) + λ2

(
p1
γ1

)′
S∗
,

D2 − λ2p′1(S∗) + y∗
(
p2
γ2

)′
λ2

}
.

Corollary 5.1. If the conditions stated in Lemma 5.3 and 5.5 both
hold, then the interior equilibrium is locally asymptotically stable.

Next we study the global asymptotic stability of the system at E1. The
system (1) is studied, and a globally attractive positively invariant set is
found using a suitable Lyapunov function. As a result, we find sufficient
conditions for the stability of the equilibrium in the absence of zooplankton.

Lemma 5.6. The critical point E1(λ1, (1 − λ1)γ1(λ1), 0) of the system
(1) is globally asymptotically stable if

SΦ(S)

γ2(S)(a1 + Sλ1)
≤

γ(λ1)

m1λ1
{
1−λ1
D2

γ1(λ1) + ε0
} ,

where Φ(S) = α1S
0 for linear yields (n = 1), and Φ(S) = α1(S

0)2(S + λ1)
for quadratic yields (n = 2).

6. Hopf bifurcation. We choose λ2 as bifurcation parameter. The char-
acteristic equation of the variational matrix at E∗ is µ3+Aµ2+Bµ+C = 0,
where

A = −(Gx|E∗ + FS |E∗) = 2− p1(S∗) + y∗
(
p2(x)

γ2(x)

)′
x=λ2

+ λ2

(
p1(S)

γ1(S)

)′
S=S∗

,

B = 1 + λ2

(
p1(S)

γ1(S)

)′
S∗

+ y∗
(
p2(x)

γ2(x)

)′
λ2

+ λ2y
∗
(
p2(x)

γ2(x)

)′
λ2

(
p1(S)

γ1(S)

)′
S∗

− p1(S∗)− p1(S∗)λ2
(
p1(S)

γ1(S)

)′
S∗

+ y∗
p′2(λ2)

γ2(λ2)
+
λ2p
′
1(S
∗)p1(S

∗)

γ1(S∗)
,

C = −y
∗p′2(λ2)

γ2(λ2)
FS |E∗ =

y∗p′2(λ2)

γ2(λ2)

(
1 + λ2

(
p1(S)

γ1(S)

)′
S∗

)
.

Necessary and sufficient conditions for Hopf bifurcation to occur at λ2 = λcr
are that

(i) A(λcr) > 0, B(λcr) > 0 and C(λcr) > 0,
(ii) C(λcr) = A(λcr)B(λcr),

(iii) Re
[dµj
dλ2

]
λ2=λcr

6= 0, j = 1, 2, 3.
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Condition (i) will be satisfied if

D2 > DH = max{d1, d2} and 1 + λ2(p1/γ1)
′
S∗ > 0 where

d1 = p1(S
∗)−1−y∗

(
p2
γ2

)′
λcr

−λcr
(
p1
γ1

)′
S∗
,

d2 =
p1(S

∗)
{

1−λcrp1(S∗)
γ′1(S

∗)

γ21(S
∗)

}
−y∗

{(p2
γ2

)′
λcr
−D3p′2(λcr)

γ2(λcr)
−λcr

(p1
γ1

)′
S∗

(p2
γ2

)′
λcr

}
{

1+λcr
(p1
γ1

)′
S∗

} .

For λ2 = λcr, the characteristic equation becomes (µ + A)(µ2 + B) = 0,

hence µ = −A,±i
√
B.

For λ ∈ (λcr − ε, λcr + ε), the roots are in general of the form

µ1(λ) = β1(λ) + iβ2(λ),

µ2(λ) = β1(λ)− iβ2(λ),

µ3(λ) = −A(λ).

Therefore, d
dλ(µ3 +Aµ2 +Bµ+ C) = 0 gives

(K + iL)
dµ

dλ
+ (M + iN) = 0,

where

K(λ) = 3β21(λ)− 3β22(λ) + 2A(λ)β1(λ) +B(λ),

L(λ) = 6β1(λ)β2(λ) + 2A(λ)β2(λ),

M(λ) = C ′(λ) + {β21(λ)− β2(λ)}A′(λ) + β1B
′(λ),

N(λ) = 2β1(λ)β2(λ)A′(λ) + β2(λ)B′(λ).

Therefore,

dµ

dλ
= −{M(λ)K(λ) +N(λ)L(λ)}+ i{N(λ)K(λ)−M(λ)L(λ)}

K2(λ) + L2(λ)
.

If {M(λ)K(λ) +N(λ)L(λ)}λ=λcr 6= 0, then Re
[dµj
dλ

]
λ=λcr

6= 0. Therefore, if

(a) D2 > DH ,
(b) C(λcr) = A(λcr)B(λcr),
(c) {M(λ)K(λ) +N(λ)L(λ)}λ=λcr 6= 0,

then a Hopf bifurcation occurs at λ2 = λcr and also it is non-degenerate.

7. Numerical simulations. In this section, we investigate numerically
as demonstrated in [1, 3, 11] the effect of the various parameters on the
qualitative behaviour of the system using parameter values given in Table 1
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Table 1. Parameter values used in the numerical analysis

Original
parameters

Description of parameters
Default
value

Dimension

S0 Constant input nutrient 0.3 mass/volume

a1 Half saturation constant for uptake of S by x 0.5 mass/volume

a2 Half saturation constant for uptake of x by y 0.3 mass/volume

m1 Maximal growth rate of x on S 4 1/time

m2 Maximal growth rate of y on x 3 1/time

D1 Dilution (washout) rate of S 0.5 1/time

D2 Death rate of x 0.5 1/time

D3 Death rate of y 0.5 1/time

α1, α2 Parameters associated with yield 0.2 —

β1, β2 Parameters associated with yield 0.1 —

throughout, unless otherwise stated. Also, while analyzing the system with
constant yields we have considered α1 = 0 = α2 and other parameter values
as given in Table 1.

Under the given set of parameter values (cf. Table 1) we see that the
system is locally asymptotically stable at E∗ for constant yields (cf. Fig. 2(i))
and for quadratic yields (cf. Fig. 2(iii)), whereas the system is oscillatory at
E∗ for linear yields (cf. Fig. 2(ii)).

The qualitative behaviour of the system (for n = 0, 1, 2) is given in Tables
2-4, obtained by sequentially altering the value of a particular parameter of
the system while leaving all other parameters unchanged. We observe that
the system exhibits similar qualitative behaviour for constant yields and
quadratic yields, whereas the system with linear yields is more prone to
oscillation.

We will now verify the feasibility of the stability criterion of Section 5.

Example 1. For S0 ≤ 0.07 and all other parameters as in Table 1, it is
observed that phytoplankton and zooplankton cannot survive in the system
with linear yields (cf. Fig. 3). It is observed that for S0 = 0.01, E0 is a stable
node with eigenvalues −1,−1,−0.8431. Also we obtain λ1 = 7.1429 > 1,
satisfying the condition of Lemma 5.1.

Example 2. For S0 = 0.1 and all other parameters as in Table 1, the
system with linear yields has a stable node at E1 = (0.7143, 0.2857, 0) with
eigenvalues −1,−0.35,−0.4783 (cf. Fig. 4). In this case we obtain λ1 =
0.7143 < 1, satisfying the criterion for existence of E1. Also, we obtain
D2 > D0 = 0.4762, satisfying the condition of Lemma 5.2.



Nutrient-plankton interaction with variable yields 335

0

0.5

1

0

0.5

1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

   E
0

 S ( Nutrient )

     E*

   E
1

 x ( Phytoplankton )

 y
 (

 Z
o

o
p

la
n

k
to

n
 )

0

0.5

1

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

   E
0

 S ( Nutrient )

     E*

 x ( Phytoplankton )

   E
1

 y
 (

 Z
o

o
p

la
n

k
to

n
)

0

0.5

1

0

0.5

1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

   E
0

 S (Nutrient)

     E*

 x ( Phytoplankton )

   E
1

 y
 (

 Z
o

o
p

la
n

k
to

n
 )

 I
1  I

1

 I
1

0

0.5

1

0

0.5

1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

   E
0

 S ( Nutrient )

     E*

   E
1

 x ( Phytoplankton )

 y
 (

 Z
o

o
p

la
n

k
to

n
 )

0

0.5

1

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

   E
0

 S ( Nutrient )

     E*

 x ( Phytoplankton )

   E
1

 y
 (

 Z
o

o
p

la
n

k
to

n
)

0

0.5

1

0

0.5

1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

   E
0

 S (Nutrient)

     E*

 x ( Phytoplankton )

   E
1

 y
 (

 Z
o

o
p

la
n

k
to

n
 )

 I
1  I

1

 I
1

(i) (ii)

0

0.5

1

0

0.5

1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

   E
0

 S ( Nutrient )

     E*

   E
1

 x ( Phytoplankton )

 y
 (

 Z
o

o
p

la
n

k
to

n
 )

0

0.5

1

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

   E
0

 S ( Nutrient )

     E*

 x ( Phytoplankton )

   E
1

 y
 (

 Z
o

o
p

la
n

k
to

n
)

0

0.5

1

0

0.5

1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

   E
0

 S (Nutrient)

     E*

 x ( Phytoplankton )

   E
1

 y
 (

 Z
o

o
p

la
n

k
to

n
 )

 I
1  I

1

 I
1

(iii)

Fig. 2. Phase portraits of the system with initial value I1 = (0.06, 0.01, 0.02) for (i) con-
stant yields of organisms with α1 = 0 = α2 and other parameter values as given in Table 1:
the system has a stable focus at E∗; (ii) linear yields with parameter values as given in
Table 1: the system is oscillatory around E∗; (iii) quadratic yields with parameter values
as given in Table 1: the system has a stable focus at E∗.

Example 3. For α1 = 0 = α2 and all other parameters as in Table 1,
the system approaches the positive equilibrium E∗ = (0.5842, 0.2002, 0.2156)
(cf. Fig. 2(i)) in the form of a stable focus with eigenvalues −1,−0,−0.1733±
i1.1575. In this case we obtain λ1 = 0.2381 < 1, λ2 = 0.2, (1−λ1)γ1(λ1)/D2

= 0.7619, so that λ2 < (1 − λ1)γ1(λ1)/D2, satisfying the condition of per-
sistence given in Lemma 5.3. Also, we obtain A = 1.3467, B = 1.7166,
C = 1.3699 so that AB > C, satisfying the condition of Lemma 5.4.
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Fig. 3. Time series analysis of the system with linear yields for S0 = 0.01 and other
parameter values as given in Table 1. The system has a stable node at E0.
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Fig. 4. Time series analysis of the system with linear yields for S0 = 0.1 and other
parameter values as given in Table 1. The system has a stable node at E1.

Combined effects of input nutrient concentration, dilution rate
and death rate of planktons. The system with linear yields is oscillatory
around E∗ under the given set of parameter values (cf. Fig. 2(ii)). The
following changes in Di restore the system to stability:

(i) If the dilution rate of nutrient is lowered (to D1 = 0.15), the system
becomes locally asymptotically stable at E∗ (cf. Fig. 5). If we decrease the
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Fig. 5. Phase portrait of the system with linear yields for S0 = 0.3, D1 = 0.15 and other
parameter values as given in Table 1. The system has a stable focus at E∗.

value of D1 below 0.12, the system becomes locally asymptotically stable
at E1.

(ii) If the death rate of phytoplankton is increased (to D2 = 1.2), the
system becomes locally asymptotically stable at E1. If we further increase
the value of D2 (to D2 = 1.8), the system stabilizes at E0 (cf. Fig. 6).
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Fig. 6. Phase portrait of the system with linear yields for S0 = 0.3 and other parameter
values as given in Table 1 with initial value I2 = (0.06, 0.5, 0.02). The system is oscillatory
around E∗ (solid blue; colours refer to the pdf file). For S0 = 0.3, D2 = 1.2 and other
parameter values as given in Table 1, the system has a stable focus at E1 (solid black).
For S0 = 0.3, D2 = 1.8 and other parameter values as given in Table 1, the system has a
stable focus at E0 (dotted blue).

(iii) If the death rate of zooplankton is increased (to D3 = 0.7), the
system becomes locally asymptotically stable at E∗. If we further increase
the value of D3 (to D3 = 1.8), the system stabilizes at E1 (cf. Fig. 7).



338 J. Bhattacharyya and S. Pal

0

0.2

0.4

0.6

0.8

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

   E0

 S ( Nutrient )

     E*

 x ( Phytoplankton )

   E1

 y
 (

 Z
o

o
p

la
n

k
to

n
 )

 I2

Fig. 7. Phase portrait of the system with linear yields for S0 = 0.3, D3 = 0.7 and other
parameter values as given in Table 1 with initial value I2 = (0.06, 0.5, 0.02). The system
is locally asymptotically stable at E∗ (blue). For S0 = 0.3, D3 = 1.8 and other parameter
values as given in Table 1, the system is locally asymptotically stable at E1 (black).

Hopf bifurcation. We observe that the system becomes oscillatory when
the values of the parameters a2 and D3 are low. Since λ2 depends on both a2
and D3, λ2 is considered as a bifurcation parameter. By decreasing the value
of break-even concentration λ2, the system exhibits oscillatory coexistence
of all the species. The dynamical change due to the change in the value of λ2
is shown by means of bifurcation diagrams. It is observed that the system
undergoes a subcritical Hopf bifurcation when λ2 is increased through some
critical value. In the case of linear yields it is observed that there is a change
of stability of the system when λ2 crosses the value 0.105 (cf. Fig. 9) and
in the case of constant yields the change of stability occurs when λ2 crosses
the critical value 0.21 (cf. Fig. 8).
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Fig. 8. The system with constant yields undergoes a subcritical Hopf bifurcation as λ2 is
increased through λ2cr = 0.21.
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Fig. 9. The system with linear yields undergoes a subcritical Hopf bifurcation as λ2 is
increased through λ2cr = 0.105.

8. Discussion. We have considered a food chain with two trophic lev-
els consisting of nutrient, phytoplankton and zooplankton. By analyzing our
model we observe that if the maximal uptake rate of an organism is less than
or equal to the death rate of that organism then the organism will become
extinct even in the absence of predation. The threshold values for the ex-
istence and stability of various steady states of the system are worked out.
Also, it is observed that if the value λ2 of break-even concentration crosses
a certain critical value, the system enters into Hopf bifurcation that induces
oscillation around the positive equilibrium. We have also provided numeri-
cal simulations to substantiate our analytic results. Further, the numerical
simulations demonstrate the following conclusions:

(i) With high concentration of nutrient, the system with constant or
variable yields is oscillatory about the equilibrium of coexistence. This is
essentially the paradox of enrichment [13].

(ii) If the concentration of nutrient is very low, all the species in the two
trophic levels would go to extinction, irrespective of constant or variable
yields.

(iii) With low concentration of nutrient, gradual increase of the death
rates of phytoplankton and zooplankton helps stable coexistence of all the
species.

(iv) With high death rate of phytoplankton it is observed that phyto-
plankton and zooplankton both become extinct.

(v) It is observed that low value of half saturation constant for uptake
of nutrient by phytoplankton induces oscillation about the equilibrium of
coexistence for the system with linear yields. On the other hand, the system
with constant yields or quadratic yields exhibits no such oscillation.
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Table 2. Qualitative behaviour of the system with constant yields for different parameter
values

Organisms with constant yields

Description of stabilityParameter
Range

E0 E1 E∗

S0 ≤ 0.07 Stable node Not feasible Not feasible

0.07 < S0 < 0.13 Saddle point Stable node Not feasible

0.13 ≤ S0 < 0.5 Saddle point Saddle focus Stable focus
S0

S0 ≥ 0.5 Saddle point Saddle focus Oscillatory

a1 < 1.68 Saddle point Saddle point Stable node

a1 1.68 ≤ a1 < 2.1 Saddle point Stable node Not feasible

a1 ≥ 2.1 Stable node Not feasible Not feasible

a2 ≤ 0.16 Saddle point Saddle focus Oscillatory

a2 0.16 < a2 < 1.14 Saddle point Saddle focus Stable focus

a2 ≥ 1.14 Saddle point Stable node Not feasible

0.5 < m1 ≤ 1.33 Stable node Not feasible Not feasible

m1 1.33 < m1 ≤ 1.54 Saddle point Stable node Not feasible

m1 > 1.54 Saddle point Saddle point Stable focus

0.5 < m2 ≤ 1.15 Saddle point Stable focus Not feasible
m2

m2 > 1.15 Saddle point Saddle point Stable focus

D1 ≤ 0.13 Saddle point Stable node Not feasible
D1

D1 > 0.13 Saddle point Saddle focus Stable focus

D2 < 0.104 Saddle point Saddle focus Stable focus

D2 0.104 ≤ D2 < 1.5 Saddle point Stable focus Not feasible

D2 ≥ 1.5 Stable node Not feasible Not feasible

D3

D3 < 0.01 Saddle point Saddle point Oscillatory

0.01 ≤ D3 < 1.3 Saddle point Saddle focus Stable focus

D3 ≥ 1.3 Saddle point Stable focus Not feasible

(vi) Increase of half saturation constant for uptake of phytoplankton by
zooplankton initially transforms the oscillatory coexistence of all the species
to their stable coexistence. Further increase of the value of this parameter
leads to the extinction of zooplankton.

Throughout the article an attempt (analytical and numerical) is made to
search for a suitable way to control the growth of nutrient, phytoplankton,
zooplankton and maintain stable coexistence of all the species. It is observed
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Table 3. Qualitative behaviour of the system with linear yields for different parameter
values

Organisms with linear yields

Description of stabilityParameter
Range

E0 E1 E∗

S0

S0 ≤ 0.07 Stable node Not feasible Not feasible

0.07 < S0 ≤ 0.12 Saddle point Stable node Not feasible

0.12 < S0 ≤ 0.258 Saddle point Saddle point Stable focus

S0 ≥ 0.258 Saddle point Saddle focus Oscillatory

a1

(0, 1.08] ∪ [0.65, 1.82] Saddle point Saddle point Oscillatory

0.12 < a1 < 0.65 Saddle point Saddle point Stable node

1.82 < a1 < 2.1 Saddle point Stable node Not feasible

a1 ≥ 2.1 Stable node Not feasible Not feasible

a2

a2 ≤ 0.32 Saddle point Saddle focus Oscillatory

0.32 < a2 < 1.3 Saddle point Saddle focus Stable focus

a2 ≥ 1.3 Saddle point Stable node Not feasible

m1

0.5 < m1 ≤ 1.33 Stable node Not feasible Not feasible

1.33 < m1 ≤ 1.46 Saddle point Stable node Not feasible

m1 > 1.46 Saddle point Saddle point Stable focus

m2

0.5 < m2 ≤ 1.07 Saddle point Stable focus Not feasible

m2 > 1.07 Saddle point Saddle point Stable focus

D1

D1 ≤ 0.12 Saddle point Stable node Not feasible

0.12 < D1 ≤ 0.44 Saddle point Saddle focus Stable focus

D1 > 0.44 Saddle point Saddle point Oscillatory

D2

D2 < 0.54 Saddle point Saddle point Oscillatory

0.54 ≤ D2 < 1.15 Saddle point Saddle focus Stable focus

1.15 ≤ D2 < 1.5 Saddle point Stable node Not feasible

D2 ≥ 1.5 Stable node Not feasible Not feasible

D3

D3 < 0.58 Saddle point Saddle point Oscillatory

0.58 ≤ D3 < 1.4 Saddle point Saddle focus Stable focus

D3 ≥ 1.4 Saddle point Stable focus Not feasible

that organisms with linear yields are more sensitive to parameter changes
than those of constant yields and quadratic yields. A numerical attempt is
made to analyze the situation of extinction of some of the species in the
system by changing the values of the parameters.
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Table 4. Qualitative behaviour of the system with quadratic yields for different param-
eter values

Organisms with quadratic yields

Description of stabilityParameter
Range

E0 E1 E∗

S0

S0 ≤ 0.07 Stable node Not feasible Not feasible

0.07 < S0 < 0.13 Saddle point Stable node Not feasible

0.13 ≤ S0 ≤ 0.42 Saddle point Saddle focus Stable node

S0 > 0.42 Saddle point Saddle focus Oscillatory

a1

a1 < 1.72 Saddle point Saddle point Stable focus

1.72 ≤ a1 < 2.1 Saddle point Stable node Not feasible

a1 ≥ 2.1 Stable node Not feasible Not feasible

a2

a2 ≤ 0.18 Saddle point Saddle point Oscillatory

0.18 < a2 < 1.15 Saddle point Saddle point Stable focus

a2 ≥ 1.15 Saddle point Stable node Not feasible

m1

0.5 < m1 ≤ 1.33 Stable node Not feasible Not feasible

1.33 < m1 ≤ 1.51 Saddle point Stable node Not feasible

m1 > 1.51 Saddle point Saddle point Stable focus

m2

0.5 < m2 ≤ 1.15 Saddle point Stable node Not feasible

m2 > 1.15 Saddle point Saddle point Stable focus

D1

D1 < 0.72 Saddle point Stable node Not feasible

D1 ≥ 0.72 Saddle point Saddle focus Stable focus

D2

D2 < 0.1 Saddle point Saddle point Oscillatory

0.1 ≤ D2 < 1.06 Saddle point Saddle focus Stable focus

1.06 ≤ D2 < 1.5 Saddle point Stable node Not feasible

D2 ≥ 1.5 Stable node Not feasible Not feasible

D3

D3 < 0.015 Saddle point Saddle point Oscillatory

0.015 ≤ D3 < 1.31 Saddle point Saddle focus Stable focus

D3 ≥ 1.31 Saddle point Stable focus Not feasible

Appendix

Proof of boundedness of the system (Theorem 4.1). Let Σ(t) = S(t) +
x(t) + y(t). Then

d

dt
(Σ(t)) = 1−S−xp1(S)

{
1

γ1(S)
− 1

}
−xD2− yp2(x)

{
1

γ2(x)
− 1

}
− yD3

≤ 1−S−xD2− yD3 = 1−Σ(t)D,
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where D = min{1, D2, D3}. Let u(t) be the solution of dudt +uD = 1 satisfying
u(0) = Σ(0). Then

u(t) =
1

D
+

(
Σ(0)− 1

D

)
e−tD → 1

D
as t→∞.

By comparison, it follows that

lim
t→∞

sup[S(t) + x(t) + y(t)] ≤ 1

D
,

proving the theorem.

Proof of Theorem 4.2. (i) Since S(t) ≤ 1 as t → ∞, it follows that for
any ε > 0 there exists tε > 0 such that S(t) ≤ 1 + ε for all t ≥ tε.

If m1 ≤ D2, then
dx

dt
≤ −xD2

(
a1

a1 + S

)
< 0.

Thus we get
x(t)�

x(tε)

dξ

ξ
≤ −D2

(
a1

1 + a1 + ε

)
(t− tε),

which gives

x(t) ≤ x(tε)e
−a1D2(t−tε)

1+a1+ε .

Therefore, limt→∞ x(t) = 0 and consequently limt→∞ y(t) = 0.
(ii) For all t ≥ tε, if λ1 > 1 + ε and m1 > D2 then

dx

dt
≤ x(m1 −D2)(S − λ1)

a1
≤ x(m1 −D2)(1 + ε− λ1)

a1
< 0.

Now, we obtain
x(t)�

x(tε)

dξ

ξ
≤ (m1 −D2)(1 + ε− λ1)

a1
(t− tε),

which gives

x(t) ≤ x(tε)e
−(m1−D2)(λ1−1−ε)(t−tε)

a1 .

This implies that if λ1 > 1 and m1 > D2, then x(t) → 0 as t → ∞ and
consequently y(t)→ 0 as t→∞.

(iii) Since x(t) ≤ 1/D as t → ∞, it follows that for every ε1 > 0 there
exists tε1 > 0 such that x(t) ≤ 1/D + ε1, for all t ≥ tε1 .

If m2 ≤ D3, then
dy

dt
≤ −yD3

(
a2

a2 + x

)
< 0.

Thus we get
y(t)�

y(tε1 )

dξ

ξ
≤ −D3

(
a2

1/D + a2 + ε1

)
(t− tε1),
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which gives

y(t) ≤ y(tε1)e
−a2D3(t−tε1 )

a2+1/D+ε1 .

Therefore, limt→∞ y(t) = 0.
(iv) For all t ≥ tε1 , if λ2 > 1/D + ε1 and m2 > D3, then

dy

dt
≤ y (m2 −D3)(x− λ2)

a2
≤ y (m2 −D3)(1/D + ε1 − λ2)

a2
< 0.

Now, we obtain

y(t)�

y(tε1 )

dξ

ξ
≤ (m2 −D3)(1/D + ε1 − λ2)

a2
(t− tε1),

which gives

y(t) ≤ y(tε1)e
−(m2−D3)(λ2−1/D−ε1)(t−tε1 )

a2 .

This implies that if λ2 > 1/D and m2 > D3, then y(t)→ 0 as t→∞.

Proof of Lemma 5.1. At E0 the variational matrix is

V (E0) =

 −1 −p1(1)/γ1(1) 0

0 p1(1)−D2 0

0 0 −D3

 .
Its eigenvalues are −1, −D3, p1(1) − 1. Therefore, the system is stable at
E0 if p1(1) < D2, i.e. if λ1 > 1.

Proof of Lemma 5.2. At E1 the variational matrix is

V (E1) =


FS |E1

−D2
γ1(λ1)

0

(1− λ1)γ1(λ1) a1D2

m1λ21
0

−p2|E1
γ2|E1

0 0 p2|E1 −D3


where

FS |E1 = −1− (1− λ1)
D2

(γ1(λ1) a1D2
2

m1λ21
−D2γ

′
1(λ1)

γ1(λ1)

)
,

p2|E1 =
m2(1− λ1)γ1(λ1)

a2D2 + (1− λ1)γ1(λ1)
,

γ2|E1 = γ2

(
(1− λ1)
D2

γ1(λ1)

)
.

The characteristic equation is

(p2|E1 −D3 − µ)

(
µ2 − µFS |E1 + (1− λ1)

a1D
2
2

m1λ21

)
= 0.
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The two roots of the quadratic equation

µ2 − µFS |E1 + (1− λ1)
a1D

2
2

m1λ21
= 0

will be negative real if FS |E1 < 0 and λ1 < 1.
Now,

p2|E1 < D3 ⇒
a2 + (1−λ1)

D2
γ1(λ1)

m2
(1−λ1)
D2

γ1(λ1)
>

1

D3
⇒ λ2 >

(1− λ1)γ1(λ1)
D2

,

FS |E1 < 0⇒ D2 >
m1λ

2
1

a1

(
γ′1(λ1)

γ1(λ1)
− 1

1− λ1

)
.

Therefore, the system is stable at E1 if D2 > D0, where

D0 = max

{
m1λ

2
1

a1

(
γ′1(λ1)

γ1(λ1)
− 1

1− λ1

)
,
(1− λ1)γ1(λ1)

λ2

}
.

Proof of Lemma 5.3. In order to prove the persistence of the system we
shall show that all the boundary equilibria of the system are repellers.

We observe that if λ1 < 1, then the system is unstable at E0. If λ2 ≤
(1 − λ1)γ1(λ1)/D2 then the system is unstable at E1. Thus, if λ1 < 1 and
λ2 ≤ (1−λ1)γ1(λ1)/D2 then all the boundary equilibria are repellers. Also,
the system is bounded. Therefore, the system is persistent under the afore-
said conditions.

Proof of Lemma 5.4. At E∗ the variational matrix is

V (E∗) =


−1− λ2

(p1(S)
γ1(S)

)′
S∗

−p1(S∗)
γ1(S∗)

0

λ2p
′
1(S
∗) p1(S

∗)−D2 − y∗
(p2(x)
γ2(x)

)′
λ2

−D3
γ2(λ2)

0 y∗p′2(λ2) 0


The characteristic equation is µ3 +Aµ2 +Bµ+ C = 0, where

A = −(Gx|E∗ + FS |E∗) = 1 +D2 − p1(S∗) + y∗
(
p2
γ2

)′
x=λ2

+ λ2

(
p1
γ1

)′
S=S∗

,

B = D2 − p1(S∗) + y∗
(
p2
γ2

)′
x=λ2

+D2λ2

(
p1
γ1

)′
S=S∗

+ λ2p
2
1(S
∗)
γ′1(S

∗)

γ21(S∗)

+ y∗D3
p′2(λ2)

γ2(λ2)
+ λ2y

∗
(
p1
γ1

)′
S=S∗

(
p2
γ2

)′
x=λ2

,

C = y∗D3
p′2(λ2)

γ2(λ2)

{
1 + λ2

(
p1
γ1

)′
S=S∗

}
.
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Therefore, if A,B,C > 0 and AB > C, then the positive equilibrium of the
system (1) is locally asymptotically stable.

Proof of Lemma 5.5. The second additive compound matrix of the Ja-
cobian of the system (1) is

J (2) =

 FS +Gx Gy −Fy
Hx FS +Hy Fx

−HS GS Gx +Hy

 .
The logarithmic norm µ∞ of J (2) determined by the norm |X|∞ = supi |Xi|
is

µ∞(J (2)) = sup{FS +Gx + |Fy|+ |Gy|, FS +Hy + |Fx|+ |Hx|,
Gx +Hy + |GS |+ |HS |}.

Now,

(FS +Gx + |Fy|+ |Gy|)E∗ < m1 +D3 −D2 − y∗
(
p2
γ2

)′
λ2

,

(FS +Hy + |Fx|+ |Hx|)E∗ < m1 − 1 + y∗p′2(λ2)− λ2
(
p1
γ1

)′
S∗
,

(Gx +Hy + |GS |+ |HS |)E∗ = m1 −D2 + λ2p
′
1(S
∗)− y∗

(
p2
γ2

)′
λ2

.

Therefore, µ∞(J (2)) < 0 if m1 < L, where

L = min

{
D2 −D3 + y∗

(
p2
γ2

)′
λ2

, 1− y∗p′2(λ2) + λ2

(
p1
γ1

)′
S∗
,

D2 − λ2p′1(S∗) + y∗
(
p2
γ2

)′
λ2

}
.

A direct application of Li and Muldowney’s method [9] shows that under
the above circumstances there is no periodic solution for the system.

Proof of Lemma 5.6. Let us define a Lyapunov function:

V (S, x, y) =

S�

λ1

η − λ1
η

dη + c1

x�

x∗

η − x∗

η
dη,

where

c1 =
m1

(m1 −D2)γ1(λ1)
and x∗ =

(1− λ1)γ1(λ1)
D2

.

Then dV
dt = V1 + V2, where
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V1 =
S − λ1
S

(1− S)− c1x∗
(
m1S

a1 + S
−D2

)
,

V2 = −S − λ1
S

m1Sx

(a1 + S)γ1(S)
+ c1x

(
m1S

a1 + S
−D2

)
.

Now,

V1 =
S−λ1
S

(1−S)− c1x∗(
m1S

a1 +S
−D2)

=
S−λ1
S

(1−S)− c1x∗
(m1−D2)(S−λ1)

a1 +S

= (S−λ1)
(

1−S
S
− m1(1−λ1)
D2(a1 +S)

)
= (S−λ1)

(
1−S
S
− a1 +λ1

λ1

1−λ1
a1 +S

)
= −(S−λ1)2

a1 +Sλ1
λ1S(a1 +S)

≤ 0

and

V2 = −S − λ1
S

m1Sx

(a1 + S)γ1(S)
+ c1x

(
m1S

a1 + S
−D2

)
= −S − λ1

S

m1Sx

(a1 + S)γ1(S)
+

m1(S − λ1)x
(a1 + S)γ1(λ1)

=
m1x(S − λ1)(γ1(S)− γ1(λ1))

(a1 + S)γ1(λ1)γ1(S)
.

Hence,

V1 + V2 = −(S − λ1)2
a1 + Sλ1

λ1S(a1 + S)
+

m1x(S − λ1)2Φ(S)

(a1 + S)γ1(λ1)γ2(S)
,

where Φ(S) = α1S
0 for linear yields and Φ(S) = α1(S

0)2(S + λ1) for qua-
dratic yields. Thus,

V1 + V2 =
(S − λ1)2

a1 + S

[
m1xΦ(S)

γ1(λ1)γ2(S)
− a1 + Sλ1

λ1S

]
≤ 0 if

SΦ(S)

(a1 + Sλ1)γ2(S)
≤ γ1(λ1)

λ1m1x
.

Therefore

V1 + V2 ≤ 0 if
SΦ(S)

(a1 + Sλ1)γ2(S)
≤ γ1(λ1)

λ1m1

{
1−λ1
D2

γ1(λ1) + ε0
} .

By La Salle’s lemma it follows that for S = λ1 and y = 0, all the trajectories
approach the set ∆ = {(S, x, y) : dV/dt = 0}.
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Suppose at y = 0, {S : S = λ1} is invariant; then it must have

0 =
dS

dt
= 1− λ1 −

m1λ1x

(a1 + λ1)γ1(λ1)
.

This means that x = 1−λ1
D2

γ1(λ1). Hence {E1} is the only invariant set in ∆.
This completes the proof.
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