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ON OPTIMAL CREDIBILITY PREMIUMS
IN MULTIPERIOD INSURANCE

Abstract. This paper focuses on the problem of optimal arrangement of
a stream of premiums in a multiperiod credibility model. On the basis of
a given claim history (screening) and some individual information unknown
to the insurance company (signaling), we derive the optimal streams in the
case when the coverage period is not necessarily fixed, e.g., because of lapses,
renewals, deaths, total losses, etc.

1. Introduction. Credibility theory is based on the assumption that
each policyholder belongs to some predefined class of risk characterized
by a risk profile θ, which is unknown to the insurance company. Let us
consider a client who, during the period t, generates a claim modeled by
a random variable Xt. Let f( · | θ) be the conditional probability density
function (with respect to some σ-finite measure) of Xt when Θ = θ. In
this paper f is independent of t, and Θ has density function π(θ). Let
us assume that Cov(Xi, Xj |Θ = θ) = 0 for i 6= j. For simplicity, we
put µ(θ) = E(Xi |Θ = θ) and σ2(θ) = Var(Xi |Θ = θ) for all i. Setting
m = Eµ(Θ), s2 = Eσ2(Θ) and a2 = Varµ(Θ), we assume that, based on
the claim history, the insurer knows the exact values of the coefficients m, s2
and a2. The main problem of the insurance company at time n is to establish
the adequate net premium Pn+1 for a given client. The pricing process should
take into account the claims X1, . . . , Xn resulting from periods 1, . . . , n, re-
spectively. If the insurer knew the client’s class of risk θ, then the premium
would be settled as P̂n+1 = E(Xn+1 |Θ = θ). Another solution of this prob-
lem is to use the optimal linear predictor P ∗n+1 = E(Xn+1 |X1, . . . , Xn),
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where P ∗1 = EX1 = m. Unfortunately, in order to derive an explicit formula
for the premium P ∗n+1, it is essential to know the exact conditional distri-
butions, which are known only in some cases, e.g. in exponential models.
Bühlmann proposed to apply the linear predictor of the random variable
Xn+1, i.e. the predictor Pn+1 = a0 +

∑n
i=1 aiXi which minimizes the mean

squared error E(Pn+1−Xn+1)
2, where P1 = EX1. The solution of this prob-

lem is the credibility premium

PCr
n+1 = znX̄n + (1− zn)m,(1)

where X̄n = (X1 + · · ·+Xn)/n and

zn =
a2n

s2 + a2n
(2)

is the credibility coefficient (see [1]–[3] and [6]).
Recently, the credibility premium has been thoroughly investigated. Var-

ious changes have been proposed, which extend or adjust the Bühlmann
approach (see [5], [7]–[16]). Most of the research is devoted to various mod-
ifications of the loss function.

In this paper we propose a new method of premium calculation. Our
enhancement is based on the assumption that some clients know their class of
risk. We show that the new premium corresponds better to future losses. Our
considerations begin with one-period insurance contract. Then the results
obtained are applied to multiperiod insurance contracts.

2. One-period model. An application-motivated generalization of the
Bühlmann model is the Bühlmann–Straub model. Its construction begins
with independent random vectors

(Xi,1, . . . , Xi,ni+1), i = 1, . . . , N,

which describe losses generated by one (ith) of the N clients. They can
belong to different classes of risk specified by risk profiles θ. Let us assume
that the risk profile of the ith client, characterized by a random variable Θi,
is unknown to the insurer, and that Θ1, . . . , ΘN are independent identically
distributed random variables. Furthermore, let us assume that for all i and
s 6= t, we have

E(Xi,t |Θi = θi) = µ(θi), Var(Xi,t |Θi = θi) =
σ2(θi)

wi,t
,

Cov(Xi,t, Xi,s |Θi = θ) = 0,

where µ and σ are some functions, while wi,t are known weights. In this
paper we assume that the insurer has information about the coefficients

m = Eµ(Θi), s2 = σ2(Θi), a2 = Varµ(Θi).
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Let P denote the net premium for the ith client established on the basis of
the known claims (Xj,1, . . . , Xj,nj ), where j = 1, . . . , N .

In our approach the insurer minimizes not only the discrepancy between
the premium P and Xi,ni+1, but also the discrepancy between the average
premium for a given client and the average claim of this client, i.e. the optimal
premium P = a0 +

∑ni
j=1 ajXi,j should minimize the function

Ii = E(P −Xi,ni+1)
2 + γ2E

(
E(P |Θi)− E(Xi,ni+1 |Θi)

)2
,

where γ ≥ 0 is a fixed number. The claims Xt,j for t 6= i are not included
in the premium formula since their independence from Xi,j implies that the
optimal coefficients are equal to zero.

Our approach is similar to the Markowitz optimal portfolio selection in
the sense that both methods take into consideration the average individual
inadequacy of the premium. The coefficient γ describes information unknown
to the insurance company which can be provided by a client during the
acquisition of the insurance policy (signaling).

First, note that

Ii = Var
( ni∑
j=1

ajXi,j −Xi,ni+1

)
+
(
a0 −

(
1−

ni∑
j=1

aj

)
m
)2

(3)

+ γ2
(
a0 −

(
1−

ni∑
j=1

aj

)
m
)2

+ γ2
(

1−
ni∑
j=1

aj

)2
a2.

Hence, the optimal coefficient is equal to

(4) â0 =
(

1−
ni∑
j=1

aj

)
m.

Furthermore, for all i, j and s 6= t we have

VarXi,j = Var(E(Xi,j |Θi)) + EVar(Xi,j |Θi) = a2 +
s2

wi,j
,

Cov(Xi,t, Xi,s) = Cov(E(Xi,t |Θi),E(Xi,s |Θi)) + ECov(Xi,t, Xi,s |Θi) = a2.

Combining this with (3) and (4) implies

min
(aj)

Ii =

ni∑
t=1

ni∑
s=1

atas Cov(Xi,t, Xi,s)− 2 Cov
( ni∑
j=1

ajXi,j , Xi,ni+1

)
+ VarXi,ni+1 + γ2

(
1−

ni∑
j=1

aj

)2
a2
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=

ni∑
j=1

a2j

(
a2 +

s2

wi,j

)
+
∑
t6=s

asata
2 − 2

ni∑
j=1

aja
2

+

(
a2 +

s2

wi,ni+1

)
+ γ2

(
1−

ni∑
j=1

aj

)2
a2

=
( ni∑
j=1

aj

)2
a2 +

ni∑
j=1

a2j
s2

wi,j
− 2a2

ni∑
j=1

aj + γ2
(

1−
ni∑
j=1

aj

)2
a2

+ a2 +
s2

wi,ni+1

= a2
( ni∑
j=1

aj − 1
)2

(1 + γ2) + s2
ni∑
j=1

a2j
1

wi,j
+

s2

wi,ni+1
.

Applying the Cauchy–Schwarz inequality we have( ni∑
j=1

aj

)2
=

( ni∑
j=1

aj√
wi,j

√
wi,j

)2

≤
ni∑
j=1

a2j
wi,j

ni∑
j=1

wi,j

and equality holds if and only if there exists a constant c such that aj = cwi,j

for all j. Thus

min
(aj)

Ii = min
c∈R

[a2(cwi − 1)2(1 + γ2) + s2c2wi] +
s2

wi,ni+1
,

where wi =
∑ni

j=1wi,j . The minimum value is attained when

c =
a2(1 + γ2)

a2(1 + γ2)wi + s2
.(5)

Summarizing, the optimal premium is given by the formula

P = z

ni∑
j=1

wi,j

wi
Xi,j + (1− z)m,(6)

where

z =
a2(1 + γ2)wi

a2(1 + γ2)wi + s2
.

As in the Bühlmann–Straub model, we have P→m as a→0, and P−X̄n→0
as s2 → 0. Furthermore, in the case of wij = 1 for all i, j, the premium P
converges to the individual net premium E(X1 |Θ = θ) as ni →∞, and the
convergence rate is greater for larger γ’s. If a client is conscious that he is
good, then he can set a bigger value of γ. The average premium µ(θ) for
good clients is smaller than m.
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3. Multiple period model. For the sake of simplicity, further studies
will be limited to the Bühlmann model, but they can be easily generalized
to the Bühlmann–Straub model. Let us assume that the random variable Xt

describes the ith client loss generated during period t, where t = 1, 2, . . . .
The premium Pt for an insurance policy which covers the claim Xt at the end
of period t is receivable at the beginning of the period. The premium Pt is de-
rived taking into consideration the claim history, i.e. the losses X1, . . . , Xt−1,
where n ≤ t ≤ T and T is a random variable. The optimal stream of premi-
ums (Pt) is given by the formula

Pt = a0,t +

t−1∑
i=1

ai,tXi, ai,j ∈ R,

where the coefficients (ai,t) are set in such a way that they minimize the
function

E
[ T∑
t=n

(
(Pt −Xt)

2 + γ2t
(
E(Xt|Θ)− E(Pt|Θ)

)2)]
,(7)

where (γt) is a sequence of nonnegative numbers.
Let us assume that the random variables T and (Xi) are independent,

and T and Θ are independent, e.g., T is the future life of an owner of an
insured real estate. Hence minimization of (7) comes down to minimization
of

∞∑
t=n

(
E(Pt −Xt)

2 + γ2t E
(
E(Xt |Θ)− E(Pt |Θ)

)2)
P(T ≥ t),

where we seek the optimum sequences ai,t ∈ R. It can be further simplified
to the following minimalization problems: for all t ≥ n

min
(a0,t,...,at−1,t)∈Rt

(
E(Pt −Xt)

2 + γ2t E(E(Pt −Xt |Θ))2
)
.

This is a one-period problem, solved in Section 1. Thus the optimal stream
of premiums is given by the formula

Pt(γt) = zt(γt)X̄t−1 + (1− zt(γt))m, t = n, . . . , T,(8)

where

zt(γt) =
a2(1 + γ2t )(t− 1)

a2(1 + γ2t )(t− 1) + s2
.(9)

The premium (8) satisfies the net premium principle, i.e. EPt(γt) = EXt for
all γt ≥ 0, and it can be rewritten as

Pt(γt) = (1− βt(γt))X̄t−1 + βt(γt)P
Cr
t ,(10)
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where PCr
t is the credibility premium (1) and

βt(γt) =
1− zt(γt)
1− zt(0)

,

in which 0 < βt(γt) ≤ 1. Let

Ut(θ) := E
(
Pt(γt)− PCr

t |Θ = θ
)

= (1− βt(γt))(1− zt(0))(µ(θ)−m).

If an insured person is a good client (µ(θ) < m), then Ut(θ) < 0, while if
he/she is bad (µ(θ) > m), then Ut(θ) > 0. In comparison to the credibility
premium, the good client pays on average less and the bad client pays on
average more. Furthermore, we have

Ut+1(θ)− Ut(θ) =
[(βt − βt+1)(s

2 + ta2)− (1− βt+1)a
2]s2

(s2 + ta2)(s2 + (t− 1)a2)
(µ(θ)−m),

where βt = βt(γt). If the sequence (γt) of numbers is set so that

(βt − βt+1)(s
2 + ta2) > (1− βt+1)a

2,

then the difference between the average premium Pt(γt) paid by the good
client and the average premium PCr

t rises with time.
The stream (8) is also optimal when the objective is to minimize

J = E
[ T∑
t=n

(
E(Pt −Xt)

2 + γ2t E
(
E(Xt|Θ)− E(Pt|Θ)

)2)]
provided the stopping moment T is chosen in such a way that T ≥ n and
the probability P(T ≥ t) is not a function of the coefficients ai,t. This follows
immediately from the identity

J =

∞∑
t=n

[
E(Pt −Xt)

2 + γ2t E
(
E(Xt |Θ)− E(Pt |Θ)

)2]
P(T ≥ t).

Examples of such stopping moments include:

1. T1 = inf{t ≥ n : X1 + · · · + Xt > ct}, where ct > 0 is any sequence
of real numbers and inf ∅ =∞. It corresponds to the case when the insurer
does not renew the insurance contract because the client’s aggregate loss
exceeds the predefined thresholds ct.

2. T2 = inf{t ≥ n : max1≤k≤t−1Xk < ctXt}. The insurance company
does not renew the insurance contract when an extraordinary claim appears
(many times bigger than the previous claims). A similar case is when T ′2 =
min(t ≥ n : X1 ≤ c1, . . . , Xt−1 ≤ ct−1, Xt > ct).

3. T3 = inf{t ≥ n : ρt(X1, . . . , Xt) > ct}, where ρt is any risk measure,
e.g., ρt =

∑t
i=1 αiXi:t, in which Xi:t is the ith order statistic from the se-

quence X1, . . . , Xt.
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4. T4 = min{Tk, T}, where the stopping moments Tk, k = 1, 2, 3, are
previously defined and T is the expected future lifetime or the contract
boundaries.

As far as we know, the first generalization of credibility theory to multi-
period models was proposed by Gajek et al. [4]. We will summarize the results
of that paper. Let X−n, . . . , X−1 be losses incurred before time 0, when the
insurance policy lasting T years is taken out. The premiums P1, . . . , PT cover
the random losses X1, . . . , XT . It is assumed that the client cannot resign
from the contract. Thus T is fixed. Gajek et al. [4] proposed the following
generalization of the credibility premium:

(11) PGMS
t = αt

( t−1∑
i=1

Xi + (T − t+ 1)PCr
t

)
, t = 1, . . . , T,

where
∑0

i=1Xi = 0 and αt ≥ 0 are numbers which minimize some two
distance functions. Furthermore, let

PCr
t = zt

X−n + · · ·+X−1 +
∑t−1

i=1Xi

t− 1 + n
+ (1− zt)m,

in which

zt =
a2(t− 1 + n)

s2 + a2(t− 1 + n)
.

Note that the family of premiums (11) does not include all linear functions
of X1, . . . , Xt−1. The authors present an analysis which recommends the
sequence αt = 1/T . In this case, the recommended premiums are

(12) P̂GMS
t =

1

T

( t−1∑
i=1

Xi + (T − t+ 1)PCr
t

)
, t = 1, . . . , T

(see [4, pp. 230–232]). It is also shown that the modified premiums are more
adequate than the credibility premiums because

Ut(θ) = E[P̂GMS
t − PCr

t |Θ = θ]

=
s2(t− 1)

T (s2 + a2(t− 1 + n))
(µ(θ)−m) < 0

for good risks. Thus good clients pay on average less than the credibility
premium. Moreover, for all t < T and for µ(θ) 6= m,

Ut+1(θ)− Ut(θ)

µ(θ)−m
=

s2(s2 + na2)

T (s2 + (n+ t)a2)(s2 + (n+ t− 1)a2)
≥ 0,

which indicates that the surplus of a good client rises with time. This prop-
erty seems to be desired by good clients and in the opinion of the authors it
will make potential clients take out the insurance policy. At the same time,
bad clients will prefer the credibility premium.
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However, calculating the premiums (12) point to a problem. Let us as-
sume that the good client is considering buying a T year insurance contract.
He believes that he is good, because X−n = · · · = X−1 = 0, but he allows
for the possibility that the only positive claim occurs in the first period, i.e.
X1 > 0 and X2 = · · · = XT = 0. Hence

P̂GMS
1 = PCr

1 , P̂GMS
2 =

1

T
X1 +

T − 1

T
PCr
1 , . . . , P̂GMS

T =
1

T
X1 +

1

T
PCr
T ,

and the sum of the whole stream of premiums is equal to
T∑
t=1

P̂GMS
t =

T − 1

T
X1 + PCr

1 +
T − 1

T
PCr
2 + · · ·+ 1

T
PCr
T .

In spite of the decrease of premiums, the total sum is slightly smaller than
the single claim X1, thus the insurance policy does not provide necessary
insurance coverage.

Note that the problem appeared because the first component of the sum
(12) does not include the losses X−n, . . . , X−1. We propose the following
adjustment of the stream (12):

(13) P̂t = (1− βt)
1

t− 1 + n

t−1∑
i=−n

Xi + βtP
Cr
t ,

where
βt =

T − t+ 1

T
.

Note that

Ut(θ) = E[P̂t − PCr
t |Θ = θ] = E[P̂GMS

t − PCr
t |Θ = θ]

for all t = 1, . . . , T and θ. In other words, the stream of premiums (13)
differentiates good and bad clients in the same way as (11). On the other
hand, from (13) and (10) it follows that the stream (13) minimizes the sum

(14) E
[ T∑
t=1

(
(Pt −Xt)

2 + γ2t (E(Pt −Xt |Θ))2
)]
,

where

Pt = a0,t +

−1∑
i=−n

ai,tXi,t +

t−1∑
j=1

aj,tXj,t, ai,t ∈ R,

and

γ2t =
(t− 1)(s2 + a2(t− 1 + n))

(T − t+ 1)a2(t− 1 + n)
, t = 1, . . . , T.

The stream P̂t satisfies the net premium principle EP̂t = EXt, t = 1, . . . , T.
Hence the weak Axiom of Solvency is satisfied, i.e. E

∑t
s=1 P̂s ≥ E

∑t
s=1Xs
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for all t and E
∑T

t=1 Pt = E
∑T

t=1Xt (see [4]). Example 1 shows differences
between (12) and (13).

Example 1. Let T = 5 years, n = 10 years, X−10 = X−9 = · · · =
X−1 = 0, X1 = 20 000, X2 = · · · = X5 = 0. The stream of premiums (12) is
is of the form

PGMS
1 = PCr

1 , PGMS
2 = 4 000 + 4

5P
Cr
1 , PGMS

3 = 4 000 + 3
5P

Cr
1 ,

PGMS
4 = 4 000 + 2

5P
Cr
1 , PGMS

5 = 4 000 + 1
5P

Cr
1 .

The total sum of premiums during 5 years is equal to 16 000 + 3PCr
1 and

it corresponds to a single claim equal to 20 000. Using the formula (13) we
have

P1 = PCr
1 , P2 = 363 + 4

5P
Cr
1 , P3 = 666 + 3

5P
Cr
1 ,

P4 = 923 + 2
5P

Cr
1 , P5 = 1 142 + 1

5P
Cr
1 ,

and the sum is equal to P1 + · · ·+ P5 = 3 094 + 3PCr
1 .
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