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BOUNDARY EIGENCURVE PROBLEMS

INVOLVING THE BIHARMONIC OPERATOR

Abstract. The aim of this paper is to study the spectrum of the fourth
order eigenvalue boundary value problem{

∆2u = αu+ β∆u in Ω,

u = ∆u = 0 on ∂Ω.

where (α, β) ∈ R2. We prove the existence of a first nontrivial curve of this
spectrum and we give its variational characterization. Moreover we prove
some properties of this curve, e.g., continuity, convexity, and asymptotic
behavior. As an application, we study the non-resonance of solutions below
the first principal eigencurve of the biharmonic problem{

∆2u = f(u, x) + β∆u+ h in Ω,

∆u = u = 0 on ∂Ω,

where f : Ω × R→ R is a Carathéodory function and h is a given function
in L2(Ω).

1. Introduction. In this paper, we are concerned with the fourth order
eigenvalue problem

(1.1)


find (u, α, β) ∈ (X \ {0})× R2 such that

∆2u = αu+ β∆u on Ω,

u = ∆u = 0 in ∂Ω.

where Ω is a smooth bounded domain in RN , X := H1
0 (Ω)∩H2(Ω) and ∆2

denotes the biharmonic operator defined by ∆2u = ∆(∆u). We define the
second-order spectrum of the biharmonic operator to be the set of (α, β) ∈ R2
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such that problem (1.1) has a nontrivial solution. Many authors have studied
the fourth order elliptic problems

(1.2)

{
∆2u+ c∆u = f(x, u) in Ω,

u = ∆u = 0 on ∂Ω.

In [LL], the authors studied problem (1.2) in the case where f(x, u) is asymp-
totically linear with respect to u at infinity. Using an equivalent version of
Cerami’s condition and the symmetric mountain pass lemma, they obtained
the existence of multiple solutions. Problem (1.2) is usually used to de-
scribe some phenomena appearing in physical, engineering and other sciences
[LM1, LM2, M]. In recent years, there are many results for fourth order el-
liptic equations: we refer the reader to [MP1, MP2, T, XZ, TCDR, ZW, LL].

To establish the existence of the first principal curve of problem (1.1),
we consider the auxiliary problem

(1.3)

{
∆2u = α(r)(u+ r∆u) in Ω,

u = ∆u = 0 on ∂Ω,

with α(r) is a real function defined on R. We set Σ+ = {(α, β) ∈ Σ : α ≥ 0}
and

(1.4) C(r) = sup
u∈X
‖u‖=1

�

Ω

(u2 + r|∇u|2).

Note that u ∈ X is a weak solution of (1.1) if�

Ω

∆u∆v dx = α
�

Ω

uv dx+ β
�

Ω

∇u∇v dx, ∀v ∈ X.

1.1. The first principal curve of second order. In this section,
we will prove the existence of the principal curve Γ1 and give its variational
characterization. Moreover, we prove the continuity and a certain asymptotic
property of Γ1.

Lemma 1.1. If µ1(−∆) is the first eigenvalue of the Laplacian, then

(1) C(r) > 0 if and only if r > −1/µ1(−∆).
(2) C(r) = 0 if and only if r = −1/µ1(−∆).
(3) C(r) < 0 if and only if r < −1/µ1(−∆).

Proof. (1) Suppose that C(r) > 0. By (1.4) there exists u in X such that
‖u‖ = 1 and �

Ω

(|u|2 + r|∇u|2) > 0.

For all v in X we have

µ1(−∆)
�

Ω

v2 ≤
�

Ω

|∇v|2.
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Then 	
Ω v

2

	
Ω |∇v|2

≤ 1

µ1(−∆)
,

and if we put u = v, we obtain

r > −
	
Ω u

2

	
Ω |∇u|2

≥ − 1

µ1(−∆)
.

Conversely, suppose that r > −1/µ1(−∆). Let ϕ1 be the eigenfunction
associated with the first eigenvalue µ1(−∆) satisfying ‖ϕ1‖ = 1. Then we
have

C(r) ≥
�

Ω

(ϕ2
1 + r|∇ϕ1|2),

and therefore

C(r) >
�

Ω

(
ϕ2
1 −

1

µ1(−∆)
|∇ϕ1|2

)
= 0.

(2) It is easy to see that C(−1/µ1(−∆)) = 0.

Conversely, suppose that C(r) = 0. By (1.4), there exists (un)n ⊂ X
such that ‖un‖ = 1 and

�

Ω

(u2n + r|∇un|2)→ 0.

Since (un)n is bounded in X, for a further subsequence we have

(1.5)


un ⇀ u in X,

un → u in W 1,2
0 (Ω),

un → u in L2(Ω),

so

∇un → ∇u in (L2(Ω))N ,

∆un → ∆u in W−1,20 (Ω).

Since u and ∆un are in X, we deduce that

∆un → ∆u in L2(Ω).

On the other hand,

1 = ‖un‖2 =
�

Ω

(u2n + |∆un|2)→
�

Ω

(u2 + |∆u|2),

which implies that u 6≡ 0. As
	
Ω(u2 + r|∇u|2) = 0, we get

−r
�

Ω

|∇u|2 =
�

Ω

u2 ≤ 1

µ1(−∆)

�

Ω

|∇u|2,
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so −r ≤ 1/µ1(−∆). Since C(r) = 0 we get
�

Ω

u2 ≤ −r
�

Ω

|∇u|2

for u in X, which implies that −r ≥ 1/µ1(−∆) and so −r = 1/µ1(−∆).

(3) From (1) and (2) we deduce (3).

Remark. By Lemma 1.1 the function α is well defined and we have

α(r) =
1

C(r)
, ∀r 6= − 1

µ1(−∆)
.

Theorem 1.2. Γ1 := {(α(r), rα(r)) : r > −µ−11 (−∆)} is the first eigen-
curve of second order in the sense that if (α′, β′) ∈ Σ+, then α(β′/α′) ≤ α′.

Let (un)n ⊂ X be such that

(1.6) ‖un‖ = 1,
�

Ω

(u2n + r|∇un|)→
1

α(r)
.

So there exists a subsequence also denoted (un) such that

(1.7)


un ⇀ u in X,

un → u in W 1,2
0 (Ω),

un → u in L2(Ω),

so ∇un → ∇u in (L2(Ω))N . Furthermore

(1.8)
1

α(r)
=

�

Ω

(u2 + r|∇u|2).

Now using Lemma 1.1, we have u 6≡ 0, and

1

α(r)
≥ 1

‖u‖2
�

Ω

(u2 + r|∇u|2) =
1

‖u‖2α(r)
,

which implies that ‖u‖2 ≥ 1. On the other hand, ‖u‖ ≤ lim inf ‖un‖ = 1, so
that ‖u‖ = 1.

Let v ∈ X. For t small enough we have

1

α(r)
≥

�

Ω

(
|u+ tv|2

‖∆u+ t∆v‖2
+ r
|∇u+ t∇v|2

‖∆u+ t∆v‖2

)
,

hence

‖∆u+ t∆v‖2 ≥ α(r)
�

Ω

[
u2 + 2tuv + t2v2 + r(|∇u|2 + 2t∇u∇v + t2|∇v|2)

]
.
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Hence

‖∆u‖2 − α(r)
�

Ω

(u2 + r|∇u|2) + 2t
�

Ω

∆u∆v + t2
�

Ω

‖∆v‖2

≥ 2tα(r)
�

Ω

(uv + r∇u∇v) + t2α(r)
�

Ω

(v2 + r|∇v|2).

Dividing by t, letting t→ 0 and using (1.8), we get�

Ω

∆u∆v ≥ α(r)
[ �
Ω

uv + r
�

Ω

∇u∇v
]

for all v in X. Similarly for −v in X we have�

Ω

∆u∆v ≤ α(r)
[ �
Ω

uv + r
�

Ω

∇u∇v
]
.

Hence we deduce that�

Ω

∆u∆v = α(r)
[ �
Ω

uv + r
�

Ω

∇u∇v
]
,

which means that u is a weak solution of problem (1.3).
On the other hand, if (α′, β′) ∈ Σ+, then there exists u ∈ X \ {0} such

that
∆2u = α′u+ β′∆u in X ′.

It is clear that by Lemma 1.1, α′ > 0 and therefore

1

α′
=

�

Ω

(
u2

‖u‖2
+
β′

α′
|∇u|2

‖u‖2

)
≤ C

(
β′

α′

)
.

Finally by definition of α(r), we have α′ ≥ α(β′/α′).

Proposition 1.3. The function r 7→ C(r) is convex on I =
[−µ−11 (−∆),∞[, concave on ]−∞,−µ−11 (−∆)[, continuous on R and dif-
ferentiable; moreover

α′(r) = −α2(r)
�

Ω

|∇u|2.

Proof. For r1 , r2 in I and t in [0, 1], we have

C(tr1 + (1− t)r2) = sup
�

Ω

(
u2 + [tr1 + (1− t)r2]|∇u|2

)
dx

≤ t sup
�

Ω

(u2 + r1|∇u|2) dx+ (1− t) sup
�

Ω

(u2 + r2|∇u|2) dx

= tC(r1) + (1− t)C(r2).

Thus r 7→ C(r) is convex. The proof of concavity is similar.
It is easy to show that the function is differentiable, it suffices to use the

characterization of the upper bound.
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Fig. 1. First eigencurve

Proposition 1.4. We have

lim
r→∞

α(r) = 0 and lim
r→−µ−1

1 (−∆)

r>−µ−1
1 (−∆)

α(r) =∞.

Proof. For u fixed in X such that ‖u‖ = 1, we have

r
�

Ω

|∇u|2 ≤
�

Ω

(u2 + r|∇u|2) ≤ 1

α(r)
,

so

lim
r→∞

α(r) = 0.

From Lemma 1.1, we have

lim
r→−µ−1

1 (−∆)
α(r) =∞.

We will prove that Σ+ is a sequence of eigencurves of problem (1.3) with
r > −1/µ1(−∆). Indeed, let T : X → X be the operator defined by

Tu = (∆2)−1(u+ r∆u).

Then problem (1.3) is equivalent to the problem

(1.9)

{
find (λ, u) ∈ R× (X \ {0}) such that

Tu = λu.
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Proposition 1.5. The spectrum σ(T ) of problem (1.9) is a sequence (λn)
of eigenvalues such that λn 6= 0 and

lim
n→∞

λn = 0.

Proof. Since T is a symmetric compact linear operator, the conclusion
is well known (cf. [CH]).

Moreover, αn(r) = 1/λn has the variational characterization

(1.10) αn(r) = sup
Fn

inf
u∈Fn

{ �

Ω

(u2 + r|∇u|2) :
�

Ω

|∆u|2 = 1
}
,

and

Σ+ = {(αn(r), rαn(r)) : r > −µ−11 (−∆)},
where Fn varies over all n-dimensional subspaces of X and αn(r) is repeated
according to its multiplicity.

2. Non-resonance below the first principal eigencurve of the
biharmonic problem. In this section, we consider the biharmonic problem

(2.1)

{
∆2u = f(u, x) + β∆u+ h in Ω,

∆u = u = 0 on ∂Ω,

where h is in L2(Ω) and f : Ω × R → R is a Carathéodory function. We
consider the associated energy functional Φ : X → R defined by

(2.2) Φ(u) =
1

2

�

Ω

|∆u|2 −
�

Ω

F (x, u)− β

2

�

Ω

|∇u|2 − 〈h, u〉X,X′ .

with F (x, s) =
	s
0 f(x, t) dt.

We also suppose that there exist a > 0 and b ∈ L2(Ω) such that

|f(x, s)| ≤ a|s|+ b(x) a.e. x ∈ Ω, ∀s ∈ R.

Note that Φ is in C1(X,R), and u ∈ X is a critical point of Φ if and only
if u is a solution of problem (2.1).

We are interested in what conditions should be imposed on the nonlin-
earity f for problem (2.1) to have a solution u in X for any given h in L2(Ω).
We will suppose that the potential F is below the first principal eigencurve
of the biharmonic problem (2.1) in the sense that there exist α ∈ R such
that for a.e. x ∈ Ω, we have

(2.3) lim sup
s→±∞

2F (x, s)

s2
≤ α.

Theorem 2.1. If α(β/α) > α then problem (2.1) has a solution for all
h in L2(Ω).
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Proof. The relation (2.3) signifies that for every ε > 0 there exists bε ∈
L1(Ω) such that

F (x, s) ≤ 1

2
(α+ ε)s2 + bε(x).

We have α
( β
α+ε

)
> α + ε, since r 7→ α(r) is continuous on R \ {0} and

α+ ε 6= 0. Thus the functional Φ is well-defined. Moreover we have

Φ(u) =
1

2

�

Ω

|∆u|2 −
�

Ω

F (x, u)− β

2

�

Ω

|∇u|2 − 〈h, u〉X,X′

≥ 1

2

�

Ω

|∆u|2 − α+ ε

2

�

Ω

u2 −
�

Ω

bε −
β

2

�

Ω

|∇u|2 − ‖h‖ ‖u‖

≥ 1

2

�

Ω

|∆u|2 − α+ ε

2

�

Ω

(
u2 +

β

α+ ε
|∇u|2

)
−

�

Ω

bε − ‖h‖ · ‖u‖

≥ 1

2
‖u‖2

[
1− (α+ ε)

�

Ω

(
u2

‖u‖2
+

β

α+ ε

|∇u|2

‖u‖2

)]
.

It is easy to see that Φ is coercive in the following cases:

• β
α+ε > −

1
µ1(−∆) and α+ ε < 0,

• β
α+ε < −

1
µ1(−∆) and α+ ε > 0,

In the cases

• β
α+ε > −

1
µ1(−∆) and α+ ε > 0,

• β
α+ε < −

1
µ1(−∆) and α+ ε < 0,

we have

Φ(u) ≥ 1

2

(
1− α+ ε

α
( β
α+ε

))‖u‖2 − �

Ω

bε − ‖h‖ ‖u‖,

since

1− α+ ε

α
( β
α+ε

) > 0,

so Φ is also coercive. This completes the proof of Theorem 2.1.
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