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ON A NECESSARY CONDITION IN THE CALCULUS

OF VARIATIONS IN SOBOLEV SPACES

WITH VARIABLE EXPONENT

Abstract. We prove an approximation theorem in generalized Sobolev
spaces with variable exponent W 1,p(·)(Ω) and we give an application of this
approximation result to a necessary condition in the calculus of variations.

1. Introduction. In the present work, our first main goal is to prove
an approximation theorem in the general setting of Sobolev spaces with
variable exponent, and the second main goal is to give an application of this
approximation result to a necessary condition in the calculus of variations in
the same functional framework of W 1,p(·)(Ω). The theory of Sobolev spaces
with variable exponent has experienced a revival of interest, shown in a
substantial amount of publications over the past few years. An extensive
list of references concerning the recent advances and open problems can be
found in Diening and al. [DHN].

We consider functionals of the kind J(u) =
	
Ω f(x, u,∇u) dx for func-

tions u in some Sobolev space with variable exponent W 1,p(·)(Ω), with Ω
a bounded domain of RN . In the case of a constant exponent p(·) ≡ p,
1 < p < ∞, sufficient conditions for those functionals to attain an extreme
value were studied in [D]. The most important problem is to verify the weak
lower semicontinuity of those functionals with respect to the space involved.
In [L] Landes has studied the reverse problem at a fixed level set and in
many situations he has showed that this hypothesis implies the following
alternative: Either this particular level is an extreme value of the functional
J or the defining function f is convex in the gradient. Recently, the results
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achieved in [L] and [MS] have been generalised in the work of E. Azroul and
A. Benkirane [AA] where the classical setting of Sobolev spaces W 1,p(Ω)
is replaced by the more general one of Orlicz–Sobolev spaces W 1LM (Ω)
corresponding to an N -function M , which is considered as a relaxation of
the constant p. Our third objective in the present work is to generalize the
results of [L] to the general setting of Sobolev spaces with variable exponent.

2. Background material. Let Ω be a bounded open domain in RN ,
N ≥ 2. We denote C+(Ω) = {p ∈ C(Ω) : p(x) > 1 for all x ∈ Ω}. For every
p ∈ C+(Ω) we define p+ = supx∈Ω p(x) and p− = infx∈Ω p(x). The variable
exponent Lebesgue space is defined as

Lp(·)(Ω) =
{
u : u is a measurable real-valued function,

∃λ > 0 :
�

Ω

|u(x)/λ|p(x) dx <∞
}
,

normed by the so-called Luxemburg norm,

‖u‖p(·) = inf
{
λ > 0 :

�

Ω

|u(x)/λ|p(x) dx ≤ 1
}
.

For any u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω) the Hölder inequality∣∣∣ �
Ω

u(x)v(x) dx
∣∣∣ ≤ ( 1

p−
+

1

p+

)
‖u‖p(·)‖v‖p′(·)

holds true. An important role in manipulating the generalized Lebesgue-
Sobolev spaces is played by the modular of the Lp(·)(Ω) space, which is the
mapping ρp(·)(u) : Lp(·)(Ω)→ R defined by ρp(·)(u) =

	
Ω |u(x)|p(x) dx, for all

u ∈ Lp(·)(Ω).We define the generalized Lebesgue–Sobolev space W 1,p(·)(Ω) by

W 1,p(·)(Ω) = {u ∈ Lp(·)(Ω) : |∇u| ∈ Lp(·)(Ω)},
which is endowed with the norm ‖u‖1,p(·) = ‖u‖p(·) + ‖∇u‖p(·). We define

W
1,p(·)
0 (Ω) = C∞0 (Ω)

W 1,p(·)(Ω)
.

Then the dual space of W
1,p(·)
0 (Ω) can be identified with W−1,p

′(·)(Ω).

Proposition 2.1 ([KJ]).

(1) W 1,p(·)(Ω) and W
1,p(·)
0 (Ω) are Banach spaces, which are separable

if p ∈ L∞(Ω) and reflexive if 1 < p− < p+ <∞.
(2) If q ∈ C+(Ω) with q(x) < p∗(x) then we have the compact embedding

W 1,p(·)(Ω) ↪→↪→ Lq(·)(Ω), where p∗(x) = Np(x)
N−p(x) for all p(x) < N .

Since p(x) < p∗(x) for all x ∈ Ω, in particular we have

(2.1) W 1,p(·)(Ω) ↪→↪→ Lp(·)(Ω).
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(3) There exists a constant c > 0 with ‖u‖p(·) ≤ c‖∇u‖p(·) for all u ∈
W

1,p(·)
0 (Ω), hence ‖∇u‖p(·) and ‖u‖1,p(·) are equivalent norms on

W
1,p(·)
0 (Ω).

3. Approximation result

Theorem 3.1. Let Ω be a bounded domain in RN . If u is a function
in W 1,p(·)(Ω), then for almost every x0 ∈ Ω, there exists a ball B(x0, α),
α > 0, a constant C(α, x0) and a function uα ∈W 1,p(·)(Ω) satisfying:

(i) uα → u in W 1,p(·)(Ω) as α→ 0.
(ii) uα ≡ C(α, x0) in B(x0, α).

Proof. Let ψα be a regular function with support in B(0, 2α) such that

(3.1) ψα ≡ 1 in B(0, α) and |∇ψα| ≤ 2/α,

and let x0 be a Lebesgue point of u in Ω, hence, we can take C(α, x0) =
u(x0). We define in Ω the function uα by

(3.2) uα(x) = u(x)(1− ψα(x− x0)) + u(x0)ψα(x− x0).
By using the Lebesgue theorem, we can write

(3.3) uα → u in Lp(·)(Ω) as α→ 0.

We have
∂

∂xi
(u(x)− uα(x)) =

∂u(x)

∂xi
ψα(x− x0) +

∂

∂xi
ψα(x− x0)(u(x)− u(x0)),

and the convexity of ρp(·)(·) yields

ρp(·)

(
λ

(
∂u

∂xi
− ∂uα
∂xi

))
=

�

Ω

∣∣∣∣λ(∂u(x)

∂xi
− ∂uα(x)

∂xi

)∣∣∣∣p(x) dx
≤ 1

2

�

Ω

(
2λ

∣∣∣∣∂u(x)

∂xi
ψα(x− x0)

∣∣∣∣)p(x) dx
+

1

2

�

Ω

2λ

∣∣∣∣ ∂∂xiψα(x− x0)
∣∣∣∣(u(x)− u(x0))

p(x) dx

=
1

2
I1α +

1

2
I2α.

By using the Lebesgue theorem, we have limα→0 I
1
α = 0. And I2α → 0 as

α→ 0 is a direct consequence of the lemma below.

Lemma 3.2. For almost every x0 ∈ Ω, there exists a sequence αn → 0
as n→∞ such that

�

B(x0,2αn)

(
λ|u(x)− u(x0)|

αn

)p(x)
dx→ 0 as n→∞.
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Proof. Let x0 ∈ Ω. For each t>0, we define Ωt={x∈Ω : dist(x, ∂Ω)>t}.
Let α0 > 0. For α < α0, we consider the function φα : Ω2α0 → R defined by

φα(y) =
�

B(y,2α)

(
λ|u(x)− u(y)|

α

)p(x)
dx.

We can also write

φα(y) =
�

Ω

(
λ|u(x)− u(y)|

α

)p(x)
χ
B(0,2α)

dx,

where χE denotes the characteristic function of the set E. The function φα
is measurable, and for all α0 > 0, we shall show that

(3.4) |φα(y)| → 0 in L1(Ω2α0) as α→ 0, for all α < α0.

Indeed, let uε = u ∗ ϕε be the mollification of u, where ϕε ∈ D(RN ), such
that

ϕε ≡ 1 for |x| ≥ ε, ϕε ≥ 0,
�

RN
ϕε(x) dx = 1.

Therefore, ϕε is well defined in Ω2α0 for all ε < α0 and we have

�

Ω2α0

|φα(y)| dy =
�

Ω2α0

�

B(y,2α)

(
λ|u(x)− u(y)|

α

)p(x)
dx dy

≤ lim
ε→0

�

Ω2α0

�

B(0,2α)

(
λ|uε(y − x)− uε(y)|

α

)p(x)
dx dy = lim

ε→0
Iα.

Since uα is continuously differentiable, we have

Iα ≤
�

Ω2α0

�

B(0,2α)

(
λ

1�

0

|∇uε(y − tx)| |x|
α

dt

)p(x)
dx dy

≤
�

Ω2α0

�

B(0,2α)

(
λ

1�

0

2|∇uε(y − tx)| dt
)p(x)

dx dy.

Then, it follows by Jensen’s inequality that

Iα ≤
�

Ω2α0

1�

0

�

B(0,2α)

(2λ|∇uε(y − tx)|)p(x) dx dt dy

(∗)
=

1�

0

�

Ω2α0

�

B(0,2α)

(
2λ
∣∣∣ �

B(0,ε)

∇u(y − tx− z)ϕε(z) dz
∣∣∣)p(x) dx dy dt

≤ C2

1�

0

�

B(0,2α)

�

B(0,ε)

‖λC1∇u‖
ps

ps
dz dx dt ≤ C3‖λC1∇u‖

ps

ps

(
δN
N

)2

(2α)N ,
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for some positive constants C1, C2 and C3, where δN denotes the measure
of the unit sphere in RN and ps is defined by

ps =

{
p− if |λK1∇u(·)| ≤ 1,

p+ if |λK1∇u(·)| > 1.

To justify (∗) we recall that in Ω2α0 differentiation and mollification com-
mute for δ < α0. Therefore, limα→0 Iα = 0. So, we conclude immediately
that

	
Ω2α0

|φα(y)| dy → 0 as α→ 0. Consequently, for almost every x0 ∈ Ω,

we get φαn(x0) → 0 as n → ∞, for a subsequence (αn)n with αn → 0 as
n→∞.

4. Functional dependence on x and ∇u. Let Ω be a bounded do-
main of RN and f : Ω × RN → R a Carathéodory function satisfying

(4.1) |f(x, ξ)| ≤ `(x)k(|ξ|)
for some nondecreasing function k : R → R and some `(·) ∈ L1(Ω). Now,
we consider the continuous functional J : W 1,p(·)(Ω)→ R defined by

(4.2) J(u) =
�

Ω

f(x,∇u(x)) dx.

Definition 4.1. For each real µ, we define Lµ as the level set of J ,
i.e., Lµ = {u ∈ W 1,p(·)(Ω) : J(u) = µ}, and Lωµ for the closure of Lµ in

W 1,p(·)(Ω).

Definition 4.2. A functional J : W 1,p(·)(Ω)→ R is called weakly lower
semicontinuous at a level set Lµ if J(u) ≤ µ for all u ∈ Lωµ .

Theorem 4.3. Let J : W 1,p(·)(Ω) → R be a continuous functional de-
fined as in (4.2) with the Carathéodory function f satisfying (4.1). If J is
weakly lower semicontinuous at a non-void level set Lµ and if µ is not an
extreme value of J , then f(x, ξ) is convex in ξ for almost all x ∈ Ω.

Proof. Assume that the real µ is not an extreme value of J . We shall
show that

f(x, λξ + (1− λ)ξ∗) ≤ λf(x, ξ) + (1− λ)f(x, ξ∗)

for all λ ∈ [0, 1], all ξ, ξ∗ ∈ RN and almost every x ∈ Ω. We can assume that
µ = 0 and that in W 1,p(·)(Ω) there are two functions â1 and â2 such that,
J(â1) < −δ0 and J(â2) > δ0, for some δ0 > 0. Let x0 be a Lebesgue point
of f(x, ξ) for all ξ ∈ QN . We can assume that x0 = 0. Using the continuity
of the functional J and Theorem 3.1, there is a ball B(0, R0) ⊂ Ω and there
are functions u, u1 and u2 (see [L]) such that

∇u = ∇u1 = ∇u2 ≡ 0 on B(0, R0),(4.3)

J(u1) <
7

8
δ0, J(u2) >

7

8
δ0 and |J(u)| < 1

8
δ0.(4.4)
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Furthermore, for each function a satisfying |J(a)| < 7
8δ0, there is a number

ti ∈ [0, 1] with i = i(a) ∈ {1, 2} such that the function c = a+ ti(ui− a) lies
in the level set L0, i.e., J(c) = µ = 0. We fix λ ∈ [0, 1] ∩Q and ξ, ξ∗ ∈ QN .
As in [L], we recall that

gn(x) = gλ(nx1)→ λ in L∞(Ω) weak-star,

1− gn(x)→ 1− λ in L∞(Ω) weak-star,

where

gλ(x) =

{
1 if 0 < x < λ,

0 if λ < x < 1.

We also define the sequence of functions ω̂n(x) = ξ∗ · x+
	(ξ−ξ∗)·x
0 gλ(nt) dt.

This sequence has the properties

(4.5)
∇ω̂n(x) = ξ∗ + (ξ − ξ∗)gλ(n(ξ − ξ∗) · x),

ω̂n → ω̂0 in W 1,p(·)(Ω).

Indeed,

ρp(·)(ωn − ω̂0) =
�

Ω

(ωn(x)− ω̂0(x))p(x) dx

≤
�

Ω

((ξ−ξ∗)·x�

0

gλ(nt) dt− λ(ξ − ξ∗) · x
)ps

dx,

where

ps =

{
p+ if |

	(ξ−ξ∗)·x
0 gλ(nt) dt− λ(ξ − ξ∗) · x| > 1,

p− if |
	(ξ−ξ∗)·x
0 gλ(nt) dt− λ(ξ − ξ∗) · x| ≤ 1.

Therefore,

lim
n→∞

ρp(·)(ω̂n − ω̂0) ≤ lim
n→∞

�

Ω

((ξ−ξ∗)·x�

0

gλ(nt) dt− λ(ξ − ξ∗) · x
)ps

dx ≤ 0.

In the same manner and by using the dominated convergence theorem, we
obtain lim ρ

p(·)(∇ω̂n − ∇ω̂0) = 0. Finally, we conclude that ω̂n → ω̂0 in

W 1,p(·)(Ω).
Now, let ψ : R→ R be a C∞-function with support in the interval ]−1, 1[

and ψ(t) = 1 for |t| < 1/2. Defining ω̃R(x) = ψ(|x|/R)ω̂0(x) for R > 0, we
have

∇ω̃R(x) = ψ′
(
|x|
R

)
1

R
sign(x)ω̂0(x) + ψ

(
|x|
R

)
∇ω̂0(x).

Moreover (see [L, Proposition 3.1]),

|∇ω̃R(x)| ≤ C in Ω,(4.6) �

B(0,R)

f(x,∇ω̃R(x)) dx→ 0 as R→ 0.(4.7)
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Note that (4.1) is used to prove (4.7). Next, we consider the sequence ω̂n(·)
in a ball B(0, r), say. We shall show that it is possible to alter each element
of this sequence in such a manner that it coincides with the limit ω̂0(·) at
the boundary. The proposition below is a generalization of Proposition 3.2
in [L] to the case of Sobolev spaces with variable exponent.

Proposition 4.4. There is a sequence (an)n in W 1,p(·)(Ω) satisfying;

(a) an(x) = ω̂0(x) = (λξ + (1− λ)ξ∗) · x in ∂B(0, r),
(b) an − ω̂n → 0 in W 1,p(·)(Ω) as n→ 0,
(c) an → ω̂0 in W 1,p(·)(Ω),
(d) ‖∇an‖∞ + ‖∇ω̂n‖∞ ≤ C,
(e) |

	
B(0,r) f(x,∇ω̂n(x)) dx−

	
B(0,r) f(x,∇an(x)) dx| → 0 as n→∞,

(f)
	
B(0,r) f(x,∇an(x)) dx→ 0 uniformly with respect to n.

Proof. Let $ε be a C∞-function with support in [−1, 1] such that $ε(t)
= 1 for all |t| < 1 − ε and |$′ε(t)| < 2/ε for all t. Define ωε(x) = $ε(|x|/r)
and an,ε(x) = ĉ0(x)+ωε(x)(ĉn(x)−ĉ0(x)). We have the following inequalities
(see [L, proof of Proposition 3.2]):

|∇(ĉn(x)− ĉ0(x))|(1− ωε(x)) ≤ C1r(|ξ∗|+ |ξ|)(1− ωε(x)),(4.8)

|(ĉn(x)− ĉ0(x))| |∇ωε(x)| ≤ O(n−1)
1

ε
χsupp(∇ωε),(4.9)

with C1 is a positive constant. We have

ρp(·)(|an,ε − ĉn|) + ρp(·)(|∇(an,ε − ĉn)|)

=
�

Ω\B(0,r)

|an,ε(x)− ĉn(x)|p(x) dx+
�

B(0,r)

|an,ε(x)− ĉn(x)|p(x) dx

+
�

Ω\B(0,r)

|∇(an,ε(x)− ĉn(x))|p(x) dx+
�

B(0,r)

|∇(an,ε(x)− ĉn(x))|p(x) dx

=
�

Ω\B(0,r)

|ĉn(x)− ĉ0(x)|p(x) dx+
�

B(0,r)

|(1− ωε(x))(ĉn(x)− ĉ0(x))|p(x) dx

+
�

Ω\B(0,r)

|∇(ĉn(x)− ĉ0(x))|p(x) dx

+
�

B(0,r)

|∇((1− ωε(x))(ĉn(x)− ĉ0(x)))|p(x) dx.

Since 1− ωε(x)→ 0 a.e. x ∈ B(0, r), and ĉn → ĉ0 in W 1,p(·)(Ω), one has
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�

Ω\B(0,r)

|ĉn(x)− ĉ0(x)|p(x) dx

+
�

Ω\B(0,r)

|∇(ĉn(x)− ĉ0(x))|p(x) dx→ 0 as n→∞.

So, we conclude that

(4.10) ρp(·)(|an,ε − ĉn|) + ρp(·)(|∇(an,ε − ĉn)|)

≤ O(ε) + C2

�

B(0,r)

(|∇(ĉn − ĉ0)(1− ωε)|)p(·) dx

for some positive constant C2. Now, by the definition of ωε, we obtain

ωε(x) =


0 in Ω \B(0, r),

1 in B(0, (1− ε)r),
$ε(|x|/r) in B(0, r) \B(0, (1− ε)r),

which implies that

an,ε − ĉn(x) =


ĉ0(x)− ĉn(x) in Ω \B(0, r),

0 in B(0, (1− ε)r),
(1−$ε(|x|/r))(ĉ0(x)− ĉn(x)) in B(0, r) \B(0, (1− ε)r)

and

∇(an,ε(x)− ĉn(x))

=


∇(ĉ0(x)− ĉn(x)) in Ω \B(0, r),

0 in B(0, (1− ε)r),
∇($ε(|x|/r))(ĉ0(x)− ĉn(x))

+ (1−$ε(|x|/r))∇(ĉ0(x)− ĉn(x)) in B(0, r) \B(0, (1− ε)r).
Hence, for n large enough, we have the estimate

ρp(·)(|an,ε − ĉn|) + ρp(·)(|∇(an,ε − ĉn)|)

≤ O(ε) + C2

�

B(0,r)\B(0,(1−ε)r)

(
|∇((ĉn(x)− ĉ0(x))(1− ωε(x)))|

)p(x)
dx

≤ O(ε) + C2(O(C3n
−1)/ε)p

− |B(0, r) \B(0, (1− ε)r)|,
with C3 a positive constant. Selecting εn such that O(n−1)/εn = 1, this
implies that O(εn) = O(n−1) and εn → 0 as n→∞. Then we conclude

ρp(·)(|an,ε − ĉn(x)|) + ρp(·)(|∇(an,ε − ĉn(x))|)

≤ O(n−1) + C2(C3O(n−1)/ε)p
− |B(0, r) \B(0, (1− ε)r)|,

which converges to 0 as n → ∞. We define an = an,ε, and we get an,ε − ĉn
→ 0 in W 1,p(·)(Ω) as n → ∞, which gives (b), and consequently, we get
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an − ĉ0 → 0 in W 1,p(·)(Ω) as n → ∞. And by the definition of an we get
easily the properties (a), (d) and (f). Now, we are able to complete the proof
of Theorem 4.1. For R ≤ R0 and r = R/2, we define the sequence

ûn(x) =


u(x) for x ∈ Ω \B(0, R),

u(x) + cR(x) for x ∈ B(0, R) \B(0, r),

u(x) + an(x) for x ∈ B(0, r),

which converges in W 1,p(·)(Ω) to

u0(x) =

{
u(x) for x ∈ Ω \B(0, R),

u(x) + cR(x) for x ∈ B(0, R).

Indeed, for x ∈ B(0, r) we have

ρp(·)(ûn − (u+ cR)) =
�

B(0,r)

(an(x)− cR(x))p(x) dx =
�

B(0,r)

(an(x)− c0(x))p(x) dx.

Since an → ĉ0 in W 1,p(·)(Ω), we conclude that limn→∞ ρp(·)(ûn − cR) = 0.

Therefore, ûn → u0 in W 1,p(·)(Ω). Due to (4.6), (4.7) and Proposition
4.4 (see also [L]), we have for R > 0 small enough |J(un)| < 7

8ε0 for all
n ∈ N. Hence, for any n, we find tn ∈ [0, 1] and in ∈ {1, 2} such that for
un := ûn + tn(ûin − ûn), we have J(un) = 0. Choosing a subsequence such
that tn → t0 and in = i ∈ {1, 2}, we have un → u0 in W 1,p(·)(Ω). The
lower semicontinuity of J at the level set La gives J(u0) ≤ 0. By using the
continuity of J with respect to the strong topology of W 1,p(·)(Ω), we get

lim
n→∞

J(u+ tn(uin − u)) = J(u+ t0(ui − u)).

And by construction, one has f(x,∇(u+ tn(ui − u))) = f(x, 0) in B(0, R),
yielding

lim
n→∞

�

B(0,R)

f(x,∇un(x)) dx ≥
�

B(0,R)

f(x,∇u0(x)) dx.

Since un = u0 in B(0, R) \B(0, r) and r = R/2, we finally get
�

B(0,r)

f(x, λξ + (1− λ)ξ∗) dx =
�

B(0,r)

f(x,∇u0(x)) dx

≤ lim
n→∞

�

B(0,r)

f(x,∇un(x)) dx

= lim
n→∞

�

B(0,R)

f(x,∇an(x)) dx

= λ
�

B(0,r)

f(x, ξ) dx+ (1− λ)
�

B(0,r)

f(x, ξ∗) dx.
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Since the above inequality can be obtained for all balls B(0, r) with radius
r < R/2, we conclude that f(x0, λξ+(1−λ)ξ∗) ≤ λf(x0, ξ)+(1−λ)f(x0, ξ

∗)
for all λ ∈ [0, 1] ∩ Q and all ξ, ξ∗ ∈ QN . It then follows by the continuity
of f(x, ξ) with respect to ξ that the above inequality holds for all λ ∈ [0, 1]
and all ξ, ξ∗ ∈ RN .
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Université Sidi Mohamed Ben Abdellah
BP 1796 Atlas
Fès, Morocco
E-mail: azroulelhoussine@gmail.com

mellekhlifi@yahoo.fr
lahmibadr@gmail.com
atouzani07@gmail.com

Received on 25.2.2014;
revised version on 18.7.2014 (2227)

http://dx.doi.org/10.1016/0362-546X(80)90052-8
http://dx.doi.org/10.2307/1968253

	1 Introduction
	2 Background material
	3 Approximation result
	4 Functional dependence on x and u
	References

