Ahmed Aberqi (Fez) Jaouad Bennouna (Fez) M. Hammoumi (Fez) Mounir Mekkour (Taza) Ahmed Youssfi (Errachidia)

EXISTENCE RESULTS FOR A CLASS OF NONLINEAR PARABOLIC EQUATIONS WITH TWO LOWER ORDER TERMS

Abstract. We investigate the existence of renormalized solutions for some nonlinear parabolic problems associated to equations of the form

$$\begin{cases} \frac{\partial (e^{\beta u} - 1)}{\partial t} - \operatorname{div}(|\nabla u|^{p-2}\nabla u) + \operatorname{div}(c(x,t)|u|^{s-1}u) + b(x,t)|\nabla u|^{r} = f \\ & \text{in } Q = \Omega \times (0,T), \\ u(x,t) = 0 \quad \text{on } \partial\Omega \times (0,T), \\ (e^{\beta u} - 1)(x,0) = (e^{\beta u_{0}} - 1)(x) \quad \text{in } \Omega. \end{cases}$$

th $s = \frac{N+2}{N+n}(p-1), c(x,t) \in (L^{\tau}(Q_{T}))^{N}, \tau = \frac{N+p}{n-1}, r = \frac{N(p-1)+p}{N+2}, b(x,t) \in (L^{\tau}(Q_{T}))^{N}$

with $s = \frac{N+2}{N+p}(p-1), c(x,t) \in (L^{\tau}(Q_T))^N, \tau = \frac{N+p}{p-1}, r = \frac{N(p-1)+p}{N+2}, b(x,t) \in L^{N+2,1}(Q_T)$ and $f \in L^1(Q)$.

1. Introduction. Let Ω be a bounded subset of \mathbb{R}^N , $N \ge 1$, and let T > 0 be a real constant. Let us define the cylinder $Q = \Omega \times (0, T)$ and its lateral surface $\Gamma = \partial \Omega \times (0, T)$. Our main purpose in this paper is to study the following problem:

(1.1)
$$\begin{cases} \frac{\partial b(u)}{\partial t} - \operatorname{div}(a(x,t,u,\nabla u)) + \operatorname{div}(\phi(x,t,u)) + H(x,t,\nabla u) = f & \text{in } Q_T, \\ u(x,t) = 0 & \text{on } \partial \Omega \times (0,T), \\ b(u(x,0)) = b(u_0(x)) & \text{in } \Omega. \end{cases}$$

²⁰¹⁰ Mathematics Subject Classification: Primary 47A15; Secondary 46A32, 47D20. Key words and phrases: parabolic problems, Sobolev space, renormalized solutions.

Here b is a strictly increasing C^1 -function, the data f and $b(u_0)$ are in $L^1(Q)$ and $L^1(\Omega)$ respectively, $-\operatorname{div}(a(x,t,u,\nabla u))$ is a Leray–Lions operator defined on $W_0^{1,p}(\Omega)$ (see assumptions (2.2)–(2.4) of Section 2), and $\phi(x,t,u)$ and $H(x,t,\nabla u)$ are Carathéodory functions assumed to be continuous on u (see assumptions (2.5)–(2.9)).

Under our assumptions, problem (1.1) does not admit, in general, a solution in the sense of distributions since we cannot expect to have the field $\phi(x,t,u)$ in $(L^1_{\text{loc}}(Q_T))^N$ and $H(x,t,\nabla u)$ in $L^1_{\text{loc}}(Q_T)$. For this reason we consider the framework of renormalized solutions (see Definition 3.1).

The notion of renormalized solution was introduced in [9], and has been developed for elliptic problems with L^1 data in [6], [12].

The existence of renormalized solution for (1.1) has been proved by R. Di Nardo [7] for b(u) = u using the symmetrization method, by Y. Akdim et al. [2] in the case where $a(x, t, s, \xi)$ is independent of s and $\phi = 0$, by D. Blanchard et al. [4] for $a(x, t, s, \xi)$ only assumed to be non-strictly monotone, and ϕ depending only on s, and by A. Aberqi et al. [1] in the case where H = 0.

It is our purpose to generalize the result of [2], [7], [1] and prove the existence of a renormalized solution of (1.1).

2. Technical lemma and assumptions on data

2.1. Technical lemma. Throughout, T_k denotes the truncation function at height $k \ge 0$:

$$T_k(r) = \max(-k, \min(k, r)).$$

LEMMA 2.1 (see [7]). Assume that Ω is an open subset of \mathbb{R}^N of finite measure and $1 . Let u be a measurable function satisfying <math>T_k(u) \in L^p(0,T; W_0^{1,p}(\Omega)) \cap L^\infty(0,T; L^2(\Omega))$ for every k and such that

$$\sup_{t \in (0,T)} \int_{\Omega} |\nabla T_k(u)|^2 + \int_{Q_T} |\nabla T_k(u)|^p \le Mk + C, \quad \forall k > 0,$$

where M and C are positive constants. Then

$$|u|^{\frac{N(p-1)+p}{N+p}} \in L^{\frac{N+p}{N},\infty}(Q_T) \text{ and } |\nabla u|^{\frac{N(p-1)+p}{N+2}} \in L^{\frac{N+2}{N+1},\infty}(Q_T).$$

2.2. Assumptions. Throughout this paper, we assume that the following assumptions hold true:

Assumptions (H)

(2.1)
$$b: \mathbb{R} \to \mathbb{R}$$
 is strictly increasing, $C^1, b' > \lambda > 0, b(0) = 0$

(2.2)
$$|a(x,t,s,\xi)| \le \nu [h(x,t) + |\xi|^{p-1}]$$
 with $\nu > 0$ and $h(\cdot, \cdot) \in L^{p'}(Q_T)$,

- (2.3) $a(x,t,s,\xi)\xi \ge \alpha |\xi|^p \quad \text{with } \alpha > 0,$
- (2.4) $(a(x,t,s,\xi) a(x,t,s,\eta))(\xi \eta) > 0 \quad \text{if } \xi \neq \eta,$

Existence results

(2.5)
$$|\phi(x,t,s)| \le c(x,t)|s|^{\gamma},$$

(2.6)
$$c(\cdot, \cdot) \in (L^{\tau}(Q_T))^N, \quad \tau = \frac{N+p}{p-1},$$

(2.7)
$$\gamma = \frac{N+2}{N+p}(p-1),$$

(2.8)
$$|H(x,t,\xi)| \le m(x,t)|\xi|^{\beta},$$

(2.9)
$$m(\cdot, \cdot) \in L^{N+2,1}(Q_T), \quad \beta = \frac{N(p-1)+p}{N+2},$$

for almost every $(x,t) \in Q_T$, for every $s \in \mathbb{R}$ and every $\xi, \eta \in \mathbb{R}^N$. Moreover

$$(2.10) f \in L^1(Q_T),$$

(2.11) $u_0 \in L^1(\Omega), \quad b(u_0) \in L^1(\Omega).$

3. Existence results for noncoercive operators

DEFINITION 3.1. A measurable function u is a *renormalized solution* to problem (1.1) if

(3.1)
$$b(u) \in L^{\infty}(0,T;L^{1}(\Omega)),$$

(3.2)
$$T_k(u) \in L^p(0,T; W_0^{1,p}(\Omega))$$
 for any $k > 0$,

(3.3)
$$\lim_{n \to \infty} \int_{\{n \le |u| \le n+1\}} a(x, t, u, \nabla u) \nabla u \, dx \, dt = 0,$$

and if for every function S in $W^{2,\infty}(\mathbb{R})$ which is piecewise C^1 and such that S' has a compact support,

(3.4)
$$\frac{\partial B_S(u)}{\partial t} - \operatorname{div}(a(x,t,u,\nabla u)S'(u)) + S''(u)a(x,t,u,\nabla u)\nabla u + \operatorname{div}(\phi(x,t,u)S'(u)) - S''(u)\phi(x,t,u)\nabla u + H(x,t,\nabla u)S'(u) = fS'(u) \quad \text{in } \mathcal{D}'(Q_T),$$

and

(3.5)
$$B_S(u)(t=0) = B_S(u_0)$$
 in Ω ,

where $B_S(z) = \int_0^z b'(s) S'(s) \, ds$.

REMARK 3.2. We notice that equation (3.4) can be formally obtained through pointwise multiplication of (1.1) by S'(u) and all terms have a meaning in $L^1(Q) + L^{p'}(0,T;W^{-1,p'}(\Omega))$. Moreover $\partial B_S(u)/\partial t$ belongs to $L^1(Q) + L^{p'}(0,T;W^{-1,p'}(\Omega))$ and $B_S(u) \in L^p(0,T;W_0^{1,p}(\Omega)) \cap L^{\infty}(Q)$. It follows that $B_S(u)$ belongs to $C^0([0,T];L^1(\Omega))$ so the initial condition (3.5) makes sense.

3.1. Existence results

MAIN THEOREM 3.3. Under Assumptions (H) there exists a renormalized solution to problem (1.1).

Proof. STEP 1. Approximate problem. For each $\epsilon > 0$, we consider the approximate problem

(3.6)
$$\begin{cases} \frac{\partial b_{\epsilon}(u_{\epsilon})}{\partial t} - \operatorname{div}(a_{\epsilon}(x, t, u_{\epsilon}, \nabla u_{\epsilon})) \\ + \operatorname{div}(\phi_{\epsilon}(x, t, u_{\epsilon})) + H_{\epsilon}(x, t, \nabla u_{\epsilon}) = f_{\epsilon} & \text{in } Q_{T}, \\ u_{\epsilon}(x, t) = 0 & \text{on } \partial \Omega \times (0, T), \\ b_{\epsilon}(u_{\epsilon}(x, 0)) = b_{\epsilon}(u_{0\epsilon}(x)) & \text{in } \Omega. \end{cases}$$

where

$$(3.7) b_{\epsilon}(r) = T_{1/\epsilon}(b(r)) + \epsilon r \quad \forall r \in \mathbb{R}$$

(3.8) $a_{\epsilon}(x,t,s,\xi) = a(x,t,T_{1/\epsilon}(s),\xi)$ a.e. in $Q, \forall s \in \mathbb{R}, \forall \xi \in \mathbb{R}^N$,

(3.9)
$$\phi_{\epsilon}(x,t,r) = \phi(x,t,T_{1/\epsilon}(r))$$
 a.e. $(x,t) \in Q_T, \forall r \in \mathbb{R},$

- $(3.10) \qquad H_{\epsilon}(x,t,\xi) = T_{1/\epsilon}((x,t,\xi)) \quad \text{ a.e. } (x,t) \in Q_T, \ \forall \xi \in \mathbb{R}^N,$
- (3.11) $f_{\epsilon} \in L^{p'}(Q_T), \quad f_{\epsilon} \to f \text{ strongly in } L^1(Q_T),$
- (3.12) $u_{0\epsilon} \in \mathcal{D}(\Omega), \quad b_{\epsilon}(u_{0\epsilon}) \to b(u_0) \text{ strongly in } L^1(\Omega).$

Then proving existence of a weak solution $u_{\epsilon} \in L^p(0,T; W_0^{1,p}(\Omega))$ is an easy task (see [11]).

STEP 2. A priori estimates for solutions and their gradients. Let $\tau_1 \in (0,T)$ and fix t in $(0,\tau_1)$. Using $T_k(u_{\epsilon})\chi_{(0,t)}$ as a test function in (3.6), we integrate between $(0,\tau_1)$, and by the condition (2.5) we have

$$(3.13) \qquad \int_{\Omega} B_k^{\epsilon}(u_{\epsilon}(t)) \, dx + \int_{Q_t} a_{\epsilon}(x, t, u_{\epsilon}, \nabla u_{\epsilon}) \nabla T_k(u_{\epsilon}) \, dx \, ds$$
$$\leq \int_{Q_t} c(x, t) |u_{\epsilon}|^{\gamma} |\nabla T_k(u_{\epsilon})| \, dx \, ds + k \int_{Q_t} m(x, t) |\nabla u_{\epsilon}|^{\beta} \, dx \, ds$$
$$+ \int_{Q_t} f_{\epsilon} T_k(u_{\epsilon}) \, dx \, ds + \int_{\Omega} B_k^{\epsilon}(u_{0\epsilon}) \, dx,$$

where $B_k^{\epsilon}(r) = \int_0^r T_k(s) b_{\epsilon}'(s) \, ds$. Due to the definition of B_k^{ϵ} we have

$$(3.14) \qquad 0 \le \int_{\Omega} B_k^{\epsilon}(u_{0\epsilon}) \, dx \le k \int_{\Omega} |b_{\epsilon}(u_{0\epsilon})| \, dx \le k \|b(u_0)\|_{L^1(\Omega)} \quad \forall k > 0.$$

Using (3.13) and (2.3) we obtain

$$(3.15) \qquad \int_{\Omega} B_k^{\epsilon}(u_{\epsilon}(t)) \, dx + \alpha \int_{Q_t} |\nabla T_k(u_{\epsilon})|^p \, dx \, ds$$
$$\leq \int_{Q_t} c(x,t) |u_{\epsilon}|^{\gamma} |\nabla T_k(u_{\epsilon})| \, ds \, dx + k \int_{Q_t} m(x,t) |\nabla u_{\epsilon}|^{\beta} \, dx \, ds$$
$$+ k(\|b(u_0)\|_{L^1(\Omega)} + \|f_{\epsilon}\|_{L^1(Q)}).$$

We deduce from (3.13)–(3.15) that

$$(3.16) \qquad \frac{\lambda}{2} \int_{\Omega} |T_k(u_{\epsilon})|^2 \, dx + \alpha \int_{Q_t} |\nabla T_k(u_{\epsilon})|^p \, dx \, ds$$
$$\leq M_1 k + k \int_{Q_t} m(x,t) |\nabla u_{\epsilon}|^\beta \, dx \, ds + \int_{Q_t} c(x,t) |u_{\epsilon}|^\gamma |\nabla T_k(u_{\epsilon})| \, dx \, ds$$

for $t \in (0, \tau_1)$, where $M_1 = \sup ||f_{\epsilon}||_{L^1(Q)} + ||b(u_0)||_{L^1(\Omega)}$.

► Estimate of $\int_{Q_t} c(x,t) |u_{\epsilon}|^{\gamma} |\nabla T_k(u_{\epsilon})| dx ds$. By the Gagliardo–Nirenberg and Young inequalities we have

$$(3.17) \qquad \int_{Q_{t}} c(x,t) |u_{\epsilon}|^{\gamma} |\nabla T_{k}(u_{\epsilon})| \, dx \, ds$$

$$\leq C \frac{\gamma}{N+2} ||c(\cdot,\cdot)||_{L^{\tau}(Q_{\tau_{1}})} \sup_{t \in (0,\tau_{1})} \int_{\Omega} |T_{k}(u_{\epsilon})|^{2} \, dx$$

$$+ C \frac{N+2-\gamma}{N+2} ||c(\cdot,\cdot)||_{L^{\tau}(Q_{\tau_{1}})} \Big(\int_{Q_{\tau_{1}}} |\nabla T_{k}(u_{\epsilon})|^{p} \, dx \, ds \Big)^{\left(\frac{1}{p} + \frac{N\gamma}{(N+2)p}\right) \frac{N+2}{N+2-\gamma}}$$

 \blacktriangleright Estimate of $\int_{Q_t} m(x,t) |\nabla u_\epsilon|^\beta \, dx \, ds.$ By the generalized Hölder inequality we have

$$\int_{Q_t} m(x,t) |\nabla u_{\epsilon}|^{\beta} \, dx \, ds \le \|m\|_{L^{N+2,1}(Q_t)} \|\nabla u_{\epsilon}\|_{L^{\frac{N+2}{N+1}(Q_t)}}^{\beta}$$

Since $\gamma = \frac{N+2}{N+p}(p-1)$ and $\beta = \frac{N(p-1)+p}{N+2}$, and by using (3.16) and (3.17), we obtain

$$\begin{split} \frac{\lambda}{2} \int_{\Omega} |T_{k}(u_{\epsilon})|^{2} dx + \alpha \int_{Q_{t}} |\nabla T_{k}(u_{\epsilon})|^{p} dx ds \\ &\leq M_{1}k + C \frac{\gamma}{N+2} \|c(\cdot, \cdot)\|_{L^{\tau}(Q_{\tau_{1}})} \sup_{t \in (0, \tau_{1})} \int_{\Omega} |T_{k}(u_{\epsilon})|^{2} dx \\ &+ C \frac{N+2-\gamma}{N+2} \|c(\cdot, \cdot)\|_{L^{\tau}(Q_{\tau_{1}})} \int_{Q_{\tau_{1}}} |\nabla T_{k}(u_{\epsilon})|^{p} dx ds \\ &+ \|m\|_{L^{N+2,1}(Q_{\tau_{1}})} \|\nabla u_{\epsilon}\|_{L^{\frac{N+2}{N+1},\infty}(Q_{\tau_{1}})}^{\beta}. \end{split}$$

If τ_1 satisfies

(3.18)
$$\frac{\lambda}{2} - C \frac{\gamma}{N+2} \|c(\cdot, \cdot)\|_{L^{\tau}(Q_{\tau_1})} > 0,$$

(3.19)
$$\alpha - C \frac{N+2-\gamma}{N+2} \|c(\cdot, \cdot)\|_{L^{\tau}(Q_{\tau_1})} > 0,$$

then we have

$$C\left(\frac{\lambda}{2} \sup_{t \in (0,\tau_{1})} \int_{\Omega} |T_{k}(u_{\epsilon})|^{2} dx + \int_{Q_{t}} |\nabla T_{k}(u_{\epsilon})|^{p} dx ds\right)$$

$$\leq M_{1}k + \|m\|_{L^{N+2,1}(Q_{\tau_{1}})} \|\nabla u_{\epsilon}\|_{L^{\frac{N+2}{N+1},\infty}(Q_{\tau_{1}})}^{\beta}$$

Using [8, Lemma A.1] we have

$$\begin{aligned} \|\nabla u_{\epsilon}\|_{L^{\frac{N+2}{N+1},\infty}(Q_{\tau_{1}})}^{\beta} &= \| |\nabla u_{\epsilon}|^{p-1} \|_{L^{\frac{N+2}{N+1},\infty}(Q_{\tau_{1}})}^{\frac{p}{p-1}} \\ &\leq C(M_{1} + \|m\|_{L^{N+2,1}(Q_{\tau_{1}})} \|\nabla u_{\epsilon}\|_{L^{\frac{N+2}{N+1},\infty}(Q_{\tau_{1}})}^{\beta}); \end{aligned}$$

then

$$(1 - C \|m\|_{L^{N+2,1}(Q_{\tau_1})}) \|\nabla u_{\epsilon}\|_{L^{\frac{N+2}{N+1},\infty}(Q_{\tau_1})}^{\beta} < CM_1$$

If we choose τ_1 such that (3.18) and (3.19) hold and $1-C||m||_{L^{N+2,1}(Q_{\tau_1})} > 0$, this leads to

$$\left\|\nabla u_{\epsilon}\right\|_{L^{\frac{N+2}{N+1},\infty}(Q_{\tau_{1}})}^{\beta} \leq C_{1}$$

and it follows that

$$\sup_{t\in(0,T)} \int_{\Omega} |\nabla T_k(u)|^2 + \int_{Q_T} |\nabla T_k(u)|^p \le M_1 k + C_1, \quad \forall k > 0.$$

Then, by Lemma 2.1, we find that $T_k(u_{\epsilon})$ is bounded in $L^p(0, T; W_0^{1,p}(\Omega))$ and $m(x,t)|\nabla u_{\epsilon}|^{\beta}$ is bounded in $L^1(Q_T)$, independently of ϵ and for any $k \geq 0$, so there exists a subsequence still denoted by u_{ϵ} such that

(3.20)
$$T_k(u_{\epsilon}) \rightharpoonup \sigma_k \quad \text{in } L^p(0,T; W_0^{1,p}(\Omega)).$$

STEP 3. A.e. convergence of u_{ϵ} and $b_{\epsilon}(u_{\epsilon})$. Proceeding as in [3], [4], [1], we prove that for every nondecreasing function $g_k \in C^2(\mathbb{R})$ such that $g_k(s) = s$ for $|s| \leq k/2$ and $g_k(s) = k$ for $|s| \geq k$,

(3.21)
$$\frac{\partial g_k(b_\epsilon(u_\epsilon))}{\partial t} \text{ is bounded in } L^1(Q) + L^{p'}(0,T;W^{-1,p'}(\Omega)).$$

Arguing again as in [5], estimates (3.20) and (3.21) imply that, for a subsequence, still indexed by ϵ ,

(3.22)
$$u_{\epsilon} \to u$$
 a.e. in Q_T ,

212

where u is a measurable function defined on Q_T . Let us prove that b(u) belongs to $L^{\infty}(0,T; L^1(\Omega))$. Taking $T_k(b_{\epsilon}(u_{\epsilon}))$ as a test function in (3.6), by (3.9) we have

$$(3.23) \qquad \int_{\Omega} B_k^{\epsilon}(u_{\epsilon}) \, dx + \int_{Q_T} a_{\epsilon}(x, t, u, \nabla u_{\epsilon}) \nabla T_k(b_{\epsilon}(u_{\epsilon})) \, dx \, dt$$

$$\leq \int_{Q_T} |m(x, t)| \, |\nabla T_{1/\epsilon}(u_{\epsilon})|^{\beta} \nabla T_k(b_{\epsilon}(u_{\epsilon})) \, dx \, dt$$

$$+ \int_{Q_T} |c(x, t)| \, |T_{1/\epsilon}(u_{\epsilon})|^{\gamma} |\nabla T_k(b_{\epsilon}(u_{\epsilon}))| \, dx \, dt$$

$$+ k(||f_{\epsilon}||_{L^1(Q_T)} + ||b(u_0)||_{L^1(\Omega)})$$

with $B_k(r) = \int_0^{b(r)} T_k(s) \, ds$. On the other hand, we have

$$(3.24) \qquad \int_{Q_T} a_{\epsilon}(x, t, u_{\epsilon}, \nabla u_{\epsilon}) \nabla T_k(b_{\epsilon}(u_{\epsilon})) \, dx \, ds$$
$$= \int_{\{|b_{\epsilon}(u_{\epsilon})| \le k\}} a_{\epsilon}(x, t, u_{\epsilon}, \nabla u_{\epsilon}) \nabla T'_k(b_{\epsilon}(u_{\epsilon})) b'_{\epsilon}(u_{\epsilon}) \nabla u_{\epsilon} \, dx \, ds \ge 0.$$

Since $b'(s) \ge \lambda$, for $0 < \epsilon < 1/k$ and for almost $t \in (0,T)$ we have

$$(3.25) \qquad \int_{Q_T} |c(x,t)| |T_{1/\epsilon}(u_{\epsilon})|^{\gamma} |\nabla T_k(b_{\epsilon}(u_{\epsilon}))| \, dx \, dt$$

$$\leq \max_{|s| \leq k/\lambda} (b'(s)) ||c(\cdot, \cdot)||_{L^{\tau}(Q_T)}$$

$$\times \left(\sup_{t \in (0,T)} \left(\int_{\Omega} |T_{k/\lambda}(u_{\epsilon})|^2 \, dx \right)^{\frac{p-1}{N+p}} ||\nabla T_{k/\lambda}(u_{\epsilon})||_{L^p(Q_T)}^{\frac{p(N+1)}{N+p}} \right) \leq c_k$$

and

(3.26)
$$\int_{Q_T} |m(x,t)| |\nabla T_{1/\epsilon}(u_{\epsilon})|^{\beta} |\nabla T_k(b_{\epsilon}(u_{\epsilon}))| \, dx \, dt$$
$$\leq \max_{|s| \leq k/\lambda} (b'(s)) ||m(\cdot,\cdot)||_{L^{N+2,1}(Q_T)} ||\nabla T_{k/\lambda}(b_{\epsilon}(u_{\epsilon}))||_{L^{\frac{N+2}{N+1},\infty}(Q_T)} \leq c_k.$$

Using (3.24), (3.25) and (3.26) in (3.23) we have

$$\int_{\Omega} B_k^{\epsilon}(u_{\epsilon}(t)) \, dx \le c_k + k(\|f_{\epsilon}\|_{L^1(Q_T)} + \|b(u_0)\|_{L^1(\Omega)}).$$

Passing to limit as $\epsilon \to 0$, we obtain

$$\int_{\Omega} B_k(u(t)) \, dx \le c_k + k(\|f\|_{L^1(Q_T)}) + \|b(u_0)\|_{L^1(\Omega)}) \quad \text{for a.e. } t \in (0,T).$$

Due to the definition of B_k , we have

$$k \int_{\Omega} |b(u(x,t))| \, dx \leq \int_{\Omega} B_k(u(t)) \, dx + \frac{3}{2}k^2 \operatorname{meas}(\Omega)$$

$$\leq k(\|f\|_{L^1(\Omega)} + \|b(u_0)\|_{L^1(\Omega)}) + c_k + \frac{3}{2}k^2 \operatorname{meas}(\Omega).$$

We conclude that $b(u) \in L^{\infty}(0,T;L^{1}(\Omega))$.

LEMMA 3.4 (see [1]). A subsequence of u_{ϵ} defined in Step 1 satisfies

$$\lim_{n \to \infty} \limsup_{\epsilon \to 0} \int_{\{n \le |u_{\epsilon}| \le n+1\}} a(x, t, u_{\epsilon}, \nabla u_{\epsilon}) \nabla u_{\epsilon} \, dx \, dt = 0.$$

STEP 4. In this step we introduce a time regularization of the $T_k(u)$ for k > 0 in order to apply the monotonicity method (see [10]). Let v_0^{μ} be a sequence of functions in $L^{\infty}(\Omega) \cap W_0^{1,p}(\Omega)$ such that $\|v_0^{\mu}\|_{L^{\infty}(\Omega)} \leq k$ for all $\mu > 0$ and v_0^{μ} converges to $T_k(u_0)$ a.e. in Ω and $\frac{1}{\mu} \|v_0^{\mu}\|_{L^p(\Omega)}$ converges to 0. For $k \geq 0$ and $\mu > 0$, let us consider the unique solution $(T_k(u))_{\mu} \in$ $L^{\infty}(Q) \cap L^p(0,T; W_0^{1,p}(\Omega))$ of the monotone problem

$$\frac{\partial (T_k(u))_{\mu}}{\partial t} + \mu((T_k(u))_{\mu} - T_k(u)) = 0 \quad \text{in } \mathcal{D}'(\Omega).$$
$$(T_k(u))_{\mu}(t=0) = \nu_0^{\mu} \quad \text{in } \Omega.$$

LEMMA 3.5 (see [5]). Let $k \ge 0$ be fixed. Let S be an increasing $C^{\infty}(\mathbb{R})$ -function such that S(r) = r for $|r| \le k$, and supp S' is compact. Then

$$\liminf_{\mu \to \infty} \inf_{\epsilon \to 0} \iint_{0}^{T} \int_{0}^{t} \left\langle \frac{\partial b_{\epsilon}(u_{\epsilon})}{\partial t}, S'(u_{\epsilon}) \left(T_{k}(u_{\epsilon}) - (T_{k}(u))_{\mu} \right) \right\rangle ds \, dt \ge 0,$$

where $\langle \cdot, \cdot \rangle$ denotes the duality pairing between $L^1(\Omega) + W^{-1,p'}(\Omega)$ and $L^{\infty}(\Omega) \cap W^{1,p}(\Omega)$.

STEP 5. We prove the following lemma which is the critical point in the development of the monotonicity method.

LEMMA 3.6. A subsequence of u_{ϵ} satisfies, for any $k \ge 0$,

$$\limsup_{\epsilon \to 0} \int_{0}^{T} \int_{\Omega} \int_{\Omega} \int_{\Omega} a(x, t, u_{\epsilon}, \nabla T_{k}(u_{\epsilon})) \nabla T_{k}(u_{\epsilon}) \, dx \, ds \, dt$$
$$\leq \int_{0}^{T} \int_{\Omega} \int_{\Omega} \sigma_{k} \nabla T_{k}(u) \, dx \, ds \, dt.$$

Existence results

Proof. Let S_n be a sequence of increasing C^{∞} -functions such that $S_n(r) = r$ for $|r| \leq n$, supp $S'_n \subset [-(n+1), n+1]$ and $||S''_n||_{L^{\infty}(\mathbb{R})} \leq 1$ for any $n \geq 1$. We use the sequence $(T_k(u))_{\mu}$ of approximations of $T_k(u)$, and plug the test function $S'_n(u_{\epsilon})(T_k(u_{\epsilon}) - (T_k(u))_{\mu})$ into (3.4) for n > 0 and $\mu > 0$. For fixed $k \geq 0$ let $W^{\epsilon}_{\mu} = T_k(u_{\epsilon}) - (T_k(u))_{\mu}$. Upon integration over (0, t) and then over (0, T) we obtain

$$(3.27) \qquad \int_{0}^{T} \int_{0}^{t} \left\langle \frac{\partial b_{\epsilon}(u_{\epsilon})}{\partial t}, S_{n}'(u_{\epsilon}) W_{\mu}^{\epsilon} \right\rangle ds dt + \int_{0}^{T} \int_{0}^{t} \int_{\Omega} a_{\epsilon}(x, t, u_{\epsilon}, \nabla u_{\epsilon}) S_{n}'(u_{\epsilon}) \nabla W_{\mu}^{\epsilon} dx ds dt + \int_{0}^{T} \int_{0}^{T} \int_{\Omega} a_{\epsilon}(x, t, u_{\epsilon}, \nabla u_{\epsilon}) S_{n}''(u_{\epsilon}) \nabla u_{\epsilon} \nabla W_{\mu}^{\epsilon} dx ds dt - \int_{0}^{T} \int_{0}^{T} \int_{\Omega} \phi_{\epsilon}(x, t, u_{\epsilon}) S_{n}'(u_{\epsilon}) \nabla W_{\mu}^{\epsilon} dx ds dt - \int_{0}^{T} \int_{0}^{T} \int_{\Omega} S_{n}''(u_{\epsilon}) \phi_{\epsilon}(x, t, u_{\epsilon}) \nabla u_{\epsilon} \nabla W_{\mu}^{\epsilon} dx ds dt + \int_{0}^{T} \int_{0}^{T} \int_{\Omega} H_{\epsilon}(x, t, \nabla u_{\epsilon}) S_{n}'(u_{\epsilon}) W_{\mu}^{\epsilon} dx ds dt = \int_{0}^{T} \int_{0}^{T} \int_{\Omega} f_{\epsilon} S_{n}'(u_{\epsilon}) W_{\mu}^{\epsilon} dx ds dt.$$

Now we pass to the limit in (3.27) as $\epsilon \to 0$, $\mu \to \infty$ and then $n \to \infty$ for k real fixed. In order to perform this task we prove below the following results for any fixed $k \ge 0$:

(3.28)
$$\liminf_{\mu \to \infty} \lim_{\epsilon \to 0} \iint_{0}^{T} \int_{0}^{t} \left\langle \frac{\partial b_{\epsilon}(u_{\epsilon})}{\partial t}, W_{\mu}^{\epsilon} \right\rangle ds \, dt \ge 0 \quad \text{for any } n \ge k,$$

(3.29)
$$\lim_{\mu \to \infty} \lim_{\epsilon \to 0} \int_{0}^{\infty} \int_{\Omega} \int_{\Omega} \phi_{\epsilon}(x, t, u_{\epsilon}) S'_{n}(u_{\epsilon}) \nabla W^{\epsilon}_{\mu} \, dx \, ds \, dt = 0 \quad \text{for any } n \ge 1,$$

(3.30)

$$\lim_{\mu \to \infty} \lim_{\epsilon \to 0} \iint_{0} \iint_{\Omega} S_n''(u_{\epsilon}) \phi_{\epsilon}(x, t, u_{\epsilon}) \nabla u_{\epsilon} \nabla W_{\mu}^{\epsilon} \, dx \, ds \, dt = 0 \quad \text{for any } n \ge 1,$$

(3.31)

$$\lim_{n \to \infty} \limsup_{\mu \to \infty} \limsup_{\epsilon \to 0} \prod_{0}^{T} \int_{0}^{t} \int_{\Omega} a_{\epsilon}(x, t, u_{\epsilon}, \nabla u_{\epsilon}) S_{n}''(u_{\epsilon}) \nabla u_{\epsilon} \nabla W_{\mu}^{\epsilon} dx \, ds \, dt = 0,$$

$$(3.32) \qquad \lim_{\mu \to \infty} \lim_{\epsilon \to 0} \prod_{0}^{T} \int_{\Omega} \int_{\Omega} H_{\epsilon}(x, t, \nabla u_{\epsilon}) S_{n}'(u_{\epsilon}) W_{\mu}^{\epsilon} dx \, ds \, dt = 0,$$

$$(3.33) \qquad \qquad \lim_{\mu \to \infty} \lim_{\epsilon \to 0} \int_{0}^{T} \int_{\Omega} \int_{\Omega} f_{\epsilon} S_{n}'(u_{\epsilon}) W_{\mu}^{\epsilon} dx \, ds \, dt = 0.$$

We adopt the same proof of [1] for (3.28)–(3.31) and (3.33). It remains to prove (3.32). For any fixed $n \ge 1$ and $0 < \epsilon < 1/(n+1)$,

$$H_{\epsilon}(x,t,\nabla u_{\epsilon})S'_{n}(u_{\epsilon})W^{\epsilon}_{\mu} = H_{\epsilon}(x,t,\nabla T_{n+1}(u_{\epsilon}))S'_{n}(u_{\epsilon})W^{\epsilon}_{\mu} \quad \text{a.e. in } Q_{T}.$$

It is possible to pass to the limit for $\epsilon \to 0$ since from $||W_{\mu}^{\epsilon}||_{L^{\infty}(Q_T)} \leq 2k$ for any $\epsilon, \mu > 0$, and $W_{\mu}^{\epsilon} \rightharpoonup T_k(u) - (T_k(u))_{\mu}$ a.e. in Q_T and weakly-* in $L^{\infty}(Q_T)$, when $\epsilon \to 0$ we have

$$H_{\epsilon}(x,t,\nabla T_{n+1}(u_{\epsilon}))S'_{n}(u_{\epsilon})W^{\epsilon}_{\mu} \to H(x,t,\nabla T_{n+1}(u))S'_{n}(u)W_{\mu} \quad \text{ a.e. in } Q_{T}.$$

Since

$$|H(x,t,\nabla T_{n+1}(u))S'_n(u)W_{\mu}| \le 2k|m(x,t)|(n+1)^{\beta}$$
 a.e. in Q_T

and $(T_k(u))_{\mu}$ converges to 0 in $L^p(0,T;W_0^{1,p}(\Omega))$, we obtain (3.32).

STEP 6. In this step we prove that the weak limit σ_k of $a(x, t, T_k(u_{\epsilon}), \nabla T_k(u_{\epsilon}))$ can be identified with $a(x, t, T_k(u), \nabla T_k(u))$. To do so, we recall the following lemmas proved in [1].

LEMMA 3.7. A subsequence of u_{ϵ} defined in Step 1 satisfies, for any $k \geq 0$,

(3.34)
$$\lim_{\epsilon \to 0} \int_{0}^{T} \int_{0}^{t} \int_{\Omega} \left(a(x, t, T_k(u_{\epsilon}), \nabla T_k(u_{\epsilon})) - a(x, t, T_k(u_{\epsilon}), \nabla T_k(u)) \right) \times \left(\nabla T_k(u_{\epsilon}) - \nabla T_k(u) \right) = 0.$$

LEMMA 3.8. For fixed $k \ge 0$, we have

(3.35)
$$\sigma_k = a(x, t, T_k(u), \nabla T_k(u))) \quad a.e. \text{ in } Q_T,$$

and as $\epsilon \to 0$,

$$\begin{array}{ll} (3.36) & a(x,t,T_k(u_{\epsilon}),\nabla T_k(u_{\epsilon}))\nabla T_k(u_{\epsilon}) \rightharpoonup a(x,t,T_k(u),\nabla T_k(u)))\nabla T_k(u) \\ \\ weakly \ in \ L^1(Q_T). \ \bullet \end{array}$$

216

Existence results

Taking the limit as ϵ tends to 0 and using (3.36) shows that u satisfies (3.3). Our aim is to prove that it satisfies (3.4) and (3.5).

First we prove that u satisfies (3.4). Let $S \in W^{2,\infty}(\mathbb{R})$ with $\operatorname{supp} S' \subset [-k,k]$ where k > 0. Pointwise multiplication of the approximate equation (3.6) by $S'(u_{\epsilon})$ leads to

$$(3.37) \quad \frac{\partial B_{S}^{\epsilon}(u_{\epsilon})}{\partial t} - \operatorname{div}\left(a_{\epsilon}(x, t, u_{\epsilon}, \nabla u_{\epsilon})S'(u_{\epsilon})\right) + S''(u_{\epsilon})a(x, t, u_{\epsilon}, \nabla u_{\epsilon})\nabla u_{\epsilon} + \operatorname{div}\left(\phi_{\epsilon}(x, t, u_{\epsilon})S'(u_{\epsilon})\right) - S''(u_{\epsilon})\phi_{\epsilon}(x, t, u_{\epsilon})\nabla u_{\epsilon} + H_{\epsilon}(x, t, \nabla u_{\epsilon})S'(u_{\epsilon}) = f_{\epsilon}S'(u_{\epsilon}) \quad \text{in } \mathcal{D}'(\Omega).$$

where

$$B_{S}^{\epsilon}(r) = \int_{0}^{r} \frac{\partial b_{\epsilon}(s)}{\partial s} S'(s) \, ds.$$

In what follows we let $\epsilon \to 0$ in each term of (3.37). Since u_{ϵ} converges to u a.e. in Q_T , $B_S^{\epsilon}(u_{\epsilon})$ converges to $B_S(u)$ a.e. in Q_T and weakly-* in $L^{\infty}(Q_T)$. Then $\partial B_S^{\epsilon}/\partial t$ converges to $\partial B_S/\partial t$ in $\mathcal{D}'(Q_T)$. We observe that the term $a_{\epsilon}(x, t, u_{\epsilon}, \nabla u_{\epsilon})S'(u_{\epsilon})$ can be identified with $a(x, t, T_k(u_{\epsilon}), \nabla T_k(u_{\epsilon}))S'(u_{\epsilon})$ for $\epsilon \leq 1/k$, so using the pointwise convergence $u_{\epsilon} \to u$ in Q_T , and the weak convergence $T_k(u_{\epsilon}) \to T_k(u)$ in $L^p(0, T; W_0^p(\Omega))$, we get

$$a_{\epsilon}(x,t,u_{\epsilon},\nabla u_{\epsilon})S'(u_{\epsilon}) \rightharpoonup a(x,t,T_{k}(u),\nabla T_{k}(u))S'(u) \quad \text{in } L^{p'}(Q_{T}),$$

and

$$S''(u_{\epsilon})a_{\epsilon}(x,t,u_{\epsilon},\nabla u_{\epsilon})\nabla u_{\epsilon}$$

$$\rightarrow S''(u)a(x,t,T_{k}(u),\nabla T_{k}(u))\nabla T_{k}(u) \quad \text{in } L^{1}(Q_{T}).$$

Furthermore, since

$$\phi_{\epsilon}(x,t,u_{\epsilon})S'(u_{\epsilon}) = \phi_{\epsilon}(x,t,T_k(u_{\epsilon}))S'(u_{\epsilon})$$
 a.e. in Q_T

by (3.9) we obtain

$$|\phi_{\epsilon}(x,t,T_k(u_{\epsilon}))S'(u_{\epsilon})| \le |c(x,t)|k^{\gamma},$$

and it follows that

$$\phi_{\epsilon}(x,t,T_k(u_{\epsilon}))S'(u_{\epsilon}) \to \phi(x,t,T_k(u))S'(u)$$
 strongly in $L^{p'}(Q_T)$.

Similarly, since $H_{\epsilon}(x, t, \nabla u_{\epsilon})S'(u_{\epsilon}) = H_{\epsilon}(x, t, \nabla T_{k}(u_{\epsilon}))S'(u_{\epsilon})$ a.e. in Q_{T} , by (3.10) we have $|H_{\epsilon}(x, t, \nabla T_{k}(u_{\epsilon}))S'(u_{\epsilon})| \leq |m(x, t)|k^{\beta}$, and it follows that

$$H_{\epsilon}(x,t,\nabla T_k(u_{\epsilon}))S'(u_{\epsilon}) \to H(x,t,\nabla T_k(u))S'(u)$$
 strongly in $L^1(Q_T)$.

In a similar way,

$$S''(u_{\epsilon})\phi_{\epsilon}(x,t,u_{\epsilon})\nabla u_{\epsilon} = S''(T_k(u_{\epsilon}))\phi_{\epsilon}(x,t,T_k(u_{\epsilon}))\nabla T_k(u_{\epsilon}) \quad \text{a.e. in } Q_T.$$

Using the weak convergence of $T_k(u_{\epsilon})$ in $L^p(0,T;W_0^p(\Omega))$ it is possible to prove that $S''(u_{\epsilon})\phi_{\epsilon}(x,t,u_{\epsilon})\nabla u_{\epsilon} \to S''(u)\phi(x,t,u)\nabla u$ in $L^1(Q_T)$. Finally, by (3.11) we deduce that $f_{\epsilon}S'(u_{\epsilon})$ converges to fS'(u) in $L^1(Q_T)$.

It remains to prove that $B_S(u)$ satisfies the initial condition $B_S(t=0) = B_S(u_0)$ in Ω . To this end, first note that S being bounded, $B_S^{\epsilon}(u_{\epsilon})$ is bounded in $L^{\infty}(Q)$. Secondly the above consideration of the behavior of the terms of this equation shows that $\partial B_S^{\epsilon}(u_{\epsilon})/\partial t$ is bounded in $L^1(Q_T) + L^{p'}(0,T;W^{-1,p'}(\Omega))$. As a consequence, an Aubin type lemma (see e.g. [13]) implies that $B_S^{\epsilon}(u_{\epsilon})$ lies in a compact subset of $C^0([0,T];L^1(\Omega))$. Finally, the smoothness of S implies that $B_S(t=0) = B_S(u_0)$ in Ω .

References

- A. Aberqi, J. Bennouna, M. Mekkour and H. Redwane, *Renormalized solution for a nonlinear parabolic equation with lower order terms*, Austral. J. Math. Anal. Appl. 10 (2013), no. 1, art. 15, 15 pp.
- [2] Y. Akdim, J. Bennouna and M. Mekkour, Solvability of degenerated parabolic equations without sign condition and three unbounded nonlinearities, Electron. J. Differetial Equations 2011, no. 3, 26 pp.
- [3] D. Blanchard and F. Murat, Renormalised solutions of nonlinear parabolic problems with L¹ data: existence and uniqueness, Proc. Roy. Soc. Edinburgh Sect. A Math. 127 (1997), 1137–1152.
- [4] D. Blanchard, F. Murat and H. Redwane, Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems, J. Differential Equations 177 (2001), 331–374.
- [5] D. Blanchard and H. Redwane, Renormalized solutions for a class of nonlinear evolution problems, J. Math. Pures Appl. 77 (1998), 117–151.
- [6] L. Boccardo, D. Giachetti, J.-I. Diaz and F. Murat, Existence and regularity of renormalized solutions of some elliptic problems involving derivatives of nonlinear terms, J. Differential Equations 106 (1993), 215–237.
- [7] R. Di Nardo, Nonlinear parabolic equations with a lower order term, preprint N. 60-2008, Dipartimento di Matematica e Applicazioni "R. Caccioppoli", Università degli Studi di Napoli "Federico II".
- [8] R. Di Nardo, F. Feo and O. Guibé, Existence result for nonlinear parabolic equations with lower order terms, Anal. Appl. (Singap.) 9 (2011), 161–186.
- R. DiPerna and P.-L. Lions, Ordinary differential equations, Sobolev spaces and transport theory, Invent. Math. 98 (1989), 511–547.
- [10] R. Landes, On the existence of weak solutions for quasilinear parabolic initialboundary problems, Proc. Roy. Soc. Edinburgh Sect. A 89, 1981, 217–237.
- J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod and Gauthier-Villars, Paris, 1969.
- [12] J.-M. Rakotoson, Resolution of the critical cases for the problems with L^1 data, when right hand side is in $L^1(\Omega)$, Asymptotic Anal. 6 (1993), 285–293.
- [13] J. Simon, Compact sets in the space $L^p(0,T,B)$, Ann. Mat. Pura Appl. 146 (1987), 65–96.

Ahmed Aberqi, Jaouad Bennouna, M. Hammou	ımi Mounir Mekkour
Laboratory LAMA, Department of Mathematic	cs Laboratory LIMAO
Faculty of Sciences Dhar El Mahraz	Poly-disciplinary Faculty of Taza
Sidi Mohamed Ben Abdellah University	Sidi Mohamed Ben Abdellah University
P.O. Box 1796 Atlas	P.O. Box 1223
Fez, Morocco	Taza, Morocco
E-mail: aberqi_ahmed@yahoo.fr	E-mail: mekkour.mounir@yahoo.fr
jbennouna@hotmail.com	
hammoumi.mohamed 09 @gmail.com	
Ahmed Youssfi	
Deptment of Mathematics	
Faculty of Sciences and Technology	
Moulay Ismail University	

P.O. Box 509-Boutalamine 52 000 Errachidia, Morocco E-mail: ahmed.youssfi@gmail.com

> Received on 25.2.2014; revised version on 18.7.2014

(2229)