Ahmed Aberqi (Fez)
Jaouad Bennouna (Fez)
M. Hammoumi (Fez)

Mounir Mekkour (Taza)
Ahmed Youssfi (Errachidia)

EXISTENCE RESULTS FOR A CLASS OF NONLINEAR PARABOLIC EQUATIONS WITH TWO LOWER ORDER TERMS

Abstract. We investigate the existence of renormalized solutions for some nonlinear parabolic problems associated to equations of the form

$$
\begin{cases}\frac{\partial\left(e^{\beta u}-1\right)}{\partial t}-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+\operatorname{div}\left(c(x, t)|u|^{s-1} u\right)+b(x, t)|\nabla u|^{r}=f \\ & \text { in } Q=\Omega \times(0, T), \\ u(x, t)=0 \text { on } \partial \Omega \times(0, T), & \\ \left(e^{\beta u}-1\right)(x, 0)=\left(e^{\beta u_{0}}-1\right)(x) & \text { in } \Omega .\end{cases}
$$

with $s=\frac{N+2}{N+p}(p-1), c(x, t) \in\left(L^{\tau}\left(Q_{T}\right)\right)^{N}, \tau=\frac{N+p}{p-1}, r=\frac{N(p-1)+p}{N+2}, b(x, t) \in$ $L^{N+2,1}\left(Q_{T}\right)$ and $f \in L^{1}(Q)$.

1. Introduction. Let Ω be a bounded subset of $\mathbb{R}^{N}, N \geq 1$, and let $T>0$ be a real constant. Let us define the cylinder $Q=\Omega \times(0, T)$ and its lateral surface $\Gamma=\partial \Omega \times(0, T)$. Our main purpose in this paper is to study the following problem:

$$
\left\{\begin{array}{l}
\frac{\partial b(u)}{\partial t}-\operatorname{div}(a(x, t, u, \nabla u))+\operatorname{div}(\phi(x, t, u))+H(x, t, \nabla u)=f \quad \text { in } Q_{T} \tag{1.1}\\
u(x, t)=0 \quad \text { on } \partial \Omega \times(0, T) \\
b(u(x, 0))=b\left(u_{0}(x)\right) \quad \text { in } \Omega
\end{array}\right.
$$

Here b is a strictly increasing C^{1}-function, the data f and $b\left(u_{0}\right)$ are in $L^{1}(Q)$ and $L^{1}(\Omega)$ respectively, $-\operatorname{div}(a(x, t, u, \nabla u))$ is a Leray-Lions operator defined on $W_{0}^{1, p}(\Omega)$ (see assumptions 2.2-2.4) of Section 2), and $\phi(x, t, u)$ and $H(x, t, \nabla u)$ are Carathéodory functions assumed to be continuous on u (see assumptions (2.5)-(2.9).

Under our assumptions, problem (1.1 does not admit, in general, a solution in the sense of distributions since we cannot expect to have the field $\phi(x, t, u)$ in $\left(L_{\mathrm{loc}}^{1}\left(Q_{T}\right)\right)^{N}$ and $H(x, t, \nabla u)$ in $L_{\mathrm{loc}}^{1}\left(Q_{T}\right)$. For this reason we consider the framework of renormalized solutions (see Definition 3.1).

The notion of renormalized solution was introduced in [9], and has been developed for elliptic problems with L^{1} data in [6], [12].

The existence of renormalized solution for (1.1) has been proved by R. Di Nardo [7] for $b(u)=u$ using the symmetrization method, by Y. Akdim et al. [2] in the case where $a(x, t, s, \xi)$ is independent of s and $\phi=0$, by D. Blanchard et al. [4] for $a(x, t, s, \xi)$ only assumed to be non-strictly monotone, and ϕ depending only on s, and by A. Aberqi et al. [1] in the case where $H=0$.

It is our purpose to generalize the result of [2], 7], [1] and prove the existence of a renormalized solution of (1.1).

2. Technical lemma and assumptions on data

2.1. Technical lemma. Throughout, T_{k} denotes the truncation function at height $k \geq 0$:

$$
T_{k}(r)=\max (-k, \min (k, r))
$$

Lemma 2.1 (see [7]). Assume that Ω is an open subset of \mathbb{R}^{N} of finite measure and $1<p<\infty$. Let u be a measurable function satisfying $T_{k}(u) \in$ $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \cap L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$ for every k and such that

$$
\sup _{t \in(0, T)} \int_{\Omega}\left|\nabla T_{k}(u)\right|^{2}+\int_{Q_{T}}\left|\nabla T_{k}(u)\right|^{p} \leq M k+C, \quad \forall k>0
$$

where M and C are positive constants. Then

$$
|u|^{\frac{N(p-1)+p}{N+p}} \in L^{\frac{N+p}{N}, \infty}\left(Q_{T}\right) \quad \text { and } \quad|\nabla u|^{\frac{N(p-1)+p}{N+2}} \in L^{\frac{N+2}{N+1}, \infty}\left(Q_{T}\right)
$$

2.2. Assumptions. Throughout this paper, we assume that the following assumptions hold true:

Assumptions (H)

$$
\begin{equation*}
b: \mathbb{R} \rightarrow \mathbb{R} \text { is strictly increasing, } C^{1}, b^{\prime}>\lambda>0, b(0)=0 \tag{2.1}
\end{equation*}
$$

$$
\begin{gather*}
|a(x, t, s, \xi)| \leq \nu\left[h(x, t)+|\xi|^{p-1}\right] \quad \text { with } \nu>0 \text { and } h(\cdot, \cdot) \in L^{p^{\prime}}\left(Q_{T}\right) \tag{2.2}\\
a(x, t, s, \xi) \xi \geq \alpha|\xi|^{p} \quad \text { with } \alpha>0 \tag{2.3}\\
(a(x, t, s, \xi)-a(x, t, s, \eta))(\xi-\eta)>0 \quad \text { if } \xi \neq \eta \tag{2.4}
\end{gather*}
$$

$$
\begin{gather*}
|\phi(x, t, s)| \leq c(x, t)|s|^{\gamma} \tag{2.5}\\
c(\cdot, \cdot) \in\left(L^{\tau}\left(Q_{T}\right)\right)^{N}, \quad \tau=\frac{N+p}{p-1} \tag{2.6}\\
\gamma=\frac{N+2}{N+p}(p-1) \tag{2.7}\\
|H(x, t, \xi)| \leq m(x, t)|\xi|^{\beta} \tag{2.8}\\
m(\cdot, \cdot) \in L^{N+2,1}\left(Q_{T}\right), \quad \beta=\frac{N(p-1)+p}{N+2} \tag{2.9}
\end{gather*}
$$

for almost every $(x, t) \in Q_{T}$, for every $s \in \mathbb{R}$ and every $\xi, \eta \in \mathbb{R}^{N}$. Moreover

$$
\begin{gather*}
f \in L^{1}\left(Q_{T}\right) \tag{2.10}\\
u_{0} \in L^{1}(\Omega), \quad b\left(u_{0}\right) \in L^{1}(\Omega) \tag{2.11}
\end{gather*}
$$

3. Existence results for noncoercive operators

Definition 3.1. A measurable function u is a renormalized solution to problem (1.1) if

$$
\begin{align*}
& b(u) \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right), \tag{3.1}\\
& T_{k}(u) \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \quad \text { for any } k>0 \tag{3.2}\\
& \lim _{n \rightarrow \infty} \int_{\{n \leq|u| \leq n+1\}} a(x, t, u, \nabla u) \nabla u d x d t=0 \tag{3.3}
\end{align*}
$$

and if for every function S in $W^{2, \infty}(\mathbb{R})$ which is piecewise C^{1} and such that S^{\prime} has a compact support,

$$
\begin{align*}
& \frac{\partial B_{S}(u)}{\partial t}-\operatorname{div}\left(a(x, t, u, \nabla u) S^{\prime}(u)\right)+S^{\prime \prime}(u) a(x, t, u, \nabla u) \nabla u \tag{3.4}\\
& +\operatorname{div}\left(\phi(x, t, u) S^{\prime}(u)\right)-S^{\prime \prime}(u) \phi(x, t, u) \nabla u \\
& \quad+H(x, t, \nabla u) S^{\prime}(u)=f S^{\prime}(u) \quad \text { in } \mathcal{D}^{\prime}\left(Q_{T}\right)
\end{align*}
$$

and

$$
\begin{equation*}
B_{S}(u)(t=0)=B_{S}\left(u_{0}\right) \quad \text { in } \Omega \tag{3.5}
\end{equation*}
$$

where $B_{S}(z)=\int_{0}^{z} b^{\prime}(s) S^{\prime}(s) d s$.
REMARK 3.2. We notice that equation (3.4) can be formally obtained through pointwise multiplication of (1.1) by $S^{\prime}(u)$ and all terms have a meaning in $L^{1}(Q)+L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)$. Moreover $\partial B_{S}(u) / \partial t$ belongs to $L^{1}(Q)+L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)$ and $B_{S}(u) \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \cap L^{\infty}(Q)$. It follows that $B_{S}(u)$ belongs to $C^{0}\left([0, T] ; L^{1}(\Omega)\right)$ so the initial condition (3.5) makes sense.

3.1. Existence results

Main Theorem 3.3. Under Assumptions (H) there exists a renormalized solution to problem (1.1).

Proof. Step 1. Approximate problem. For each $\epsilon>0$, we consider the approximate problem

$$
\left\{\begin{array}{l}
\frac{\partial b_{\epsilon}\left(u_{\epsilon}\right)}{\partial t}-\operatorname{div}\left(a_{\epsilon}\left(x, t, u_{\epsilon}, \nabla u_{\epsilon}\right)\right) \tag{3.6}\\
\quad \quad+\operatorname{div}\left(\phi_{\epsilon}\left(x, t, u_{\epsilon}\right)\right)+H_{\epsilon}\left(x, t, \nabla u_{\epsilon}\right)=f_{\epsilon} \quad \text { in } Q_{T} \\
\quad \begin{array}{l}
u_{\epsilon}(x, t)=0 \quad \text { on } \partial \Omega \times(0, T) \\
b_{\epsilon}\left(u_{\epsilon}(x, 0)\right)=b_{\epsilon}\left(u_{0 \epsilon}(x)\right) \quad \text { in } \Omega
\end{array} .
\end{array}\right.
$$

where

$$
\begin{align*}
& b_{\epsilon}(r)=T_{1 / \epsilon}(b(r))+\epsilon r \quad \forall r \in \mathbb{R}, \tag{3.7}\\
& a_{\epsilon}(x, t, s, \xi)=a\left(x, t, T_{1 / \epsilon}(s), \xi\right) \quad \text { a.e. in } Q, \forall s \in \mathbb{R}, \forall \xi \in \mathbb{R}^{N}, \tag{3.8}\\
& \phi_{\epsilon}(x, t, r)=\phi\left(x, t, T_{1 / \epsilon}(r)\right) \quad \text { a.e. }(x, t) \in Q_{T}, \forall r \in \mathbb{R} \tag{3.9}\\
& H_{\epsilon}(x, t, \xi)=T_{1 / \epsilon}((x, t, \xi)) \quad \text { a.e. }(x, t) \in Q_{T}, \forall \xi \in \mathbb{R}^{N} \tag{3.10}\\
& f_{\epsilon} \in L^{p^{\prime}}\left(Q_{T}\right), \quad f_{\epsilon} \rightarrow f \text { strongly in } L^{1}\left(Q_{T}\right) \tag{3.11}\\
& u_{0 \epsilon} \in \mathcal{D}(\Omega), \quad b_{\epsilon}\left(u_{0 \epsilon}\right) \rightarrow b\left(u_{0}\right) \text { strongly in } L^{1}(\Omega) \tag{3.12}
\end{align*}
$$

Then proving existence of a weak solution $u_{\epsilon} \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$ is an easy task (see [11]).

Step 2. A priori estimates for solutions and their gradients. Let $\tau_{1} \in$ $(0, T)$ and fix t in $\left(0, \tau_{1}\right)$. Using $T_{k}\left(u_{\epsilon}\right) \chi_{(0, t)}$ as a test function in (3.6), we integrate between $\left(0, \tau_{1}\right)$, and by the condition (2.5) we have

$$
\begin{align*}
& \int_{\Omega} B_{k}^{\epsilon}\left(u_{\epsilon}(t)\right) d x+\int_{Q_{t}} a_{\epsilon}\left(x, t, u_{\epsilon}, \nabla u_{\epsilon}\right) \nabla T_{k}\left(u_{\epsilon}\right) d x d s \tag{3.13}\\
& \leq \int_{Q_{t}} c(x, t)\left|u_{\epsilon}\right|^{\gamma}\left|\nabla T_{k}\left(u_{\epsilon}\right)\right| d x d s+k \int_{Q_{t}} m(x, t)\left|\nabla u_{\epsilon}\right|^{\beta} d x d s \\
& \\
& +\int_{Q_{t}} f_{\epsilon} T_{k}\left(u_{\epsilon}\right) d x d s+\int_{\Omega} B_{k}^{\epsilon}\left(u_{0 \epsilon}\right) d x
\end{align*}
$$

where $B_{k}^{\epsilon}(r)=\int_{0}^{r} T_{k}(s) b_{\epsilon}^{\prime}(s) d s$. Due to the definition of B_{k}^{ϵ} we have

$$
\begin{equation*}
0 \leq \int_{\Omega} B_{k}^{\epsilon}\left(u_{0 \epsilon}\right) d x \leq k \int_{\Omega}\left|b_{\epsilon}\left(u_{0 \epsilon}\right)\right| d x \leq k\left\|b\left(u_{0}\right)\right\|_{L^{1}(\Omega)} \quad \forall k>0 \tag{3.14}
\end{equation*}
$$

Using (3.13) and (2.3) we obtain

$$
\begin{align*}
& \int_{\Omega} B_{k}^{\epsilon}\left(u_{\epsilon}(t)\right) d x+\alpha \int_{Q_{t}}\left|\nabla T_{k}\left(u_{\epsilon}\right)\right|^{p} d x d s \tag{3.15}\\
& \leq \leq \int_{Q_{t}} c(x, t)\left|u_{\epsilon}\right|^{\gamma}\left|\nabla T_{k}\left(u_{\epsilon}\right)\right| d s d x+k \int_{Q_{t}} m(x, t)\left|\nabla u_{\epsilon}\right|^{\beta} d x d s \\
& \\
& \quad+k\left(\left\|b\left(u_{0}\right)\right\|_{L^{1}(\Omega)}+\left\|f_{\epsilon}\right\|_{L^{1}(Q)}\right)
\end{align*}
$$

We deduce from $(3.13)-(3.15)$ that

$$
\begin{align*}
& \frac{\lambda}{2} \int_{\Omega}\left|T_{k}\left(u_{\epsilon}\right)\right|^{2} d x+\alpha \int_{Q_{t}}\left|\nabla T_{k}\left(u_{\epsilon}\right)\right|^{p} d x d s \tag{3.16}\\
& \quad \leq M_{1} k+k \int_{Q_{t}} m(x, t)\left|\nabla u_{\epsilon}\right|^{\beta} d x d s+\int_{Q_{t}} c(x, t)\left|u_{\epsilon}\right|^{\gamma}\left|\nabla T_{k}\left(u_{\epsilon}\right)\right| d x d s
\end{align*}
$$

for $t \in\left(0, \tau_{1}\right)$, where $M_{1}=\sup \left\|f_{\epsilon}\right\|_{L^{1}(Q)}+\left\|b\left(u_{0}\right)\right\|_{L^{1}(\Omega)}$.

- Estimate of $\int_{Q_{t}} c(x, t)\left|u_{\epsilon}\right|^{\gamma}\left|\nabla T_{k}\left(u_{\epsilon}\right)\right| d x d s$. By the Gagliardo-Nirenberg and Young inequalities we have

$$
\begin{align*}
\leq & C \frac{\gamma}{N+2}\|c(\cdot, \cdot)\|_{L^{\tau}\left(Q_{\tau_{1}}\right)} \sup _{t \in\left(0, \tau_{1}\right)} \int_{\Omega}\left|T_{k}\left(u_{\epsilon}\right)\right|^{2} d x \tag{3.17}\\
& +C \frac{N+2-\gamma}{N+2}\|c(\cdot, \cdot)\|_{L^{\tau}\left(Q_{\tau_{1}}\right)}\left(\int_{Q_{\tau_{1}}}\left|\nabla T_{k}\left(u_{\epsilon}\right)\right|^{p} d x d s\right)^{\left(\frac{1}{p}+\frac{N \gamma}{(N+2) p}\right) \frac{N+2}{N+2-\gamma}} .
\end{align*}
$$

- Estimate of $\int_{Q_{t}} m(x, t)\left|\nabla u_{\epsilon}\right|^{\beta} d x d s$. By the generalized Hölder inequality we have

$$
\int_{Q_{t}} m(x, t)\left|\nabla u_{\epsilon}\right|^{\beta} d x d s \leq\|m\|_{L^{N+2,1}\left(Q_{t}\right)}\left\|\nabla u_{\epsilon}\right\|_{L^{N+2}\left(Q_{t}\right)}^{\beta} .
$$

Since $\gamma=\frac{N+2}{N+p}(p-1)$ and $\beta=\frac{N(p-1)+p}{N+2}$, and by using 3.16 and 3.17 , we obtain

$$
\begin{aligned}
& \frac{\lambda}{2} \int_{\Omega}\left|T_{k}\left(u_{\epsilon}\right)\right|^{2} d x+\alpha \int_{Q_{t}}\left|\nabla T_{k}\left(u_{\epsilon}\right)\right|^{p} d x d s \\
& \leq \\
& \quad M_{1} k+C \frac{\gamma}{N+2}\|c(\cdot, \cdot)\|_{L^{\tau}\left(Q_{\tau_{1}}\right)} \sup _{t \in\left(0, \tau_{1}\right)} \int_{\Omega}\left|T_{k}\left(u_{\epsilon}\right)\right|^{2} d x \\
& \\
& \quad+C \frac{N+2-\gamma}{N+2}\|c(\cdot, \cdot)\|_{L^{\tau}\left(Q_{\tau_{1}}\right)} \int_{Q_{\tau_{1}}}\left|\nabla T_{k}\left(u_{\epsilon}\right)\right|^{p} d x d s \\
& \\
& \quad+\|m\|_{L^{N+2,1}\left(Q_{\tau_{1}}\right)}\left\|\nabla u_{\epsilon}\right\|_{L^{\frac{N+2}{N+1}, \infty}\left(Q_{\tau_{1}}\right)}^{\beta}
\end{aligned}
$$

If τ_{1} satisfies

$$
\begin{align*}
\frac{\lambda}{2}-C \frac{\gamma}{N+2}\|c(\cdot, \cdot)\|_{L^{\tau}\left(Q_{\tau_{1}}\right)} & >0 \tag{3.18}\\
\alpha-C \frac{N+2-\gamma}{N+2}\|c(\cdot, \cdot)\|_{L^{\tau}\left(Q_{\tau_{1}}\right)} & >0 \tag{3.19}
\end{align*}
$$

then we have

$$
\begin{aligned}
C\left(\frac{\lambda}{2} \sup _{t \in\left(0, \tau_{1}\right)} \int_{\Omega}\left|T_{k}\left(u_{\epsilon}\right)\right|^{2} d x\right. & \left.+\int_{Q_{t}}\left|\nabla T_{k}\left(u_{\epsilon}\right)\right|^{p} d x d s\right) \\
& \leq M_{1} k+\|m\|_{L^{N+2,1}\left(Q_{\tau_{1}}\right)}\left\|\nabla u_{\epsilon}\right\|_{L^{\frac{N+2}{N+1}, \infty}\left(Q_{\tau_{1}}\right)}^{\beta}
\end{aligned}
$$

Using [8, Lemma A.1] we have

$$
\begin{aligned}
\left\|\nabla u_{\epsilon}\right\|_{L^{\frac{N+2}{N+1}, \infty}\left(Q_{\tau_{1}}\right)}^{\beta} & =\left\|\left|\nabla u_{\epsilon}\right|^{p-1}\right\|_{L^{\frac{N+2}{N+1}, \infty}\left(Q_{\tau_{1}}\right)}^{\frac{\beta}{p-1}} \\
& \leq C\left(M_{1}+\|m\|_{L^{N+2,1}\left(Q_{\tau_{1}}\right)}\left\|\nabla u_{\epsilon}\right\|_{L^{\frac{N+2}{N+1}, \infty}\left(Q_{\tau_{1}}\right)}^{\beta}\right)
\end{aligned}
$$

then

$$
\left(1-C\|m\|_{L^{N+2,1}\left(Q_{\tau_{1}}\right)}\right)\left\|\nabla u_{\epsilon}\right\|_{L^{N+2} N+1}^{\beta}\left(Q_{\tau_{1}}\right)<C M_{1} .
$$

If we choose τ_{1} such that 3.18 and 3.19 hold and $1-C\|m\|_{L^{N+2,1}\left(Q_{\tau_{1}}\right)}>0$, this leads to

$$
\left\|\nabla u_{\epsilon}\right\|_{L^{N+2}, \infty}^{\beta}{ }_{\left(Q_{\left.\tau_{1}\right)}\right)} \leq C_{1}
$$

and it follows that

$$
\sup _{t \in(0, T)} \int_{\Omega}\left|\nabla T_{k}(u)\right|^{2}+\int_{Q_{T}}\left|\nabla T_{k}(u)\right|^{p} \leq M_{1} k+C_{1}, \quad \forall k>0
$$

Then, by Lemma 2.1, we find that $T_{k}\left(u_{\epsilon}\right)$ is bounded in $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$ and $m(x, t)\left|\nabla u_{\epsilon}\right|^{\beta}$ is bounded in $L^{1}\left(Q_{T}\right)$, independently of ϵ and for any $k \geq 0$, so there exists a subsequence still denoted by u_{ϵ} such that

$$
\begin{equation*}
T_{k}\left(u_{\epsilon}\right) \rightharpoonup \sigma_{k} \quad \text { in } L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \tag{3.20}
\end{equation*}
$$

Step 3. A.e. convergence of u_{ϵ} and $b_{\epsilon}\left(u_{\epsilon}\right)$. Proceeding as in [3], 4], [1], we prove that for every nondecreasing function $g_{k} \in C^{2}(\mathbb{R})$ such that $g_{k}(s)=$ s for $|s| \leq k / 2$ and $g_{k}(s)=k$ for $|s| \geq k$,

$$
\begin{equation*}
\frac{\partial g_{k}\left(b_{\epsilon}\left(u_{\epsilon}\right)\right)}{\partial t} \text { is bounded in } L^{1}(Q)+L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right) \tag{3.21}
\end{equation*}
$$

Arguing again as in [5], estimates (3.20) and (3.21) imply that, for a subsequence, still indexed by ϵ,

$$
\begin{equation*}
u_{\epsilon} \rightarrow u \quad \text { a.e. in } Q_{T} \tag{3.22}
\end{equation*}
$$

where u is a measurable function defined on Q_{T}. Let us prove that $b(u)$ belongs to $L^{\infty}\left(0, T ; L^{1}(\Omega)\right)$. Taking $T_{k}\left(b_{\epsilon}\left(u_{\epsilon}\right)\right)$ as a test function in 3.6), by (3.9) we have

$$
\begin{align*}
& \int_{\Omega} B_{k}^{\epsilon}\left(u_{\epsilon}\right) d x+\int_{Q_{T}} a_{\epsilon}\left(x, t, u, \nabla u_{\epsilon}\right) \nabla T_{k}\left(b_{\epsilon}\left(u_{\epsilon}\right)\right) d x d t \tag{3.23}\\
& \leq \int_{Q_{T}}|m(x, t)|\left|\nabla T_{1 / \epsilon}\left(u_{\epsilon}\right)\right|^{\beta} \nabla T_{k}\left(b_{\epsilon}\left(u_{\epsilon}\right)\right) d x d t \\
&+\int_{Q_{T}}|c(x, t)|\left|T_{1 / \epsilon}\left(u_{\epsilon}\right)\right|^{\gamma}\left|\nabla T_{k}\left(b_{\epsilon}\left(u_{\epsilon}\right)\right)\right| d x d t \\
&+k\left(\left\|f_{\epsilon}\right\|_{L^{1}\left(Q_{T}\right)}+\left\|b\left(u_{0}\right)\right\|_{L^{1}(\Omega)}\right)
\end{align*}
$$

with $B_{k}(r)=\int_{0}^{b(r)} T_{k}(s) d s$. On the other hand, we have

$$
\begin{align*}
\int_{Q_{T}} a_{\epsilon} & \left(x, t, u_{\epsilon}, \nabla u_{\epsilon}\right) \nabla T_{k}\left(b_{\epsilon}\left(u_{\epsilon}\right)\right) d x d s \tag{3.24}\\
& =\int_{\left\{\left|b_{\epsilon}\left(u_{\epsilon}\right)\right| \leq k\right\}} a_{\epsilon}\left(x, t, u_{\epsilon}, \nabla u_{\epsilon}\right) \nabla T_{k}^{\prime}\left(b_{\epsilon}\left(u_{\epsilon}\right)\right) b_{\epsilon}^{\prime}\left(u_{\epsilon}\right) \nabla u_{\epsilon} d x d s \geq 0 .
\end{align*}
$$

Since $b^{\prime}(s) \geq \lambda$, for $0<\epsilon<1 / k$ and for almost $t \in(0, T)$ we have

$$
\begin{align*}
& \int_{Q_{T}}|c(x, t)|\left|T_{1 / \epsilon}\left(u_{\epsilon}\right)\right|^{\gamma}\left|\nabla T_{k}\left(b_{\epsilon}\left(u_{\epsilon}\right)\right)\right| d x d t \tag{3.25}\\
& \quad \leq \max _{|s| \leq k / \lambda}\left(b^{\prime}(s)\right)\|c(\cdot, \cdot)\|_{L^{\tau}\left(Q_{T}\right)} \\
& \quad \times\left(\sup _{t \in(0, T)}\left(\int_{\Omega}\left|T_{k / \lambda}\left(u_{\epsilon}\right)\right|^{2} d x\right)^{\frac{p-1}{N+p}}\left\|\nabla T_{k / \lambda}\left(u_{\epsilon}\right)\right\|_{L^{p}\left(Q_{T}\right)}^{\frac{p(N+1)}{N+p}}\right) \leq c_{k}
\end{align*}
$$

and

$$
\begin{align*}
& \int_{Q_{T}}|m(x, t)|\left|\nabla T_{1 / \epsilon}\left(u_{\epsilon}\right)\right|^{\beta}\left|\nabla T_{k}\left(b_{\epsilon}\left(u_{\epsilon}\right)\right)\right| d x d t \tag{3.26}\\
& \leq \max _{|s| \leq k / \lambda}\left(b^{\prime}(s)\right)\|m(\cdot, \cdot)\|_{L^{N+2,1}\left(Q_{T}\right)}\left\|\nabla T_{k / \lambda}\left(b_{\epsilon}\left(u_{\epsilon}\right)\right)\right\|_{L^{\frac{N+2}{N+1}, \infty}\left(Q_{T}\right)} \leq c_{k} .
\end{align*}
$$

Using (3.24), (3.25) and (3.26) in (3.23) we have

$$
\int_{\Omega} B_{k}^{\epsilon}\left(u_{\epsilon}(t)\right) d x \leq c_{k}+k\left(\left\|f_{\epsilon}\right\|_{L^{1}\left(Q_{T}\right)}+\left\|b\left(u_{0}\right)\right\|_{L^{1}(\Omega)}\right)
$$

Passing to liminf as $\epsilon \rightarrow 0$, we obtain

$$
\left.\int_{\Omega} B_{k}(u(t)) d x \leq c_{k}+k\left(\|f\|_{L^{1}\left(Q_{T}\right)}\right)+\left\|b\left(u_{0}\right)\right\|_{L^{1}(\Omega)}\right) \quad \text { for a.e. } t \in(0, T)
$$

Due to the definition of B_{k}, we have

$$
\begin{aligned}
k \int_{\Omega}|b(u(x, t))| d x & \leq \int_{\Omega} B_{k}(u(t)) d x+\frac{3}{2} k^{2} \operatorname{meas}(\Omega) \\
& \leq k\left(\|f\|_{L^{1}(\Omega)}+\left\|b\left(u_{0}\right)\right\|_{L^{1}(\Omega)}\right)+c_{k}+\frac{3}{2} k^{2} \operatorname{meas}(\Omega)
\end{aligned}
$$

We conclude that $b(u) \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right)$.
Lemma 3.4 (see [1]). A subsequence of u_{ϵ} defined in Step 1 satisfies

$$
\lim _{n \rightarrow \infty} \limsup _{\epsilon \rightarrow 0} \int_{\left\{n \leq\left|u_{\epsilon}\right| \leq n+1\right\}} a\left(x, t, u_{\epsilon}, \nabla u_{\epsilon}\right) \nabla u_{\epsilon} d x d t=0
$$

STEP 4. In this step we introduce a time regularization of the $T_{k}(u)$ for $k>0$ in order to apply the monotonicity method (see [10]). Let v_{0}^{μ} be a sequence of functions in $L^{\infty}(\Omega) \cap W_{0}^{1, p}(\Omega)$ such that $\left\|v_{0}^{\mu}\right\|_{L^{\infty}(\Omega)} \leq k$ for all $\mu>0$ and v_{0}^{μ} converges to $T_{k}\left(u_{0}\right)$ a.e. in Ω and $\frac{1}{\mu}\left\|v_{0}^{\mu}\right\|_{L^{p}(\Omega)}$ converges to 0 . For $k \geq 0$ and $\mu>0$, let us consider the unique solution $\left(T_{k}(u)\right)_{\mu} \in$ $L^{\infty}(Q) \cap L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$ of the monotone problem

$$
\begin{gathered}
\frac{\partial\left(T_{k}(u)\right)_{\mu}}{\partial t}+\mu\left(\left(T_{k}(u)\right)_{\mu}-T_{k}(u)\right)=0 \quad \text { in } \mathcal{D}^{\prime}(\Omega) \\
\left(T_{k}(u)\right)_{\mu}(t=0)=\nu_{0}^{\mu} \quad \text { in } \Omega
\end{gathered}
$$

LEMMA 3.5 (see [5]). Let $k \geq 0$ be fixed. Let S be an increasing $C^{\infty}(\mathbb{R})$ function such that $S(r)=r$ for $|r| \leq k$, and $\operatorname{supp} S^{\prime}$ is compact. Then

$$
\liminf _{\mu \rightarrow \infty} \lim _{\epsilon \rightarrow 0} \int_{0}^{T} \int_{0}^{t}\left\langle\frac{\partial b_{\epsilon}\left(u_{\epsilon}\right)}{\partial t}, S^{\prime}\left(u_{\epsilon}\right)\left(T_{k}\left(u_{\epsilon}\right)-\left(T_{k}(u)\right)_{\mu}\right)\right\rangle d s d t \geq 0
$$

where $\langle\cdot, \cdot\rangle$ denotes the duality pairing between $L^{1}(\Omega)+W^{-1, p^{\prime}}(\Omega)$ and $L^{\infty}(\Omega) \cap W^{1, p}(\Omega)$.

STEP 5. We prove the following lemma which is the critical point in the development of the monotonicity method.

Lemma 3.6. A subsequence of u_{ϵ} satisfies, for any $k \geq 0$,

$$
\begin{aligned}
\limsup _{\epsilon \rightarrow 0} \int_{0}^{T} \int_{0}^{t} \int_{\Omega} a\left(x, t, u_{\epsilon}, \nabla T_{k}\left(u_{\epsilon}\right)\right) \nabla T_{k}\left(u_{\epsilon}\right) d x & d s d t \\
& \leq \int_{0}^{T} \int_{0}^{t} \int_{\Omega} \sigma_{k} \nabla T_{k}(u) d x d s d t
\end{aligned}
$$

Proof. Let S_{n} be a sequence of increasing C^{∞}-functions such that $S_{n}(r)$ $=r$ for $|r| \leq n, \operatorname{supp} S_{n}^{\prime} \subset[-(n+1), n+1]$ and $\left\|S_{n}^{\prime \prime}\right\|_{L^{\infty}(\mathbb{R})} \leq 1$ for any $n \geq 1$. We use the sequence $\left(T_{k}(u)\right)_{\mu}$ of approximations of $T_{k}(u)$, and plug the test function $S_{n}^{\prime}\left(u_{\epsilon}\right)\left(T_{k}\left(u_{\epsilon}\right)-\left(T_{k}(u)\right)_{\mu}\right)$ into (3.4) for $n>0$ and $\mu>0$. For fixed $k \geq 0$ let $W_{\mu}^{\epsilon}=T_{k}\left(u_{\epsilon}\right)-\left(T_{k}(u)\right)_{\mu}$. Upon integration over $(0, t)$ and then over $(0, T)$ we obtain

$$
\begin{align*}
\int_{0}^{T} \int_{0}^{t}\left\langle\frac{\partial b_{\epsilon}\left(u_{\epsilon}\right)}{\partial t}\right. & \left., S_{n}^{\prime}\left(u_{\epsilon}\right) W_{\mu}^{\epsilon}\right\rangle d s d t \tag{3.27}\\
& +\int_{0}^{T} \int_{0}^{T} \int_{\Omega} a_{\epsilon}\left(x, t, u_{\epsilon}, \nabla u_{\epsilon}\right) S_{n}^{\prime}\left(u_{\epsilon}\right) \nabla W_{\mu}^{\epsilon} d x d s d t \\
& +\int_{0}^{T} \int_{0}^{t} \int_{\Omega} a_{\epsilon}\left(x, t, u_{\epsilon}, \nabla u_{\epsilon}\right) S_{n}^{\prime \prime}\left(u_{\epsilon}\right) \nabla u_{\epsilon} \nabla W_{\mu}^{\epsilon} d x d s d t \\
& -\int_{0}^{T} \int_{0}^{t} \int_{\Omega} \phi_{\epsilon}\left(x, t, u_{\epsilon}\right) S_{n}^{\prime}\left(u_{\epsilon}\right) \nabla W_{\mu}^{\epsilon} d x d s d t \\
& \quad-\int_{0}^{T} \int_{0} \int_{\Omega} S_{n}^{\prime \prime}\left(u_{\epsilon}\right) \phi_{\epsilon}\left(x, t, u_{\epsilon}\right) \nabla u_{\epsilon} \nabla W_{\mu}^{\epsilon} d x d s d t \\
& +\int_{0}^{T} \int_{0}^{t} \int_{\Omega} H_{\epsilon}\left(x, t, \nabla u_{\epsilon}\right) S_{n}^{\prime}\left(u_{\epsilon}\right) W_{\mu}^{\epsilon} d x d s d t \\
= & \int_{0}^{T} \int_{0}^{t} \int_{\Omega} f_{\epsilon} S_{n}^{\prime}\left(u_{\epsilon}\right) W_{\mu}^{\epsilon} d x d s d t
\end{align*}
$$

Now we pass to the limit in (3.27) as $\epsilon \rightarrow 0, \mu \rightarrow \infty$ and then $n \rightarrow \infty$ for k real fixed. In order to perform this task we prove below the following results for any fixed $k \geq 0$:

$$
\begin{equation*}
\liminf _{\mu \rightarrow \infty} \lim _{\epsilon \rightarrow 0} \int_{0}^{T} \int_{0}^{t}\left\langle\frac{\partial b_{\epsilon}\left(u_{\epsilon}\right)}{\partial t}, W_{\mu}^{\epsilon}\right\rangle d s d t \geq 0 \quad \text { for any } n \geq k \tag{3.28}
\end{equation*}
$$

$$
\lim _{\mu \rightarrow \infty} \lim _{\epsilon \rightarrow 0} \int_{0}^{T} \int_{0}^{t} \int_{\Omega} \phi_{\epsilon}\left(x, t, u_{\epsilon}\right) S_{n}^{\prime}\left(u_{\epsilon}\right) \nabla W_{\mu}^{\epsilon} d x d s d t=0 \quad \text { for any } n \geq 1
$$

$$
\begin{equation*}
\lim _{\mu \rightarrow \infty} \lim _{\epsilon \rightarrow 0} \int_{0}^{T} \int_{0}^{t} \int_{\Omega} S_{n}^{\prime \prime}\left(u_{\epsilon}\right) \phi_{\epsilon}\left(x, t, u_{\epsilon}\right) \nabla u_{\epsilon} \nabla W_{\mu}^{\epsilon} d x d s d t=0 \quad \text { for any } n \geq 1 \tag{3.30}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \limsup _{\mu \rightarrow \infty} \limsup _{\epsilon \rightarrow 0} \int_{0}^{T} \int_{0}^{t} \int_{\Omega} a_{\epsilon}\left(x, t, u_{\epsilon}, \nabla u_{\epsilon}\right) S_{n}^{\prime \prime}\left(u_{\epsilon}\right) \nabla u_{\epsilon} \nabla W_{\mu}^{\epsilon} d x d s d t=0 \tag{3.31}
\end{equation*}
$$

$$
\begin{gather*}
\lim _{\mu \rightarrow \infty} \lim _{\epsilon \rightarrow 0} \int_{0}^{T} \int_{0}^{t} \int_{\Omega} H_{\epsilon}\left(x, t, \nabla u_{\epsilon}\right) S_{n}^{\prime}\left(u_{\epsilon}\right) W_{\mu}^{\epsilon} d x d s d t=0 \tag{3.32}\\
\lim _{\mu \rightarrow \infty} \lim _{\epsilon \rightarrow 0} \int_{0}^{T} \int_{0}^{t} \int_{\Omega} f_{\epsilon} S_{n}^{\prime}\left(u_{\epsilon}\right) W_{\mu}^{\epsilon} d x d s d t=0 \tag{3.33}
\end{gather*}
$$

We adopt the same proof of [1] for (3.28)-(3.31) and (3.33). It remains to prove 3.32 . For any fixed $n \geq 1$ and $0<\epsilon<1 /(n+1)$,

$$
H_{\epsilon}\left(x, t, \nabla u_{\epsilon}\right) S_{n}^{\prime}\left(u_{\epsilon}\right) W_{\mu}^{\epsilon}=H_{\epsilon}\left(x, t, \nabla T_{n+1}\left(u_{\epsilon}\right)\right) S_{n}^{\prime}\left(u_{\epsilon}\right) W_{\mu}^{\epsilon} \quad \text { a.e. in } Q_{T}
$$

It is possible to pass to the limit for $\epsilon \rightarrow 0$ since from $\left\|W_{\mu}^{\epsilon}\right\|_{L^{\infty}\left(Q_{T}\right)} \leq 2 k$ for any $\epsilon, \mu>0$, and $W_{\mu}^{\epsilon} \rightharpoonup T_{k}(u)-\left(T_{k}(u)\right)_{\mu}$ a.e. in Q_{T} and weakly-* in $L^{\infty}\left(Q_{T}\right)$, when $\epsilon \rightarrow 0$ we have

$$
H_{\epsilon}\left(x, t, \nabla T_{n+1}\left(u_{\epsilon}\right)\right) S_{n}^{\prime}\left(u_{\epsilon}\right) W_{\mu}^{\epsilon} \rightarrow H\left(x, t, \nabla T_{n+1}(u)\right) S_{n}^{\prime}(u) W_{\mu} \quad \text { a.e. in } Q_{T}
$$

Since

$$
\left|H\left(x, t, \nabla T_{n+1}(u)\right) S_{n}^{\prime}(u) W_{\mu}\right| \leq 2 k|m(x, t)|(n+1)^{\beta} \quad \text { a.e. in } Q_{T}
$$

and $\left(T_{k}(u)\right)_{\mu}$ converges to 0 in $L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$, we obtain 3.32.
STEP 6. In this step we prove that the weak limit σ_{k} of $a\left(x, t, T_{k}\left(u_{\epsilon}\right)\right.$, $\nabla T_{k}\left(u_{\epsilon}\right)$) can be identified with $a\left(x, t, T_{k}(u), \nabla T_{k}(u)\right)$. To do so, we recall the following lemmas proved in [1].

Lemma 3.7. A subsequence of u_{ϵ} defined in Step 1 satisfies, for any $k \geq 0$,

$$
\begin{align*}
\lim _{\epsilon \rightarrow 0} \int_{0}^{T} \int_{0}^{t} \int_{\Omega}\left(a\left(x, t, T_{k}\left(u_{\epsilon}\right), \nabla T_{k}\left(u_{\epsilon}\right)\right)-a(x,\right. & \left.\left.t, T_{k}\left(u_{\epsilon}\right), \nabla T_{k}(u)\right)\right) \tag{3.34}\\
& \times\left(\nabla T_{k}\left(u_{\epsilon}\right)-\nabla T_{k}(u)\right)=0
\end{align*}
$$

Lemma 3.8. For fixed $k \geq 0$, we have

$$
\begin{equation*}
\left.\sigma_{k}=a\left(x, t, T_{k}(u), \nabla T_{k}(u)\right)\right) \quad \text { a.e. in } Q_{T} \tag{3.35}
\end{equation*}
$$

and as $\epsilon \rightarrow 0$,

$$
\begin{equation*}
\left.a\left(x, t, T_{k}\left(u_{\epsilon}\right), \nabla T_{k}\left(u_{\epsilon}\right)\right) \nabla T_{k}\left(u_{\epsilon}\right) \rightharpoonup a\left(x, t, T_{k}(u), \nabla T_{k}(u)\right)\right) \nabla T_{k}(u) \tag{3.36}
\end{equation*}
$$

weakly in $L^{1}\left(Q_{T}\right)$.

Taking the limit as ϵ tends to 0 and using (3.36) shows that u satisfies (3.3). Our aim is to prove that it satisfies (3.4) and (3.5).

First we prove that u satisfies $\left(3.4\right.$. Let $S \in W^{2, \infty}(\mathbb{R})$ with $\operatorname{supp} S^{\prime} \subset$ $[-k, k]$ where $k>0$. Pointwise multiplication of the approximate equation (3.6) by $S^{\prime}\left(u_{\epsilon}\right)$ leads to

$$
\begin{array}{r}
\frac{\partial B_{S}^{\epsilon}\left(u_{\epsilon}\right)}{\partial t}-\operatorname{div}\left(a_{\epsilon}\left(x, t, u_{\epsilon}, \nabla u_{\epsilon}\right) S^{\prime}\left(u_{\epsilon}\right)\right)+S^{\prime \prime}\left(u_{\epsilon}\right) a\left(x, t, u_{\epsilon}, \nabla u_{\epsilon}\right) \nabla u_{\epsilon} \tag{3.37}\\
+\operatorname{div}\left(\phi_{\epsilon}\left(x, t, u_{\epsilon}\right) S^{\prime}\left(u_{\epsilon}\right)\right)-S^{\prime \prime}\left(u_{\epsilon}\right) \phi_{\epsilon}\left(x, t, u_{\epsilon}\right) \nabla u_{\epsilon}+H_{\epsilon}\left(x, t, \nabla u_{\epsilon}\right) S^{\prime}\left(u_{\epsilon}\right) \\
=f_{\epsilon} S^{\prime}\left(u_{\epsilon}\right) \quad \text { in } \mathcal{D}^{\prime}(\Omega)
\end{array}
$$

where

$$
B_{S}^{\epsilon}(r)=\int_{0}^{r} \frac{\partial b_{\epsilon}(s)}{\partial s} S^{\prime}(s) d s
$$

In what follows we let $\epsilon \rightarrow 0$ in each term of (3.37). Since u_{ϵ} converges to u a.e. in $Q_{T}, B_{S}^{\epsilon}\left(u_{\epsilon}\right)$ converges to $B_{S}(u)$ a.e. in Q_{T} and weakly-* in $L^{\infty}\left(Q_{T}\right)$. Then $\partial B_{S}^{\epsilon} / \partial t$ converges to $\partial B_{S} / \partial t$ in $\mathcal{D}^{\prime}\left(Q_{T}\right)$.We observe that the term $a_{\epsilon}\left(x, t, u_{\epsilon}, \nabla u_{\epsilon}\right) S^{\prime}\left(u_{\epsilon}\right)$ can be identified with $a\left(x, t, T_{k}\left(u_{\epsilon}\right), \nabla T_{k}\left(u_{\epsilon}\right)\right) S^{\prime}\left(u_{\epsilon}\right)$ for $\epsilon \leq 1 / k$, so using the pointwise convergence $u_{\epsilon} \rightarrow u$ in Q_{T}, and the weak convergence $T_{k}\left(u_{\epsilon}\right) \rightharpoonup T_{k}(u)$ in $L^{p}\left(0, T ; W_{0}^{p}(\Omega)\right)$, we get

$$
a_{\epsilon}\left(x, t, u_{\epsilon}, \nabla u_{\epsilon}\right) S^{\prime}\left(u_{\epsilon}\right) \rightharpoonup a\left(x, t, T_{k}(u), \nabla T_{k}(u)\right) S^{\prime}(u) \quad \text { in } L^{p^{\prime}}\left(Q_{T}\right)
$$

and

$$
\begin{aligned}
S^{\prime \prime}\left(u_{\epsilon}\right) a_{\epsilon}\left(x, t, u_{\epsilon},\right. & \left.\nabla u_{\epsilon}\right) \nabla u_{\epsilon} \\
& \rightharpoonup S^{\prime \prime}(u) a\left(x, t, T_{k}(u), \nabla T_{k}(u)\right) \nabla T_{k}(u) \quad \text { in } L^{1}\left(Q_{T}\right)
\end{aligned}
$$

Furthermore, since

$$
\phi_{\epsilon}\left(x, t, u_{\epsilon}\right) S^{\prime}\left(u_{\epsilon}\right)=\phi_{\epsilon}\left(x, t, T_{k}\left(u_{\epsilon}\right)\right) S^{\prime}\left(u_{\epsilon}\right) \quad \text { a.e. in } Q_{T}
$$

by (3.9) we obtain

$$
\left|\phi_{\epsilon}\left(x, t, T_{k}\left(u_{\epsilon}\right)\right) S^{\prime}\left(u_{\epsilon}\right)\right| \leq|c(x, t)| k^{\gamma}
$$

and it follows that

$$
\phi_{\epsilon}\left(x, t, T_{k}\left(u_{\epsilon}\right)\right) S^{\prime}\left(u_{\epsilon}\right) \rightarrow \phi\left(x, t, T_{k}(u)\right) S^{\prime}(u) \quad \text { strongly in } L^{p^{\prime}}\left(Q_{T}\right) .
$$

Similarly, since $H_{\epsilon}\left(x, t, \nabla u_{\epsilon}\right) S^{\prime}\left(u_{\epsilon}\right)=H_{\epsilon}\left(x, t, \nabla T_{k}\left(u_{\epsilon}\right)\right) S^{\prime}\left(u_{\epsilon}\right)$ a.e. in Q_{T}, by 3.10 we have $\left|H_{\epsilon}\left(x, t, \nabla T_{k}\left(u_{\epsilon}\right)\right) S^{\prime}\left(u_{\epsilon}\right)\right| \leq|m(x, t)| k^{\beta}$, and it follows that

$$
H_{\epsilon}\left(x, t, \nabla T_{k}\left(u_{\epsilon}\right)\right) S^{\prime}\left(u_{\epsilon}\right) \rightarrow H\left(x, t, \nabla T_{k}(u)\right) S^{\prime}(u) \quad \text { strongly in } L^{1}\left(Q_{T}\right)
$$

In a similar way,

$$
S^{\prime \prime}\left(u_{\epsilon}\right) \phi_{\epsilon}\left(x, t, u_{\epsilon}\right) \nabla u_{\epsilon}=S^{\prime \prime}\left(T_{k}\left(u_{\epsilon}\right)\right) \phi_{\epsilon}\left(x, t, T_{k}\left(u_{\epsilon}\right)\right) \nabla T_{k}\left(u_{\epsilon}\right) \quad \text { a.e. in } Q_{T}
$$

Using the weak convergence of $T_{k}\left(u_{\epsilon}\right)$ in $L^{p}\left(0, T ; W_{0}^{p}(\Omega)\right)$ it is possible to prove that $S^{\prime \prime}\left(u_{\epsilon}\right) \phi_{\epsilon}\left(x, t, u_{\epsilon}\right) \nabla u_{\epsilon} \rightarrow S^{\prime \prime}(u) \phi(x, t, u) \nabla u$ in $L^{1}\left(Q_{T}\right)$. Finally, by (3.11) we deduce that $f_{\epsilon} S^{\prime}\left(u_{\epsilon}\right)$ converges to $f S^{\prime}(u)$ in $L^{1}\left(Q_{T}\right)$.

It remains to prove that $B_{S}(u)$ satisfies the initial condition $B_{S}(t=0)$ $=B_{S}\left(u_{0}\right)$ in Ω. To this end, first note that S being bounded, $B_{S}^{\epsilon}\left(u_{\epsilon}\right)$ is bounded in $L^{\infty}(Q)$. Secondly the above consideration of the behavior of the terms of this equation shows that $\partial B_{S}^{\epsilon}\left(u_{\epsilon}\right) / \partial t$ is bounded in $L^{1}\left(Q_{T}\right)+$ $L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)$. As a consequence, an Aubin type lemma (see e.g. [13]) implies that $B_{S}^{\epsilon}\left(u_{\epsilon}\right)$ lies in a compact subset of $C^{0}\left([0, T] ; L^{1}(\Omega)\right)$. Finally, the smoothness of S implies that $B_{S}(t=0)=B_{S}\left(u_{0}\right)$ in Ω.

References

[1] A. Aberqi, J. Bennouna, M. Mekkour and H. Redwane, Renormalized solution for a nonlinear parabolic equation with lower order terms, Austral. J. Math. Anal. Appl. 10 (2013), no. 1, art. $15,15 \mathrm{pp}$.
[2] Y. Akdim, J. Bennouna and M. Mekkour, Solvability of degenerated parabolic equations without sign condition and three unbounded nonlinearities, Electron. J. Differetial Equations 2011, no. 3, 26 pp.
[3] D. Blanchard and F. Murat, Renormalised solutions of nonlinear parabolic problems with L^{1} data: existence and uniqueness, Proc. Roy. Soc. Edinburgh Sect. A Math. 127 (1997), 1137-1152.
[4] D. Blanchard, F. Murat and H. Redwane, Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems, J. Differential Equations 177 (2001), 331-374.
[5] D. Blanchard and H. Redwane, Renormalized solutions for a class of nonlinear evolution problems, J. Math. Pures Appl. 77 (1998), 117-151.
[6] L. Boccardo, D. Giachetti, J.-I. Diaz and F. Murat, Existence and regularity of renormalized solutions of some elliptic problems involving derivatives of nonlinear terms, J. Differential Equations 106 (1993), 215-237.
[7] R. Di Nardo, Nonlinear parabolic equations with a lower order term, preprint N. 60-2008, Dipartimento di Matematica e Applicazioni "R. Caccioppoli", Università degli Studi di Napoli "Federico II".
[8] R. Di Nardo, F. Feo and O. Guibé, Existence result for nonlinear parabolic equations with lower order terms, Anal. Appl. (Singap.) 9 (2011), 161-186.
[9] R. DiPerna and P.-L. Lions, Ordinary differential equations, Sobolev spaces and transport theory, Invent. Math. 98 (1989), 511-547.
[10] R. Landes, On the existence of weak solutions for quasilinear parabolic initialboundary problems, Proc. Roy. Soc. Edinburgh Sect. A 89, 1981, 217-237.
[11] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod and Gauthier-Villars, Paris, 1969.
[12] J.-M. Rakotoson, Resolution of the critical cases for the problems with L^{1} data, when right hand side is in $L^{1}(\Omega)$, Asymptotic Anal. 6 (1993), 285-293.
[13] J. Simon, Compact sets in the space $L^{p}(0, T, B)$, Ann. Mat. Pura Appl. 146 (1987), 65-96.

Faculty of Sciences Dhar El Mahraz
Sidi Mohamed Ben Abdellah University
P.O. Box 1796 Atlas

Fez, Morocco
E-mail: aberqi_ahmed@yahoo.fr
jbennouna@hotmail.com
hammoumi.mohamed09@gmail.com
Ahmed Youssfi
Deptment of Mathematics
Faculty of Sciences and Technology
Moulay Ismail University
P.O. Box 509-Boutalamine

52000 Errachidia, Morocco
E-mail: ahmed.youssfi@gmail.com

Laboratory LIMAO
Poly-disciplinary Faculty of Taza
Sidi Mohamed Ben Abdellah University
P.O. Box 1223

Taza, Morocco
E-mail: mekkour.mounir@yahoo.fr

