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ASYMPTOTIC STABILITY OF A LINEAR

BOLTZMANN-TYPE EQUATION

Abstract. We present a new necessary and sufficient condition for the
asymptotic stability of Markov operators acting on the space of signed mea-
sures. The proof is based on some special properties of the total variation
norm. Our method allows us to consider the Tjon–Wu equation in a linear
form. More precisely a new proof of the asymptotic stability of a stationary
solution of the Tjon–Wu equation is given.

1. Introduction. Some problems of mathematical physics can be writ-
ten as differential equations for functions with values in a space of mea-
sures. The vector space of signed measures does not have good analytical
properties. For example, this space with the Fortet–Mourier, Kantorovich–
Wesserstein or Zolotarev metric is not complete (see [R]). There are two
methods to overcome this problem. First, we may replace the original equa-
tions by the adjoint ones on the space of bounded continuous functions.
Secondly, we may restrict our equations to some complete convex subsets
of the vector space of measures. This approach seems to be quite natural
and it is related to the classical results concerning differential equations on
convex subsets of Banach spaces (see [C]). The convex sets method in study-
ing the Boltzmann equation was used in a series of papers (see for example
[G2, GL, L1, LT1, LT2]).

Our goal is to show the utility of some version of the invariance principle
established in [G2]. In particular, it can be used to prove a new necessary
and sufficient condition for the asymptotic stability of Markov semigroups
with respect to the total variation norm.
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Moreover, we discuss the problem of the asymptotic stability of solution
of the linear Boltzmann equation.

2. Markov operators. Let (X, ρ) be a Polish space, i.e., a separable,
complete metric space. We denote by B the σ-algebra of Borel subsets of X,
and by M the family of all finite, nonnegative Borel measures on X.

Let M1 denote the subset of those µ ∈ M such that µ(X) = 1. The
elements of M1 will be called probability measures. Further let

Msig = {µ1 − µ2 : µ1, µ2 ∈M}
be the space of finite signed measures. For arbitrary µ ∈Msig we denote by
µ+ and µ− the positive and negative parts of µ. Then we set

(2.1) µ+ − µ− = µ and µ+ + µ− = |µ|,
where |µ| is called the total variation of the measure µ.

In Msig we introduce the total variation norm of µ ∈Msig by

(2.2) ‖µ‖T = sup
{ n∑
i=1

|µ(Ai)| : n ∈ N, Ai ∈ B
}
,

where the supremum is taken over all finite partitions of X, i.e.

X =

n⋃
i=1

Ai and Ai ∩Aj = ∅ for i 6= j.

Corollary 2.1. For every µ ∈Msig we have

‖µ‖T = µ+(X) + µ−(X) = µ(X+)− µ(X−),

where X = X+ ∪X− is the Hahn decomposition of the measure µ.

Definition 2.2. An operator P :M→M is called a Markov operator
if it satisfies the following conditions:

(i) P is positively linear:

P (λ1µ1 + λ2µ2) = λ1Pµ1 + λ2µ2

for λ1, λ2 ≥ 0 and µ1, µ2 ∈M,
(ii) P preserves the measure of the space:

(2.3) Pµ(X) = µ(X) for µ ∈M.

Remark 2.3. Every Markov operator P can be uniquely extended as a
linear operator onto the space of signed measures. Namely, for µ ∈Msig we
define

Pµ = Pµ1 − Pµ2, where µ = µ1 − µ2, µ1, µ2 ∈M.

It is easy to verify that this definition does not depend on the choice of
µ1, µ2.
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Definition 2.4. A function d :Msig ×Msig → R+ is called a distance
if d is continuous and if

(2.4) d(x, y) = 0 ⇔ x = y, for x, y ∈ X.

A Markov operator P :Msig →Msig is called contracting or nonexpan-

sive in a class M̃ ⊂Msig (with respect to d) if

(2.5) d(Pµ1, Pµ2) ≤ d(µ1, µ2) for µ1, µ2 ∈ M̃.

A Markov operator P : Msig → Msig is called strongly contracting in

M̃ ⊂Msig (with respect to d) if

(2.6) d(Pµ1, Pµ2) < d(µ1, µ2) for µ1, µ2 ∈ M̃.

3. A stability criterion. A new proof of the asymptotic stability of
Markov semigroup will be given. The proof is based on some special prop-
erty of the total variation norm which we call the maximum principle. The
maximum principle method in studying the asymptotic stability of Markov
semigroup with respect to the Kantorovich–Wasserstein metric and Fortet–
Mourier metric was used in [LT1] and [G2]. This part of our paper was
stimulated by results of Lasota [L1].

We start from the following

Definition 3.1. We say that the measures µ1, µ2 ∈ M are mutually
singular or orthogonal if there are two sets A,B ∈ B such that A ∩ B = ∅,
A ∪B = X and µ1(B) = µ2(A) = 0.

Lemma 3.2. Let µ1, µ2 ∈M. Then

(3.1) ‖µ1 − µ2‖T = ‖µ1‖T + ‖µ2‖T
if and only if µ1 and µ2 are mutually singular.

Proof. Assume that ‖µ1 − µ2‖T = ‖µ1‖T + ‖µ2‖T . Suppose, contrary to
our claim, that there is no A ∈ B such that µ1(A) = 0 and µ2(A

c) = 0, where
Ac = X \A. Let H be the set from the corresponding Hahn decomposition
of the measure µ1 − µ2. Since there is no A ∈ B such that µ1(A) = 0 and
µ2(A

c) = 0, we have µ1(H
c) > 0 or µ2(H) > 0. Thus

‖µ1 − µ2‖T = (µ1 − µ2)(H)− (µ1 − µ2)(Hc)

< µ1(H) + µ1(H
c) + µ2(H

c) + µ2(H).

Consequently,

‖µ1 − µ2‖T < ‖µ1‖T + ‖µ2‖T ,

a contradiction.
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Conversely, assume that there exists a set A ∈ B such that µ1(A) = 0
and µ2(A

c) = 0. Let µ = µ1 − µ2. Then

‖µ1 − µ2‖T ≥ |µ(A)|+ |µ(Ac)| = |µ2(A)|+ |µ1(Ac)|
= |µ1(X)|+ |µ2(X)| = ‖µ1‖T + ‖µ2‖T ,

and the proof is complete.

Definition 3.3. We say that the measures µ, ν ∈ M overlap supports
if there is no A ∈ B such that

µ(A) = 0 and ν(Ac) = 0.

Now using Lemma 3.2 we may easily derive

Theorem 3.4. Let P be a Markov operator. Assume that Pµ+, Pµ−
overlap supports for every nontrivial measure µ ∈ Msig. Then the Markov
operator P is strongly contracting with respect to the total variation norm.

Proof. Fix µ1, µ2 ∈ Msig, µ1 6= µ2. Define µ = µ1 − µ2. It follows easily
that

‖Pµ+ − Pµ−‖T ≤ ‖Pµ+‖T + ‖Pµ−‖T .
By Lemma 3.2, equality holds if and only if there exists A ∈ B such that
Pµ+(A) = 0 and Pµ−(Ac) = 0. From these properties we have

(3.2) ‖Pµ+ − Pµ−‖T < ‖Pµ+‖T + ‖Pµ−‖T .
Since P is a Markov operator, we obtain

Pµ+(X) = µ+(X) and Pµ−(X) = µ−(X).

This gives
‖Pµ+‖T = ‖µ+‖T and ‖Pµ−‖T = ‖µ−‖T .

By the above, inequality (3.2) takes the form

‖Pµ+ − Pµ−‖T < ‖µ+ − µ−‖T .
For the convenience of the reader we recall a few definitions from the

theory of dynamical systems. Let T be a nontrivial semigroup of nonnegative
real numbers. More precisely we assume that {0}  T ⊂ R+ and

(3.3) t1 + t2, t1 − t2 ∈ T for t1, t2 ∈ T, t1 ≥ t2.
A family (P t)t∈T of Markov operators is called a semigroup if

P t+s = P t P s for t, s ∈ T,
and P 0 = I where I is the identity operator.

A semigroup (P t)t∈T is called a semidynamical system if the transforma-
tion Msig 3 µ 7→ P tµ ∈Msig is continuous for every t ∈ T .

If a semidynamical system (P t)t∈T is given, then for every fixed µ ∈Msig

the function T 3 t 7→ P tµ ∈ Msig will be called the trajectory starting
from µ, and denoted (P tµ). A point ν ∈Msig is called a limiting point of a
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trajectory (P tµ) if there exists a sequence (tn), tn ∈ T , such that tn → ∞
and

lim
n→∞

P tnµ = ν.

The set of all limiting points of the trajectory (P tµ) will be denoted ω(µ).

We say that a trajectory (P tµ) is sequentially compact if for every se-
quence (tn), tn ∈ T , tn →∞, there exists a subsequence (tkn) such that the
sequence (P tknµ) is convergent to a point ν ∈Msig.

Remark 3.5. If the trajectory (P tµ) is sequentially compact, then ω(µ)
is a nonempty, sequentially compact set.

We say that a semidynamical system (P t)t∈T is Lagrange stable if (P tµ)
for t ∈ T is sequentially compact.

A point µ∗ ∈ Msig is called stationary (or invariant) with respect to a
semidynamical system (P t)t∈T if

(3.4) P tµ∗ = µ∗ for t ∈ T.

A semidynamical system (P t)t∈T is called asymptotically stable if there
exists a stationary point µ∗ ∈Msig such that

(3.5) lim
t→∞

P tµ = µ∗ for µ ∈Msig.

Remark 3.6. Since (Msig, ‖·‖T ) is a Hausdorff space, an asymptotically
stable dynamical system has exactly one stationary point.

We say that a Markov semigroup (P t)t∈T is contracting or nonexpansive

with respect to the distance d in the class M̃ ⊂Msig if

(3.6) d(P tµ1, P
tµ2) ≤ d(µ1, µ2) for µ1, µ2 ∈ M̃, t ∈ T.

A contracting semigroup (P t)t∈T will be called strongly contracting with

respect to the distance d in the class M̃ ⊂Msig if for any distinct µ1, µ2 in

M̃ there is a t0 ∈ T such that

d(P t0µ1, P
t0µ2) < d(µ1, µ2).

Definition 3.7. We say that a Markov semigroup (Pt)t∈T overlaps sup-
ports if for any µ, ν ∈M1 there is a t0 ≥ 0 such that the measures P t0(ν−µ)+
and P t0(ν − µ)− overlap supports.

Now we consider a semidynamical system (P t)t∈T which has at least one
sequentially compact trajectory. By Z we denote the set of all µ ∈Msig such
that the trajectory (P tµ) is sequentially compact. Since Z is a nonempty
set we have

Ω =
⋃
µ∈Z

ω(µ) 6= ∅.
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In the proof of the main result (Theorem 3.9) we will use the following
criterion for the asymptotic stability of trajectories,

Theorem 3.8. Let µ∗ ∈ Ω. Assume that for every µ ∈ Ω, µ 6= µ∗ there
is t(µ) ∈ T such that

(3.7) d(P t(µ)µ, P t(µ)µ∗) < d(µ, µ∗).

Further assume that the semidynamical system (P t)t∈T is nonexpansive with
respect to d, i.e.,

(3.8) d(P tµ, P tν) ≤ d(µ, ν) for µ, ν ∈Msig and t ∈ T.

Then µ∗ is a stationary point of (P t)t∈T and

(3.9) lim
t→∞

d(P tµ, µ∗) = 0 for µ ∈ Z.

For details see [G2, pp. 28–30].

Now using Theorem 3.4 we can easily derive from the above criterion the
following

Theorem 3.9. A Markov semigroup (Pt)t∈T is asymptotically stable
with respect to the total variation norm if and only if (Pt)t∈T is Lagrange
stable and overlaps supports.

Proof. First assume that a Markov semigroup (P t)t∈R+ is asymptotically
stable with respect to the total variation norm. Then, evidently, (P t)t∈R+ is
Lagrange stable. Suppose for contradiction that there exist distinct measures
µ, ν ∈M1 such that for each t > 0 there exists a set At ∈ B such that

P t(ν − µ)+(At) = 0 and P t(ν − µ)−(Act) = 0.

Thus, by Lemma 3.2 we have

(3.10) ‖P t(ν − µ)+ − P t(ν − µ)−‖T = ‖P t(ν − µ)+‖T + ‖P t(ν − µ)−‖T .

By the definition of asymptotic stability of Markov semigroups it follows
that for every ε > 0 there exists tε > 0 such that

(3.11) ‖P tν − P tµ‖T < ε for t ≥ tε.

Since ν(X) = µ(X) = 1, we have

0 = ν(X)− µ(X) = (ν − µ)(X) = (ν − µ)+(X)− (ν − µ)−(X),

and consequently

(3.12) (ν − µ)+(X) = (ν − µ)−(X).

Hence the equality ‖µ− ν‖T = (ν − µ)+(X) + (ν − µ)−(X) shows that

(3.13) 0 <
1

2
‖µ− ν‖T = (ν − µ)+(X) = (ν − µ)−(X).
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From inequality (3.11) it follows that

(3.14)

∥∥∥∥P t( (ν − µ)+
1
2‖µ− ν‖T

)
−P t

(
(ν − µ)−
1
2‖µ− ν‖T

)∥∥∥∥
T

<
ε

1
2‖µ− ν‖T

for t ≥ tε.

On the other hand, by the definition of a Markov operator, conditions (3.10)
and (3.13) show that

(3.15)

∥∥∥∥P t( (ν − µ)+
1
2‖µ− ν‖T

)
− P t

(
(ν − µ)−
1
2‖µ− ν‖T

)∥∥∥∥
T

= 2 for t ≥ tε.

Since ε was arbitrary, this contradicts (3.14).

Now assume that (Pt)t∈T is Lagrange stable and overlaps supports. We
first show that the Markov semigroup (P t)t∈R+ is contracting with respect
to the total variation norm. We only need to show that for all µ ∈Msig and
t ≥ 0,

(3.16) ‖P tµ‖T ≤ ‖µ‖T .
To see this, by the property of the Hahn decomposition of µ, and the defi-
nition of the total variation norm of P tµ, we have

(3.17) ‖P tµ‖T ≤ P tµ+(X) + P tµ−(X) = ‖µ+‖T + ‖µ−‖T = ‖µ‖T .
According to Theorem 3.4 the last inequality shows that the semigroup
(P t)t∈R+ is strongly contracting with respect to the total variation norm.
A straightforward application of Theorem 3.8 completes the proof.

4. Applications. A generalized linear version of a Boltzmann type
equation is considered. This research was stimulated by the problem of the
stability of solutions of the following version of the Boltzmann equation in
the Tjon–Wu form:

(4.1)
∂u(t, x)

∂t
+ u(t, x) =

∞�

x

dy

y

y�

0

e−(y−z)u(t, z) dz, t, x ≥ 0,

which was derived by Tjon and Wu [TW], Lasota [L1], and Lasota and
Mackey [LM].

The solution u of the problem has a simple physical interpretation,
namely u(t, ·) for fixed t ≥ 0 is the probability distribution function of
the energy of particles.

Due to its physical interpretation, equation (4.1) is considered with the
additional conditions

(4.2)

∞�

0

u(t, x) dx =

∞�

0

xu(t, x) dx = 1,

which describe the conservation of mass and energy.
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Equation (4.1) may be considered as an evolution equation of the form

(4.3)
du

dt
+ u = Pu,

where

(4.4) Pv(x) =

∞�

x

dy

y

y�

0

e−(y−z)v(z) dz.

Equation (4.3) was studied in the spaces f ∈ Lp(R+) with p = 1, 2 and
different weights.

The operator given by (4.4) has the following probabilistic interpretation.
Assume there are three independent random variables ξ1, ξ2, η such that ξ1
and ξ2 have density distribution functions e−x and v respectively and η is
uniformly distributed on [0, 1]. Then Pv is the density distribution function
of the random variable

(4.5) η(ξ1 + ξ2).

Physically this means that the energies of the particles before a collision
are independent quantities, and after collision a particle takes the η fraction
of the sum of the energies of the colliding particles.

The assumption that η has density distribution function of the form 1[0,1]
is quite restrictive and can be relaxed.

Now we will consider a generalized version of (4.3) in the space Msig of
all signed measures on R+. We define

(4.6) D := {µ ∈M1 : m1(µ) = 1}, where m1(µ) =

∞�

0

xµ(dx).

The object of interest is the asymptotic behaviour of solutions of the equa-
tion

(4.7)
dψ

dt
+ ψ = Pψ for t ≥ 0

with the initial condition

(4.8) ψ (0) = ψ0,

where P : D → D is a linear operator on measures analogous to (4.4), and
ψ0 ∈ D. In order to define P precisely we will introduce several notations.

Recall that the convolution of measures ν, µ ∈Msig is a unique measure
ν ∗ µ satisfying

(4.9) (ν ∗ µ)(A) :=
�

R+

�

R+

1A(x+ y) ν(dx)µ(dy) for A ∈ B.
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It is easy to verify that

(4.10) 〈f, ν ∗ µ〉 =
�

R+

�

R+

f(x+ y) ν(dx)µ(dy)

for every Borel measurable f : R+ → R such that (x, y) 7→ f(x + y) is
integrable with respect to the product of the measures |ν| and |µ|.

It is easy to verify that ν ∗ µ ∈ M1 for every ν, µ ∈ M1. Moreover
ν ∗µ ∈M1 has a simple probabilistic interpretation. Namely, if ν and µ are
the distributions of independent random variables ξ1 and ξ2 respectively,
then ν ∗ µ is the distribution of ξ1 + ξ2.

For fixed ν ∈M1 we define a linear operator P∗2 : Msig →Msig by

(4.11) P∗2µ := ν ∗ µ for µ ∈Msig.

Another class of operators we are going to study is related to multiplication
of random variables. The formal definition is as follows. Given ϕ, µ ∈Msig,
we define their elementary product ϕ ◦ µ by

(4.12) (ϕ ◦ µ)(A) :=
�

R+

�

R+

1A(xy)ϕ(dx)µ(dy) for A ∈ B.

It follows that

(4.13) 〈f, ϕ ◦ ν〉 =
�

R+

�

R+

f(xy)ϕ(dx) ν(dy)

for every Borel measurable f : R+ → R such that (x, y) 7→ f(xy) is integrable
with respect to the product of |ϕ| and |µ|. For fixed ϕ ∈ M1 we define a
linear operator Pϕ : Msig →Msig by

(4.14) Pϕµ := ϕ ◦ µ for µ ∈Msig.

Again, as in the case of convolution, Pϕ(M1) ⊂ M1. For µ ∈ M1 the
measure Pϕµ has an immediate probabilistic interpretation. If ϕ and µ are
the distributions of random variables ξ and η respectively, then Pϕµ is the
distribution of the product ξη.

Now we return to equation (4.7) and give a precise definition of P :

(4.15) P (µ) := PϕP∗2(µ) = ϕ ◦ (ν0 ∗ µ) for µ ∈Msig,

where ν0 ∈ D and ϕ ∈M1 is a probability measure such that m1(ϕ) = 1/2.
From (4.15) it follows that P (M1) ⊂ M1. Further it is easy to verify that
for µ ∈ D,

(4.16) m1(P∗2µ) = 2 and m1(Pϕµ) = 1/2.

We may summarize this discussion with the following observations:

(1) From condition (4.6) it follows immediately that D is a convex subset
of Msig.
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(2) It is known that the set D with the total variation norm is a complete
metric space.

(3) If ν0, ϕ ∈ M1 and m1(ϕ) = 1/2, m1(ν0) = 1, then P maps D into
itself.

Remark 4.1. Evidently every fixed point of P is a stationary solution
of equation (4.7).

Equation (4.7) together with the initial condition (4.8) may be considered
in the convex subset D of the vector space of signed measures. From the
observations (1), (2), (3) and the results of [C] it follows immediately that
for every ψ0 ∈ D the initial value problem (4.7), (4.8) has exactly one
solution ψ satisfying the integral equation

(4.17) ψ(t) = e−t ψ0 +

t�

0

e−(t−s)Pψ(s) ds for t ∈ R+.

Corollary 4.2. If ϕ, ν0 ∈ M1 and m1(ϕ) = 1/2, m1(ν0) = 1 then for
every ψ0 ∈ D there exists a unique solution ψ of problem (4.7), (4.8).

The solutions of (4.17) generate a semigroup (P t)t≥0 of Markov operators
on D given by

(4.18) ψ(t) = P t ψ0 for t ∈ R+, ψ0 ∈ D.

We have the following result concerning the asymptotic stability of (P t)t≥0.

Proposition 4.3. Let P be the operator given by (4.15). Moreover, let
ϕ, ν0 ∈ M1 and m1(ϕ) = 1/2, m1(ν0) = 1. If P has a fixed point ψ∗ ∈ D
such that

(4.19) suppψ∗ = R+,

then

(4.20) lim
t→∞
‖ψ(t)− ψ∗‖T = 0

for every sequentially compact solution ψ of (4.7), (4.8) given by (4.18).

Proof. From (4.17) it follows immediately that

‖P tψ0 − ψ∗‖T ≤ e−t‖ψ0 − ψ∗‖T

+

t�

0

e−(t−s)‖P sψ0 − ψ∗‖T ds for ψ0 ∈ D and t > 0.

This may be rewritten in the form

‖P t ψ0 − ψ∗‖T ≤ e−t‖ψ0 − ψ∗‖T + (1− e−t)‖ψ0 − ψ∗‖T(4.21)

= ‖ψ0 − ψ∗‖T for ψ0 ∈ D and t > 0.
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Condition (4.19) is equivalent to the fact that the measures P tψ0, ψ∗ ∈ D
overlap supports for t > 0 and ψ0 ∈ D. Consequently, in (4.21) we have a
strict inequality. An application of Theorem 3.9 completes the proof.

Remark 4.4. Observe that in the case of the classical linear Tjon–Wu
type equation (4.1) the measure ϕ is absolutely continuous with density
1[0,1]. Moreover, u∗(t, x) := exp(−x) is the density function of the stationary
solution of (4.1). This is a simple illustration of the situation described by
Proposition 4.3.

Remark 4.5. The condition (4.19) is not particularly restrictive because
in [LT3] it has been proven that the stationary solution φ∗ of a more general
equation has the following property: Either ψ∗ is supported on one point
or suppψ∗ = R+.The first case holds if and only if ϕ = δ1/2. But this case
can be ignored as a physical model of particle collisions because it is more
restrictive than the model described by the classical Tjon–Wu equation.
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