Ali Muhammad (Peshawar)

STARLIKENESS CRITERIA FOR ODD SYMMETRIC ANALYTIC FUNCTIONS

Abstract. We investigate some starlikeness conditions for odd symmetric analytic functions defined in the unit disc.

1. Introduction. Let \mathcal{A} denote the class of functions $f(z)$ normalized by

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disc $E=\{z:|z|<1\}$.
In [4, Sakaguchi defined the class of starlike functions with respect to symmetrical points as follows:

Let $f \in \mathcal{A}$. Then f is said to be starlike with respect to symmetrical points in E if

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)-f(-z)}>0, \quad z \in E .
$$

Obviously, such functions form a subclass of close-to-convex functions and hence are univalent. Moreover, this class includes the class of convex functions and odd starlike functions with respect to the origin (see [4).

We denote by $S_{s}(\alpha)$ the class of univalent starlike functions with respect to symmetrical points of order α; that is, $f \in S_{s}(\alpha)$ if and only if

$$
\operatorname{Re} \frac{2 z f^{\prime}(z)}{f(z)-f(-z)}>\alpha
$$

for some $\alpha, 0 \leq \alpha<1$. This class was first defined by Das and Singh [1] (see also [2]).

2010 Mathematics Subject Classification: 30C45, 30C50.
Key words and phrases: analytic functions, odd symmetric functions, starlike functions with respect to symmetric points.

Similarly a function $f \in \mathcal{A}$ is said to be starlike of order $\alpha(0 \leq \alpha<1)$ in E if

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>\alpha, \quad z \in E
$$

we denote by $S^{*}(\alpha)$ the class of all such functions.
Lemma 1.1 (Jack [3]). Suppose $w(z)$ is a nonconstant analytic function in E with $w(0)=0$. If $|w(z)|$ attains its maximum value at a point $z_{0} \in E$ on the circle $|z|=r<1$, then

$$
z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)
$$

where $k \geq 1$ is some real number.

2. Main results

Theorem 2.1. Let $f \in \mathcal{A}$ and suppose that

$$
\begin{equation*}
\phi(z)=\frac{f(z)-f(-z)}{2} \tag{2.1}
\end{equation*}
$$

is an odd function. If

$$
\begin{equation*}
\left|\frac{z \phi^{\prime}(z)}{\phi(z)}-1\right|^{\gamma}\left|\frac{z \phi^{\prime \prime}(z)}{\phi^{\prime}(z)}\right|^{\beta}<\Psi(\alpha, \beta, \gamma), \quad z \in E \tag{2.2}
\end{equation*}
$$

for some real numbers α, β and γ such that $0 \leq \alpha<1, \beta \geq 0, \gamma \geq 0$, and $\beta+\gamma>0$, where

$$
\Psi(\alpha, \beta, \gamma)= \begin{cases}(1-\alpha)^{\gamma}(3 / 2-\alpha)^{\beta}, & 0 \leq \alpha<1 / 2 \\ (1-\alpha)^{\beta+\gamma} 2^{\beta}, & 1 / 2 \leq \alpha<1\end{cases}
$$

then $\phi \in S^{*}(\alpha)$.
Proof. CASE (i). Let $0 \leq \alpha<1 / 2$. Differentiating (2.1) logarithmically, we have

$$
\begin{aligned}
\frac{z \phi^{\prime}(z)}{\phi(z)} & =\frac{z f^{\prime}(z)}{f(z)-f(-z)}+\frac{z f^{\prime}(-z)}{f(z)-f(-z)} \\
& =\frac{1}{2}\left[p_{1}(z)+p_{2}(z)\right], \quad p_{1}(z), p_{2}(z) \in \mathcal{P}
\end{aligned}
$$

where \mathcal{P} is the well known class of functions with positive real part.
Set

$$
\begin{equation*}
\frac{z \phi^{\prime}(z)}{\phi(z)}=\frac{1+(1-2 \alpha) w(z)}{1-w(z)}, \quad z \in E \tag{2.3}
\end{equation*}
$$

We note that w is analytic in $E, w(0)=0$ and $w(z) \neq 1$ in E. Taking the logarithmic derivative of (2.3), we have

$$
\begin{aligned}
1+\frac{z \phi^{\prime \prime}(z)}{\phi^{\prime}(z)}-\frac{z \phi^{\prime}(z)}{\phi(z)}= & \frac{(1-2 \alpha) z w^{\prime}(z)}{1+(1-2 \alpha) w(z)}+\frac{z w^{\prime}(z)}{1-w(z)} \\
1+\frac{z \phi^{\prime \prime}(z)}{\phi^{\prime}(z)}= & \frac{1+(1-2 \alpha) w(z)}{1-w(z)} \\
& +\frac{2(1-\alpha) z w^{\prime}(z)}{[1+(1-2 \alpha) w(z)](1-w(z))}
\end{aligned}
$$

This implies that

$$
\frac{z \phi^{\prime \prime}(z)}{\phi^{\prime}(z)}=\frac{2(1-\alpha) w(z)}{1-w(z)}+\frac{2(1-\alpha) z w^{\prime}(z)}{[1+(1-2 \alpha) w(z)](1-w(z))}
$$

and

$$
\frac{z \phi^{\prime}(z)}{\phi(z)}-1=\frac{2(1-\alpha) w(z)}{1-w(z)}
$$

Thus, we have

$$
\begin{aligned}
& \left|\frac{z \phi^{\prime}(z)}{\phi(z)}-1\right|^{\gamma}\left|\frac{z \phi^{\prime \prime}(z)}{\phi^{\prime}(z)}\right|^{\beta} \\
& \quad=\left|\frac{2(1-\alpha) w(z)}{1-w(z)}\right|^{\gamma}\left|\frac{2(1-\alpha) w(z)}{1-w(z)}+\frac{2(1-\alpha) z w^{\prime}(z)}{[1+(1-2 \alpha) w(z)(1-w(z))}\right|^{\beta} \\
& \quad=\left|\frac{2(1-\alpha) w(z)}{1-w(z)}\right|^{\beta+\gamma}\left|1+\frac{z w^{\prime}(z)}{[1+(1-2 \alpha) w(z)](w(z))}\right|^{\beta}
\end{aligned}
$$

Suppose that there exists a point $z_{0} \in E$ such that

$$
\max _{|z| \leq\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1
$$

Then by using Lemma 1.1, we have $w\left(z_{0}\right)=e^{i \theta}$ for some $0<\theta \leq 2 \pi$ and $z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right), k \geq 1$. Therefore

$$
\begin{aligned}
\left|\frac{z_{0} \phi^{\prime}\left(z_{0}\right)}{\phi\left(z_{0}\right)}-1\right|^{\gamma}\left|\frac{z_{0} \phi^{\prime \prime}\left(z_{0}\right)}{\phi^{\prime}\left(z_{0}\right)}\right|^{\beta} & =\left|\frac{2(1-\alpha) w\left(z_{0}\right)}{1-w\left(z_{0}\right)}\right|^{\beta+\gamma} \\
& \times\left|1+\frac{k w^{\prime}\left(z_{0}\right)}{\left[1+(1-2 \alpha) w\left(z_{0}\right)\right]\left(w\left(z_{0}\right)\right)}\right|^{\beta} \\
= & \left.\frac{\left.2^{\{(\beta+\gamma)(1-\alpha)\}^{(\beta+\gamma)}}\left|1+\frac{k}{\left[1-\left.e^{i \theta}\right|^{\beta+\gamma}\right.}\right| 1-2 \alpha\right) e^{i \theta]}}{\mid 1+}\right|^{\beta} \\
& \geq(1-\alpha)^{(\beta+\gamma)}\left(1+\frac{k}{[2(1-\alpha)]}\right)^{\beta} \\
& \geq(1-\alpha)^{(\beta+\gamma)}\left(1+\frac{1}{[2(1-\alpha)]}\right)^{\beta} \\
& =(1-\alpha)^{\gamma}\left(\frac{3}{2}-\alpha\right)^{\beta}
\end{aligned}
$$

which contradicts (2.2) for $0 \leq \alpha<1 / 2$. Therefore, we must have $|w(z)|<1$ for all $z \in E$, and hence $\phi(z)=\frac{f(z)-f(-z)}{2} \in S^{*}(\alpha)$.

Case (ii). Suppose $1 / 2<\alpha<1$. Let $w(z)$ be defined by

$$
\frac{z \phi^{\prime}(z)}{\phi(z)}=\frac{\alpha}{\alpha-(1-\alpha) w(z)}, \quad z \in E \quad\left[\text { with } \phi(z)=\frac{f(z)-f(-z)}{2}\right]
$$

where $w(z) \neq \frac{\alpha}{1-\alpha}$ in E. Then $w(z)$ is analytic in E and $w(0)=0$. Using the same arguments as in Case (i), we obtain

$$
1+\frac{z \phi^{\prime \prime}(z)}{\phi^{\prime}(z)}-\frac{z \phi^{\prime}(z)}{\phi(z)}=\frac{(1-\alpha) z w^{\prime}(z)}{[\alpha-(1-\alpha) w(z)]}
$$

This implies that

$$
1+\frac{z \phi^{\prime \prime}(z)}{\phi^{\prime}(z)}=\frac{\alpha}{\alpha-(1-\alpha) w(z)}+\frac{(1-\alpha) z w^{\prime}(z)}{[\alpha-(1-\alpha) w(z)]}
$$

Thus, we have

$$
\begin{aligned}
\left\lvert\, \frac{z \phi^{\prime}(z)}{\phi(z)}\right. & -\left.1\right|^{\gamma}\left|\frac{z \phi^{\prime \prime}(z)}{\phi^{\prime}(z)}\right|^{\beta} \\
& =\left|\frac{(1-\alpha) w(z)}{\alpha-(1-\alpha) w(z)}\right|^{\gamma}\left|\frac{(1-\alpha) w(z)}{\alpha-(1-\alpha) w(z)}+\frac{(1-\alpha) z w^{\prime}(z)}{[\alpha-(1-\alpha) w(z)]}\right|^{\beta} \\
& =\left|\frac{(1-\alpha) w(z)}{\alpha-(1-\alpha) w(z)}\right|^{\beta+\gamma}\left|1+\frac{z w^{\prime}(z)}{w(z)}\right|^{\beta} \\
& =\left|\frac{(1-\alpha) w(z)}{\alpha-(1-\alpha) w(z)}\right|^{\beta+\gamma}|w(z)|^{\gamma}\left|w(z)+z w^{\prime}(z)\right|^{\beta} .
\end{aligned}
$$

Suppose that there exists a point $z_{0} \in E$ such that

$$
\max _{|z| \leq\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1
$$

Then by applying Lemma 1.1, we have $w\left(z_{0}\right)=e^{i \theta}$ and $z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)$, $k \geq 1$. Therefore,

$$
\begin{aligned}
\left|\frac{z_{0} \phi^{\prime}\left(z_{0}\right)}{\phi\left(z_{0}\right)}-1\right|^{\gamma}\left|\frac{z_{0} \phi^{\prime \prime}\left(z_{0}\right)}{\phi^{\prime}\left(z_{0}\right)}\right|^{\beta} & =\left|\frac{(1-\alpha) w\left(z_{0}\right)}{\alpha-(1-\alpha) w\left(z_{0}\right)}\right|^{\beta+\gamma}\left|1+\frac{k w\left(z_{0}\right)}{w\left(z_{0}\right)}\right|^{\beta} \\
& =\frac{(1-\alpha)^{\beta+\gamma}}{\left|\alpha-(1-\alpha) e^{i \theta}\right|^{\beta+\gamma}}(1+k)^{\beta} \\
& \geq(1-\alpha)^{\beta+\gamma}(1+1)^{\beta}=(1-\alpha)^{\beta+\gamma} 2^{\beta}
\end{aligned}
$$

which contradicts (2.2) for $1 / 2<\alpha<1$. Therefore, we must have $|w(z)|<1$ for all $z \in E$, and hence $\phi(z)=\frac{f(z)-f(-z)}{2} \in S^{*}(\alpha)$. This completes the proof of Theorem 2.1.

Corollary 2.2. Let $\beta=1, \gamma=0$ and let $\phi(z)$ be defined by (2.1). If

$$
\left|\frac{z \phi^{\prime \prime}(z)}{\phi^{\prime}(z)}\right|<\left\{\begin{array}{ll}
3 / 2-\alpha, & 0 \leq \alpha<1 / 2, \\
2(1-\alpha), & 1 / 2 \leq \alpha<1,
\end{array} \quad z \in E,\right.
$$

for some $0 \leq \alpha<1$, then

$$
\operatorname{Re}\left(\frac{z \phi^{\prime}(z)}{\phi(z)}\right)>\alpha, \quad z \in E .
$$

Acknowledgements. The author is grateful to the referee for his/her very constructive comments and suggestions.

References

[1] R. Das and P. Singh, On properties of certain subclasses of close-to-convex functions, Ann. Univ. Mariae Curie-Skłodowska 2 (1976), 15-22.
[2] R. M. El-Ashwah, M. K. Aouf and S. M. El-Deeb, On a class of multivalent functions defined by an extended multiplier transformation, Comput. Math. Appl. 60 (2010), 623-628.
[3] I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc. 3 (1971), 469-474.
[4] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan 11 (1959), 72-75.

Ali Muhammad
Department of Basic Sciences
University of Engineering and Technology
Peshawar, Pakistan
E-mail: ali7887@gmail.com

