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ON THE CONVERGENCE

OF THE BACKWARD EULER ALGORITHM

FOR THE MULTIDIMENSIONAL HEAT EQUATION

Abstract. The backward Euler algorithm for the multidimensional non-
homogeneous heat equation is analyzed, based on the finite element method.
The existence and uniqueness of the numerical solution is investigated. Also,
the convergence of the numerical solutions is studied.

1. Introduction. The multidimensional heat equation describes diffu-
sion processes or heat transfer. Much progress has been made in developing
more efficient finite difference and finite element algorithms. Some methods
for numerical solving of the multidimensional heat equation are based on
explicit finite differences [MG]. More efficient implicit methods such as al-
ternating directions were studied in [N], [D]. Higher order split schemes in
two or three dimensions were examined by Mitchell and Griffith [MG] and
Gourlay [G].

Finite element splitting constructions were investigated by Fletcher [F]
and Zienkiewicz, Taylor and Zhu [ZTZ]. Also, methods for determining
whether or not the numerical solutions are indeed good approximations to
the solutions were considered in [ZTZ].

Discretizations of the heat equation by θ-schemes in time and conforming
finite elements in space were investigated in [V].

Methods based on combining the finite element method with backward
Euler time discretization for the solution of diffusion problems on dynam-
ically changing meshes were studied in [DK]. Error estimates for piecewise
linear nonconforming finite element approximations of the heat equation
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in Rn, n = 2, 3, using the backward Euler scheme were discussed in [NS]. In
[LW] a weak Galerkin method was analyzed, based on totally discontinuous
functions in approximation space. Error estimates in space and time were
established.

In [T, Chapters 1, 2] the backward Euler algorithm was studied for nu-
merical solution of the Dirichlet problem for the heat equation. An error
estimate was obtained using the so-called elliptic or Ritz projection Rh onto
the approximation space Vh.

In this paper, we investigate approximation by the finite element method
of the Neumann–Dirichlet boundary value problem for the heat equation.
We establish a convergence result based on the stability and approximation
properties of the numerical scheme.

First, we state the classical problem for the multidimensional heat equa-
tion, then the variational problem is formulated. Further, we deal with
the approximation problem. A theorem on existence and uniqueness of the
numerical solution is presented. We continue with the numerical implicit
scheme and study the convergence of the algorithm.

2. Statement of the problem. Let Ω be a Lipschitz open bounded
set in Rn, with boundary Γ = Γ1 ∪Γ2, and let T > 0 be fixed. The classical
problem for the multidimensional heat equation is to find u : [0, T ]×Ω̄ → R,
u ∈ C1([0, T ], C2(Ω)), such that

(2.1)

∂u

∂t
− α2∆u = f(t, x) in [0, T ]×Ω,

u|Γ1 = g1(t, x),

∂u

∂n

∣∣∣∣
Γ2

= gradu · u|Γ2 = g2(t, x),

u(0, x) = z(x) in Ω̄

(n = the external normal to the boundary).

In the variational formulation of problem (2.1) suppose that

f ∈ C([0, T ], L2(Ω)),

g̃1 =

{
g1 on Γ1

0 on Γ2
is in C1([0, T ], H1/2(Γ )),

g2 ∈ L2([0, T ], L2(Γ2)),

z ∈ H1(Ω).

This means there is a function u0 ∈ C1([0, T ], H1(Γ )) such that u0|Γ = g̃1
(see [A]).
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3. Main results. Consider the vector space V = {v ∈H1(Ω) : v|Γ1 = 0},
and let V ∗ be the dual space of V . Denote ū = u−u0, where u is the solution
of (2.1). It follows that

ū|Γ1 = 0, ū|Γ2 = u|Γ2 .

Integration on Ω and the Gauss formula lead to the variational problem:
find ū ∈ L2([0, T ], V ) with ūt ∈ L2([0, T ), V ∗) such that

(3.1)
�

Ω

∂ū

∂t
v dx+ α2

�

Ω

n∑
i=1

∂ū

∂xi

∂v

∂xi
dx =

�

Ω

fv dx−
�

Ω

∂u0
∂t

v dx

− α2
�

Ω

n∑
i=1

∂u0
∂xi

∂v

∂xi
dx+ α2

�

Γ2

g2v dσ, a.e. t ∈ (0, T ), ∀v ∈ V.

Problem (3.1) has a unique solution (see [DL]).

Further, we formulate the approximation problem by means of finite
elements. Consider a triangulation Th for Ω:

Ω =
⋃
K∈Th

K

where each K is an n-simplex or n-parallelepiped. Denote

Wh = {uh ∈ C(Ω̄) : uh|K = interpolation polynomial, ∀K ∈ Th},

which is included in H1(Ω) ([C]).

It follows that

Vh := {vh ∈Wh : vh|Γ1 = 0} ⊂ V.

The norm in Vh and Wh will be the induced norm of H1(Ω). Let uh0 ∈
C1([0, T ],Wh) be defined by the values at the nodes of the triangulation:

uh0(t, ai) =

{
0 for ai ∈ Ω ∪ Γ2,
g1(t, ai) for ai ∈ Γ1.

Now we formulate the first approximation variational equation: find ūh ∈
C1([0, T ], Vh) such that

(3.2)
�

Ω

∂ūh
∂t

(t, x)vh(x) dx+ α2
�

Ω

n∑
i=1

∂ūh
∂xi

(t, x)
∂vh
∂xi

(x) dx

=
�

Ω

f(t, x)vh(x) dx−
�

Ω

∂uh0
∂t

(t, x)vh(x) dx

− α2
�

Ω

n∑
i=1

∂uh0
∂xi

(t, x)
∂vh
∂xi

(x) dx+α2
�

Γ2

g2(t, x)vh(x) dσ
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for all vh ∈ Vh and t ∈ (0, T ). The initial condition is

(3.3) ūh(0, ai) =

{
z(ai) for ai ∈ Ω ∪ Γ2,
0 for ai ∈ Γ1,

where ai are the nodes of the triangulation.

Theorem 3.1. The variational problem (3.2), (3.3) has a unique solu-
tion.

Proof. We denote by ās, s = 1, N , the nodes which are in Ω ∪ Γ2.
The approximation space Vh is finite-dimensional; consider its basis

{vhi(x) : i = 1, N} such that vhi(ās) = δis, i, s = 1, N . We deduce that

ūh(t, x) =
N∑
i=1

ϕi(t)vhi(x)

and ūh(t, ās) = ϕs(t), s = 1, N . It follows that ϕs(0) = z(ās), s = 1, N . On
the other hand, (3.2) yields

(3.4)

N∑
i=1

ϕ′i(t)
�

Ω

vhi(x)vhj(x) dx

+ α2
N∑
i=1

ϕi(t)
�

Ω

n∑
k=1

∂vhi
∂xk

∂vhj
∂xk

dx = Fj(t), j = 1, N.

Taking into consideration the inclusion Vh ⊂ C(Ω̄), we deduce that

〈u, v〉 :=
�

Ω

u(x)v(x) dx

is a scalar product in Vh. Thus,

det (〈vhi, vhj〉)i,j=1,N 6= 0.

From (3.4) we infer that

(3.5) A

 ϕ′1(t)

. . .

ϕ′N (t)

+ α2B

 ϕ1(t)

. . .

ϕN (t)

 =

 F1(t)

. . .

FN (t)

 .
Here A is a nonsingular matrix, so this provides a linear differential system
of equations with initial conditions:

(3.6)

{
dϕ

dt
= Cϕ(t) + F̃ (t), t ∈ [0, T ],

ϕs(0) = z(ās), s = 1, N .

This yields the existence and uniqueness of the solution of the variational
problem (3.2), (3.3).
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Consider a partition of the interval [0, T ] with tm = mk, where k = T/M ,

M ∈ N∗. We proceed to the second variational problem: find ū
(m+1)
hk ∈ Vh

for m = 0,M − 1 such that

(3.7)
�

Ω

ū
(m+1)
hk (x)vh(x) dx+ a2k

�

Ω

n∑
i=1

ū
(m+1)
hk

∂xi
(x)

∂vh
∂xi

(x) dx

=
�

Ω

ū
(m)
hk (x)vh(x) dx+ k

�

Ω

f(tm+1, x)vh(x) dx

− k
�

Ω

∂uh0
∂t

(tm+1, x)vh(x) dx− α2k
�

Ω

n∑
i=1

∂uh0
∂xi

(tm+1, x)
∂vh
∂xi

(x) dx

+ α2k
�

Γ2

g2(tm+1, x)vh(x) dσ

for all vh ∈ Vh. The function ū
(0)
hk ∈ Vh is defined by

ū
(0)
hk (ai) =

{
z(ai) for ai ∈ Ω ∪ Γ2,
0 for ai ∈ Γ1,

where ai are the nodes of the triangulation. It follows from the Lax–Milgram
lemma that the variational equation (3.7) has a unique solution.

Further, we shall prove that the solution ū
(m+1)
hk ∈ Vh of (3.7) is an

approximation for ūh(tm+1), where ūh is the solution of the variational
problem (3.2), (3.3). This will follow from the approximation and stabil-
ity properties [M].

Consider a certain construction of the space Vh by means of interpolation
polynomials:

ū
(m)
hk |K = [DFK(ū

(m)
hk )]1×s · [p(x)]s×1

where

[DFK(ū
(m)
hk )]1×s = [ū

(m)
hk (aK1 ), . . . , ū

(m)
hk (aKs )]

are the degrees of freedom of ū
(m)
hk in K and

[p(x)]s×1 = [p1(x), . . . , ps(x)]t

is a basis in the local polynomial space PK .

Inserting these in (3.7) we obtain∑
K∈Th

[DFK(vh)]1×s
�

K

[p(x)]s×1[p(x)]t1×s dx [DFK(ū
(m+1)
hk )]ts×1

+ a2k
∑
K∈Th

[DFK(vh)]1×s
�

K

n∑
i=1

[
∂p

∂xi

]
s×1

[
∂p

∂xi

]t
1×s

dx [DFK(ū
(m+1)
hk )]ts×1
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=
∑
K∈Th

[DFK(vh)]1×s
�

K

[p(x)]s×1[p(x)]t1×s dx [DFK(ū
(m)
hk )]ts×1

+ k
∑
K∈Th

[DFK(vh)]1×s
�

K

[p(x)]s×1f(tm+1, x) dx

− k
∑
K∈Th

[DFK(vh)]1×s
�

K

[p(x)]s×1[p(x)]t1×s dx [DFK
∂uh0
∂t

(tm+1)]
t
s×1

− α2k
∑
K∈Th

[DFK(vh)]1×s
�

K

n∑
i=1

[
∂p

∂xi

]
s×1

[
∂p

∂xi

]t
1×s

dx [DFK(u
(m+1)
h0 )]ts×1

+ α2k
∑
I∈T ′

h

[DFl(vh)]1×r ·
�

I

[p̄(x)]r×1g2(tm+1, x) dσ.

Here ⋃
I∈T ′

h

I = Γ2,

vh(x)|I = [vh(aI1), . . . , v(alr)] ·

 p̄1(x)

. . .

p̄r(r)

 for vh ∈ Vh, I ∈ T ′h.

The process of numerical integration and assemblage produces a linear al-
gebraic system:

(3.8) (A+ α2kB)[DF (ū
(m+1)
hk )]t

= A

(
[DF (ū

(m)
hk )]t − k

[
DF

(
∂uh0
∂t

(tm+1)

)]t)
+ k[F (tm+1)] + α2k[G2(tm+1)]− α2kB[DF (uh0(tm+1))]

t,

for all m ∈ N.
The function ū

(0)
hk was defined before. The matrix A (mass matrix) and

B (stiffness matrix) in (3.8) are symmetric and positive definite, so that
the matrix R = A+ α2kB is also symmetric and positive definite. We have

[DF (ū
(m)
hk ) = [ū

(m)
hk (ā1), . . . , ū

(m)
hk (āN )] ∈ RN , where N is the number of the

unknown degrees of freedom for ū
(m)
hk . Further, we define the space Uhk =

{uhk : uhk : {t0, t1, . . . , tM}→ Vh} and the operator Lhk : Uhk→R(M+1)N by

Lhk(uhk) = Lhk
(
(uhk(tm))m=0,M

)
=

(
1

k
A
(
[DF (uhk(tm+1))]

t − [DF (uhk(tm))]t
)

+ α2B[DF (uhk(tm+1))]
t|m=0,M−1, [DF (uhk(t0))]

t

)
.
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Consider the function ūhk ∈ Uhk, ūhk(tm) := ū
(m)
hk for m = 0,M , where ū

(m)
hk

is the unique solution of (3.7). We deduce that (3.8) can be rewritten as

(3.9) Lhkūhk = F̃hk
where

F̃hk =
(
(F̃ (m+1))m=0,M−1, z(ā1), . . . , z(āN )

)
,

F̃ (m+1) = −A
[
DF

(
∂uh0
∂t

(tm+1)

)]t
+ [F (tm+1)]

t + α2[G2(tm+1)]
t

− α2B[DF (uh0(tm+1))]
t

for m = 0,M − 1.
We consider the following norm over the space Uhk:

‖uhk‖ = sup{‖[DF (uhk(tm))]‖ : m = 0,M}
where ‖[DF (uhk(tm))]‖ will be defined later so as to obtain stability.

Theorem 3.2. Let ūh ∈ C2([0, T ], Vh) be the solution of the variational

problem (3.2), (3.3). Then Lhkūh = F̃hk + δk with limk→0 ‖δk‖ = 0.

Proof. By Taylor’s formula in integral form we infer that

(3.10)
∂ūh
∂t

(tm+1, x) =
ūh(tm+1, x)− ūh(tm, x)

k
+k

1�

0

ζ
∂2ūh
∂t2

(tm+ζk, x) dζ.

From (3.2) and (3.10) it follows that

(3.11)
�

Ω

ūh(tm+1, x)− ūh(tm, x)

k
vh(x) dx

+ α2
�

Ω

n∑
i=1

∂ūh
∂xi

(tm+1, x)
∂vh
∂xi

(x) dx

=
�

Ω

f(tm+1, x)vh(x) dx−
�

Ω

∂uh0
∂t

(tm+1, x)vh(x) dx

− α2
�

Ω

n∑
i=1

∂uh0
∂xi

(tm+1, x)
∂vh
∂xi

(x) dx+ α2
�

Γ2

g2(tm+1, x)vh(x) dσ

− k
�

Ω

1�

0

ζ
∂2ūh
∂t2

(tm + ζk, x)vh(x) dζ dx

for m = 0,M − 1. Equation (3.11) yields

1

k
A([DF (ūh(tm+1))]

t − [DF (ūh(tm))]t) + α2B[DF (ūh(tm+1))]
t

= F̃ (m+1) − kA
1�

0

ζ

[
DF

(
∂2ūh
∂t2

(tm + ζk)

)]t
dζ.
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It follows that

Lhkūh = F̃hk +

((
−kA

1�

0

ζ

[
DF

(
∂2ūh
∂t2

(tm + ζk)

)]t
dζ

)
m=0,M−1

, 0N

)
.

Since ∂2ūh/∂t
2 ∈ C([0, T ], Vh) with Vh ∈ C(Ω̄), we deduce that

‖δk‖ = sup

{∥∥∥∥−kA 1�

0

ζ

[
DF

(
∂2ūh
∂t2

(tm + ζk)

)]t
dζ

∥∥∥∥ : m = 0,M − 1

}
≤ c‖A‖k.

Equation (3.9) can be rewritten as

(3.12)
[DF (ū

(m+1)
hk )]t = R−1A[DF (ū

(m)
hk )]t + kR−1F̃ (m+1),

[DF (ū
(0)
hk )] = [z(ā1), . . . , z(āN )].

The stability of the approximation scheme arises from a proposition re-
ferring to symmetric, positive definite matrices which we shall prove later.
For this purpose we apply a result due to Householder:

Proposition 3.1. Let A be a symmetric, nonsingular matrix, and A =
M − N with M a nonsingular matrix. Suppose the symmetric matrix Q =
M+M t−A is positive definite. Then the following assertions are equivalent:

(1) the spectral radius ρ(M−1N) < 1;
(2) A is a positive definite matrix.

We now prove the following result:

Proposition 3.2. Let A,B be symmetric, positive definite matrices and
α > 0. Then there is a matrix norm such that

‖(A+ αB)−1A‖ < 1.

Proof. We know that A + αB is a symmetric, positive definite, nonsin-
gular matrix. Define now M = A+ αB, N = A and Ã = M −N = αB. We
infer that Ã is symmetric, positive definite, and nonsingular, M is nonsin-
gular and Q = M +M t − Ã = 2A+ αB is symmetric and positive definite.
Proposition 3.1 yields

(3.13) ρ((A+ αB)−1A) < 1.

From a known result in numerical analysis, (3.13) is equivalent to the exis-
tence of a norm such that ‖(A+ αB)−1A‖ < 1.

Theorem 3.3. The numerical approximation scheme (3.9) is uncondi-
tionally stable.

Proof. Consider a perturbation of the scheme (3.9),

Hk = F̃k + εk =
(
(F̃ (m+1) + ε

(m+1)
k )m=0,M−1, z(ā1) + ε1, . . . , z(āN ) + εN

)
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with ε
(0)
k = (ε1, . . . , εN ) and ε

(m+1)
k ∈ RN , m = 0,M − 1. From the relation

Lhkwk = Hk it follows that

(3.14)

[DF (w
(m+1)
k )]t =R−1A[DF (w

(m)
k )]t+kR−1F̃ (m+1) +kR−1ε

(m+1)
k ,

m = 0,M −1,

[DF (w
(0)
k )] = (z(ā1) + ε1, . . . , z(āN ) + εN ).

Denote

v
(m)
k = [DF (w

(m)
k )]t − [DF (ū

(m)
hk )]t ∈ RN for m = 0,M,

L = ‖R−1A‖.

Considering the norm provided by Proposition 3.2, we deduce L < 1. Rela-
tions (3.12) and (3.14) yield

|v(m+1)
k ‖ = ‖R−1Av(m)

k + kR−1ε
(m+1)
k ‖(3.15)

≤ L‖v(m)
k ‖+ k‖R−1‖ ‖ε(m+1)

k ‖

≤ L(L‖v(m−1)k ‖+ k‖R−1‖ ‖ε(m)
k ‖) + k‖R−1‖ ‖εk‖

≤ L2‖v(m−1)k ‖+ k‖R−1‖(1 + L)‖εk‖ ≤ · · · ≤

≤ Lm+1‖v(0)k ‖+ k‖R−1‖(1 + L+ · · ·+ Lm)‖εk‖

for m = 0,M − 1. We have

(3.16) ‖v(0)k ‖ = ‖[DF (w
(0)
k )]− [DF (ū

(0)
hk )]‖ = ‖(ε1, . . . , εN )‖ ≤ ‖εk‖.

Substituting (3.16) in (3.15) and taking into consideration that L < 1, we
obtain

(3.17) ‖v(m+1)
k ‖ ≤ [1+‖R−1‖k(m+1)]‖εk‖ ≤ [1+‖(A+α2kB)−1‖T ]‖εk‖

for m = 0,M − 1.

We have limk→0 ‖(A+ α2kB)−1‖ = ‖A−1‖, which yields

(3.18) ‖(A+ α2kB)−1‖ ≤ c1 for k ≤ k0.

Now (3.16)–(3.18) yield

‖ūhk − wk‖ = sup
m=0,M

‖v(m)
k ‖ ≤ c2‖εk‖

with c2 > 0 a constant independent of k.

Teorems 3.2 and 3.3 prove the convergence:

‖ūhk − ūh‖ = sup
m=0,M

‖[DF (ū
(m)
hk )]− [DF (ūh(tm))]‖ ≤ c3k → 0.
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E-mail: relu cristescu@yahoo.com

Received on 28.3.2013;
revised version on 3.11.2014 (2175)

http://dx.doi.org/10.1137/S0036142998342860
http://dx.doi.org/10.1016/S0065-2458(08)60140-0
http://dx.doi.org/10.1051/m2an:2005009
http://dx.doi.org/10.1007/s10092-003-0073-2

	1 Introduction
	2 Statement of the problem
	3 Main results
	References

