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WEIERSTRASS ELLIPTIC SOLUTIONS TO
A ZAKHAROV EQUATION IN PLASMAS

WITH POWER LAW NONLINEARITY

Abstract. In this paper, travelling wave solutions for the Zakharov equa-
tion in plasmas with power law nonlinearity are studied by using the Weier-
strass elliptic function method. As a result, some previously known solutions
are recovered, and at the same time some new ones are also given.

1. Introduction. Finding the exact solutions of nonlinear evolution
equations (NLEEs) plays an important role in the study of many physi-
cal phenomena in various fields such as fluid mechanics, solid state physics,
plasma physics, chemical physics, optical fiber, and geochemistry. Thus, it
is important to investigate the exact explicit solutions of NLEEs. In re-
cent years, various powerful methods have been presented for finding exact
solutions of NLEEs in mathematical physics, such as the Bäcklund transfor-
mation method [22, 35], Hirotas direct method [12], tanh-sech method [20],
extended tanh method [2, 9], the exp-function method [10, 11], sine-cosine
method [32, 38], Jacobi elliptic function expansion method [14], F-expansion
method [6], Weierstrass elliptic function method [26]. Among those, one of
the most effectively straightforward methods for constructing exact solutions
is the Weierstrass elliptic function method [24, 27].

The generalized Zakharov equation (GZE) is a realistic model for plasma,
which can be written as follows [21]:

(1)
iqt + qxx − 2β|q|q + 2qr = 0,

rtt − rxx + α(|q|)xx = 0,

where q is the envelope of the high-frequency electric field, and r is the
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plasma density measured from its equilibrium value. When β = 0, this sys-
tem reduces to the classical Zakharov equation of plasma physics [13, 36].

Recently, some authors have investigated the travelling wave solutions of
this equation and of its generalized forms by using various methods such as the
exp-function method [4], the extended F-expansion method [31], He’s varia-
tional iteration method [16], a new rational auxiliary equation method [18],
He’s semi-inverse method [37], the bifurcation method [29] and others.

The purpose of this paper is to apply the Weierstrass elliptic function
method to the following Zakharov equation in plasmas with power law non-
linearity:

(2)
iqt + qxx − 2λ|q|2nq + 2qr = 0,

rtt − rxx + (|q|2n)xx = 0.

Equations (2) are the ZE with power law nonlinearity and the parameter
n is the power law nonlinearity parameter. The dependent variable q(x, t)
is a complex valued function while r(x, t) is a real valued function. The
coefficient λ is a real constant. Equations (2) have already been studied by
He’s variational principle [3], the ansatz method [30] and the bifurcation
method [28].

The aim of this work is to investigate the travelling wave solutions of (2)
systematically, by applying the Weierstrass elliptic function method.

The rest of this paper is organized as follows. In Section 2, we outline the
Weierstrass elliptic function method. In Section 3, we give some particular
travelling wave solutions of (2) by using the Weierstrass elliptic function
method. Finally, some conclusions are given in Section 4.

2. Weierstrass elliptic functions. Let us consider the following non-
linear differential equation:

(3)
(
dφ(z)

dz

)2

= a0φ
4 + 4a1φ

3 + 6a2φ
2 + 4a3φ+ a4 ≡ f(φ).

As is well-known [33, 34], the solutions φ of (3) can be expressed in terms of
elliptic functions ℘:

(4) φ(z) = φ0 +
f ′(φ0)

4
[
℘(z, g2, g3)− 1

24f
′′(φ0)

] ,
where the primes denote differentiation with respect to φ, and φ0 is a simple
root of f(φ). The invariants g2, g3 of elliptic functions ℘(z, g2, g3) are related
to the coefficients of f(φ) by [5]

g2 = a0a4 − 4a1a3 + 3a22,(5)

g3 = a0a2a4 + 2a1a2a3 − a32 − a0a23 − a21a4,(6)
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When g2 and g3 are real, we have different behavior of ℘(z) depending on
whether the discriminant

(7) ∆ = g32 − 27g23

is positive, negative or zero.The conditions [26]

(8) ∆ 6= 0 or ∆ = 0, g2 > 0, g3 > 0

lead to periodic solutions, whereas the conditions

(9) ∆ = 0, g2 ≥ 0, g3 ≤ 0

lead to solitary wave solutions.
If ∆ = 0, then ℘(z, g2, g3) degenerate into trigonometric or hyperbolic

functions [1]. Thus, periodic solutions according to (11) are determined by

(10) φ(z) = φ0+
f ′(φ0)

4
[
− e1

2 −
f ′′ (φ0)

24 + 3
2e1 csc

2
(√

3
2e1 t

)] , ∆ = 0, g3 > 0,

and solitary wave solutions by

(11) φ(z) = φ0 +
f ′(φ0)

4
[
e1 − f ′′ (φ0)

24 + 3e1 csch
2(
√
3e1t)

] , ∆ = 0, g3 < 0,

where e1 = 3
√
|g3| in (10) and e1 = 1

2
3
√
|g3| in (11).

3. The Zakharov equation in plasmas with power law nonlin-
earity. We assume that the travelling wave solution of (2) is of the form

(12)
q(x, t) = exp(iθ)g(ξ), r(x, t) = h(ξ),

ξ = k(x− νt), θ = −px+ ωt,

where ν represents the velocity of the wave, while g and h are the wave pro-
files. In the phase component, p is the frequency and ω is the wave number.
Substituting (12) into (2) and decomposing into real and imaginary parts
gives

(13) ν = 2p,

and

(14)
k2g′′ + 2gh− (ω + p2)g − 2λg2n+1 = 0,

k2(4p2 − 1)h′′ + k2(g2n)′′ = 0.

Integrating the second equation of (14) twice and letting the first integral
constant be zero, we have

(15) h =
g2n

1− 4p2
+ c, p 6= 1/2,

where c is the second integral constant.
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Substituting (15) into the first equation of (14), we have

(16) g′′ + βg − αg2n+1 = 0

where

α =
2

k2

(
λ− 1

1− 4p2

)
, β =

2c− p2 − q
k2

.

By multiplying each side of (16) by g′, and integrating once again, we deduce
that

(17) (g′)2 = R1 − βg2 +
α

n+ 1
g2n+2,

where R1 is the integration constant. Making the transformation g = φp,
p 6= 0, 1, yields

(18)
(
dφ

dξ

)2

=
1

p2

[
R1φ

2−2p − βφ2 + α

n+ 1
φ2np+2

]
.

If we want to guarantee the integrability of (18) in terms of elliptic func-
tions, the powers of φ have to be integer numbers between 0 and 4 [15], and
therefore, we have the following possible cases:

If R1 = 0, then p ∈ {−1/n,−1/(2n), 1/(2n), 1/n}.
If R1 6= 0, then n = 2 and p = ±1/2.
Next, by using the results obtained in the preceding sections, we will

construct the corresponding solutions of (18) in the above cases.

3.1. Case 1. We consider several subcases.

Case (1)(i): R1 = 0, p = 1/(2n). In this case, (18) takes the form

(19)
(
dφ

dξ

)2

= 4n2
[
−βφ2 + α

n+ 1
φ3
]
= f(φ).

The polynomial f(φ) has two roots: φ0 = 0 and φ0 = β(n+ 1)/α. From (4),
the solutions of (19) can be found to be

(20) φ =
3φ0℘(ξ, g2, g3)− 5n2βφ0 +

6n2α
n+1 φ

2
0

3℘(ξ, g2, g3) + n2β − 3n2α
n+1 φ0

where the invariants are

(21) g2 = 48n4β2, g3 = 64n6β3.

Then ∆ = 0. The root φ0 = 0 gives the trivial solution φ = 0, and the
nonzero solution of (19) can be found by taking φ0 = β(n+ 1)/α. Hence,
from (10), we have the periodic wave solution to (19),

(22) φ =
β(n+ 1)

α
sec2(n

√
β ξ)
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for β > 0. From (11), we have the solitary wave solution

(23) φ =
β(n+ 1)

α
sech2(n

√
−β ξ)

for β < 0.
Therefore, when β > 0, (2) has the periodic wave solution

(24)
q(x, t) = exp(iθ)

(√
β(n+ 1)

α
sec(n

√
β ξ)

)1/n

,

r(x, t) =
β(n+ 1)

α(1− 4p2)
(sec(n

√
β ξ))2 + c.

When β < 0, it has the solitary wave solution

(25)
q(x, t) = exp(iθ)

(√
β(n+ 1)

α
sech(n

√
−β ξ)

)1/n

,

r(x, t) =
β(n+ 1)

α(1− 4p2)
(sech(n

√
−β ξ))2 + c.

Case 1(ii): R1 = 0, p = −1/(2n). In this case, (18) takes the form

(26)
(
dφ

dξ

)2

= 4n2
[
−βφ2 + α

n+ 1
φ

]
= f(φ).

The second order polynomial f(φ) has two roots:φ0 = 0 andφ0=α/(β(n+1)).
From (4), the solutions of (26) can be found to be

(27) φ =
3φ0℘(ξ, g2, g3)− 5n2βφ0 +

3n2α
n+1

3℘(ξ, g2, g3) + n2β

where the invariants are given by (21). Substituting the root φ0 = 0 into
(27), we get

(28) φ =
3n2α

(n+ 1)(3℘(ξ, g2, g3) + n2β)
.

Since ∆ = 0, from (10) we have the periodic wave solution to (26),

(29) φ =
α

β(n+ 1)
sin2(n

√
β ξ)

for β > 0. From (11), we have the solitary wave solution

(30) φ = − α

β(n+ 1)
sinh2(n

√
−β ξ)

for β < 0. Therefore, when β > 0, (2) has the periodic wave solution

(31)
q(x, t) = exp(iθ)

(√
β(n+ 1)

α
csc(n

√
β ξ)

)1/n

,

r(x, t) =
β(n+ 1)

α(1− 4p2)
(csc(n

√
β ξ))2 + c.
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When β < 0, it has the solitary wave solution

(32)
q(x, t) = exp(iθ)

(√
−β(n+ 1)

α
csch(n

√
−β ξ)

)1/n

,

r(x, t) =
β(n+ 1)

α(1− 4p2)
(csch(n

√
−β ξ))2 + c.

After substituting the second root φ0 = α/(β(n+ 1)) into (27), we obtain

(33) φ =
α

β(n+ 1)

3℘(ξ, g2, g3)− 2n2β

3℘(ξ, g2, g3) + n2β
.

So from (10), we have the periodic wave solution to (26),

(34) φ =
α

β(n+ 1)
cos2(n

√
β ξ)

for β > 0.
From (11), we have the solitary wave solution

(35) φ =
α

β(n+ 1)
cosh2(n

√
−β ξ)

for β < 0.
Thus, we get the same solutions of (2) as those given by (24) and (25).

Case (1)(iii): R1 = 0, p = 1/n. In this case, (18) takes the form

(36)
(
dφ

dξ

)2

= 4n2
[
−βφ2 + α

n+ 1
φ4
]
= f(φ).

The fourth order polynomial f(φ) has two roots: φ0 = 0 (double) and φ0 =
±
√
β(n+ 1)/α. From (4), the solution of (26) in terms of φ0 is

(37) φ =
3φ0℘(ξ, g2, g3)− 5n2βφ0 +

6n2α
n+1 φ

3
0

3℘(ξ, g2, g3) + n2β − 6n2α
n+1 φ

2
0

where the invariants are

(38) g2 =
4

3
n4β2, g3 =

8

27
n6β3,

Taking the root φ0 = 0 in (37), we get φ = 0. However, when we take the
root φ0 = ±

√
β(n+ 1)/α in (37), we have

(39) φ = ±
√
β(n+ 1)

α

3℘(ξ, g2, g3) + n2β

3℘(ξ, g2, g3)− 5n2β
.

Since∆ = 0, it is easy to see from (10), (11) that the above solutions (39) will
generate the same periodic and solitary wave solutions to (2) as (24), (25).

Case 1(iv): R1 = 0, p = −1/n. In this case, (18) takes the form

(40)
(
dφ

dξ

)2

= n2
[
−βφ2 + α

n+ 1

]
= f(φ).
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The polynomial f(φ) hase two roots: φ0 = ±
√

α
β(n+1) . Using the same argu-

ments as above, we can deduce that this case gives exactly the same solutions
of (2) as Case 1(ii).

Exact travelling wave solutions of the Zakharov equation in plasmas with
power law nonlinearity can be obtained by using the above results. We de-
scribe them in the following theorem.

Theorem 1. The Zakharov equation in plasmas with power law nonlin-
earity has solutions described as follows:

(i) When β > 0 and α(1 − 4p2) 6= 0, there exist the following explicit
periodic wave solutions:

(41)
q(x, t) = exp(iθ)

(√
β(n+ 1)

α
sec(n

√
β ξ)

)1/n

,

r(x, t) =
β(n+ 1)

α(1− 4p2)
(sec(n

√
β ξ))2 + c

and

(42)
q(x, t) = exp(iθ)

(√
β(n+ 1)

α
csc(n

√
β ξ)

)1/n

,

r(x, t) =
β(n+ 1)

α(1− 4p2)
(csc(n

√
β ξ))2 + c.

(ii) When β < 0 and α(1 − 4p2) 6= 0, there exist the following explicit
solitary wave solutions:

(43)
q(x, t) = exp(iθ)

(√
β(n+ 1)

α
sech(n

√
−β ξ)

)1/n

,

r(x, t) =
β(n+ 1)

α(1− 4p2)
(sech(n

√
−β ξ))2 + c

and

(44)
q(x, t) = exp(iθ)

(√
−β(n+ 1)

α
csch(n

√
−β ξ)

)1/n

,

r(x, t) =
β(n+ 1)

α(1− 4p2)
(csch(n

√
−β ξ))2 + c.

Remark 3.1. When β > 0, the solutions (41)–(42) that we obtained
coincide with those obtained by the bifurcation method by M. Song [28,
(3.4)]. When β < 0, the solutions (43)–(44) also coincide with those obtained
by M. Song [28, (3.8)].
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3.2. Case 2. Again, we consider several subspaces.

Case 2(i): R1 6= 0, n = 2, p = 1/2. In this case, (18) takes the form

(45)
(
dφ

dξ

)2

= 4

[
−βφ2 + α

3
φ4 +R1φ

]
= f(φ).

According to (4), the solutions of (45) read

(46) φ =
3φ0℘(ξ, g2, g3)− 5βφ0 + 2αφ30 + 3R1

3℘(ξ, g2, g3) + β − 2αφ20
where the invariants are given by

(47) g2 = 4β2, g3 =
4(β3 − 9αR2

1)

27
.

So we can obtain the general expressions for the solutions to (2):

(48)
q(x, t) = exp(iθ)

(
3φ0℘(ξ, g2, g3)− 5βφ0 + 2αφ30 + 3R1

3℘(ξ, g2, g3) + β − 2αφ20

)1/2

,

r(x, t) =
1

1− 4p2

(
3φ0℘(ξ, g2, g3)− 5βφ0 + 2αφ30 + 3R1

3℘(ξ, g2, g3) + β − 2αφ20

)2

+ c.

For example, substituting the simplest root φ0 = 0 of f(φ) into (48), we get

(49)
q(x, t) = exp(iθ)

(
3R1

3℘(ξ, g2, g3) + β

)1/2

,

r(x, t) =
1

1− 4p2

(
3R1

3℘(ξ, g2, g3) + β

)2

+ c.

Case 2(ii): R1 6= 0, n = 2, p = −1/2. In this case, (18) takes the form

(50)
(
dφ

dξ

)2

= 4

[
−βφ2 + α

3
+R1φ

3

]
= f(φ).

Using similar arguments to those in Case 2(i), we get the following general
expression for the solutions to (2):

(51)
q(x, t) = exp(iθ)

(
−3φ0℘(ξ, g2, g3)− 5βφ0 + 6R1φ

2
0

3℘(ξ, g2, g3) + β − 3R1φ0

)−1/2
,

r(x, t) =
1

1− 4p2

(
−3φ0℘(ξ, g2, g3)− 5βφ0 + 6R1φ

2
0

3℘(ξ, g2, g3) + β − 3R1φ0

)−2
+ c.

4. Conclusion. From the above discussion, we find the travelling wave
solutions of the Zakharov equation in plasmas with power law nonlinearity,
expressed by hyperbolic functions and trigonometric functions, without the
aid of mathematical software. The results show that the Weierstrass func-
tion method is a powerful mathematical tool to search for exact solutions to
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nonlinear differential equations, especially solitary ones. It may be advanta-
geous that this quite general method can lead to free parameters as shown
in the solution. We believe that this approach can also be used to solve other
nonlinear equations.

References

[1] M. Abramovitz and I. A. Stegun, Handbook of Mathematical Functions, 9th ed.,
Dover, New York, 1972.

[2] A. Bekir, Applications of the extended tanh method for coupled nonlinear evolution
equations, Comm. Nonlinear Sci. Numer. Simulation 13 (2008), 1748–1757.

[3] A. Biswas, E. Zerrad, J. Gwanmesia, and R. Khouri, 1-Soliton solution of the gen-
eralized Zakharov equation in plasmas by He’s variational principle, Appl. Math.
Comput. 215 (2010), 4462–4466.

[4] A. Borhanifar, M. M. Kabir, and L. M. Vahdat, New periodic and soliton wave
solutions for the generalized Zakharov system and (2 + 1)-dimensional Nizhnik–
Novikov–Veselov system, Chaos Solitons Fractals 42 (2009), 1646–1654.

[5] K. Chanderasekharam, Elliptic Functions, Springer, Berlin, 1985.
[6] H. T. Chen and H. Q. Zhang, New double periodic and multiple soliton solutions of

the generalized (2+1)-dimensional Boussinesq equation, Chaos Solitons Fractals 20
(2004), 765–769.

[7] X. Deng, M. Zhao, and X. Li, Travelling wave solutions for a nonlinear variant of
the PHI-four equation, Math. Computer Modelling 49, (2009), 617–622.

[8] P. G. Estévez, S. Kuru, J. Negro, and L. M. Nieto, Travelling wave solutions of the
generalized Benjamin–Bona–Mahony equation, Chaos Solitons Fractals 40 (2009),
2031–2040.

[9] E. Fan, Extended tanh-function method and its applications to nonlinear equations,
Phys. Lett. A 277 (2000), 212–218.

[10] J. H. He and M. A. Abdou, New periodic solutions for nonlinear evolution equations
using Exp-function method, Chaos Solitons Fractals 34 (2007), 1421–1429.

[11] J. H. He and H. X. Wu, Exp-function method for nonlinear wave equations, Chaos
Solitons Fractals 30 (2006), 700–708.

[12] R. Hirota, The Direct Method in Soliton Theory, Cambridge Univ. Press, Cam-
bridge, 2004.

[13] W. H. Huang, A polynomial expansion method and its application in the coupled
Zakharov–Kuznetsov equations, Chaos Solitons Fractals 29 (2006), 365–371.

[14] M. Inc and M. Ergüt, Periodic wave solutions for the generalized shallow water wave
equation by the improved Jacobi elliptic function method, Appl. Math. E-Notes 5
(2005), 89–96.

[15] E. L. Ince, Ordinary Differential Equations, Dover, New York, 1956.
[16] M. Javidi and A. Golbabai, Construction of a solitary wave solution for the gener-

alized Zakharov equation by a variational iteration method, Computers Math. Appl.
54 (2007), 1003–1009.

[17] E. Kengne, A. Lakhssassi, R. Vaillancourt, and W.-M. Liu, Exact solutions for
generalized variable-coefficients Ginzburg–Landau equation: Application to Bose–
Einstein condensates with multi-body interatomic interactions, J. Math. Phys. 53
(2012), 123703.

[18] O. P. Layeni, A new rational auxiliary equation method and exact solutions of a
generalized Zakharov system, Appl. Math. Comput. 215 (2009), 2901–2907.

http://dx.doi.org/10.1016/j.cnsns.2007.05.001
http://dx.doi.org/10.1016/j.amc.2009.12.071
http://dx.doi.org/10.1016/j.chaos.2009.03.064
http://dx.doi.org/10.1016/j.chaos.2003.08.006
http://dx.doi.org/10.1016/j.mcm.2008.03.011
http://dx.doi.org/10.1016/j.chaos.2007.09.080
http://dx.doi.org/10.1016/S0375-9601(00)00725-8
http://dx.doi.org/10.1016/j.chaos.2006.05.072
http://dx.doi.org/10.1016/j.chaos.2006.03.020
http://dx.doi.org/10.1016/j.chaos.2005.08.022
http://dx.doi.org/10.1016/j.camwa.2006.12.044
http://dx.doi.org/10.1016/j.amc.2009.09.034


22 A. El Achab

[19] A. Lesfari and A. Elachab, On the integrability of the generalized Yang–Mills system,
Appl. Math. (Warsaw) 31 (2004), 345–351.

[20] W. Malfliet, Solitary wave solutions of nonlinear wave equations, Amer. J. Phys. 60
(1992), 650–654.

[21] B. Malomed, D. Anderson, M. Lisak, and M. L. Quiroga-Teixeiro, Dynamics of
solitary waves in the Zakharov model equations, Phys. Rev. E 55 (1977), 962–968.

[22] M. R. Miura, Bäcklund Transformation, Springer, Berlin, 1978.
[23] J. Nickel, Elliptic solutions to a generalized BBM equation, Phys. Lett. A 364 (2007),

221–226.
[24] J. Nickel, V. S. Serov, and H. W. Schürmann, Some elliptic travelling wave solutions

for Novikov–Veselov equation, PIER 61 (2006), 323–331.
[25] L. Pochhammer, Ueber die Fortpflanzungsgeschwindigkeiten kleiner Schwingungen

in einem unbegrenzten isotropen Kreiscylinder, J. Reine Angew. Math. 81 (1876),
324–336.

[26] H. W. Schürmann, Travelling wave solutions for cubic-quintic nonlinear Schrödinger
equation, Phys. Rev. E 54 (1996), 4312–4320.

[27] H. W. Schürmann, V. S. Serov, and J. Nickel, Superposition in nonlinear wave and
evolution equations, Int. J. Theoret. Phys. 45 (2006), 1093–1109.

[28] M. Song, Application of bifurcation method to the generalized Zakharov equations,
Math. Problems Engrg. 2012, art. ID 308326, 8 pp.

[29] M. Song and Z. R. Liu, Traveling wave solutions for the generalized Zakharov equa-
tions, Math. Problems Engrg. 2012, art. ID 747295, 14 pp.

[30] P. Suarez and A. Biswas, Exact 1-soliton solution of the Zakharov equation in plas-
mas with power law nonlinearity, Appl. Math. Comput. 217 (2011), 7372–7375.

[31] M. Wang and X. Li, Extended F-expansion method and periodic wave solutions for
the generalized Zakharov equations, Phys. Lett. A 343 (2005), 48–54.

[32] A. M. Wazwaz, A sine-cosine method for handling nonlinear wave equations, Math.
Computer Modelling 15 (1982), 197–211.

[33] K. Weierstrass, Mathematische Werke V, Johnson, New York, 1915.
[34] E. T. Whittaker and G. Watson, A Course of Modern Analysis, Cambridge Univ.

Press, Cambridge, 1988.
[35] T. C. Xia, Auto-Bäcklund transformation and exact analytical solutions for the Ku-

pershmidt equation, Appl. Math. E-Notes 3 (2003), 171–177.
[36] V. E. Zakharov, Collapse of Langmuir waves, Zh. Eksperiment. Teoret. Fiz. 62

(1972), 1745–1751 (in Russian).
[37] J. Zhang, Variational approach to solitary wave solution of the generalized Zakharov

equation, Computers Math. Appl. 54 (2007), 1043–1046.
[38] X. D. Zheng, T. C. Xia and H. Q. Zhang, New exact traveling wave solutions for

compound KdV-Burgers equations in mathematical physics, Appl. Math. E-Notes 2
(2002), 45–50.

A. El Achab
Department of Mathematics
Faculty of Sciences
University of Chouaïb Doukkali
B.P. 20, El-Jadida, Morocco
E-mail: abdelfattahelachab@gmail.com

Received on 3.1.2014;
revised version on 25.12.2014 (2204)

http://dx.doi.org/10.4064/am31-3-8
http://dx.doi.org/10.1119/1.17120
http://dx.doi.org/10.1016/j.physleta.2006.11.088
http://dx.doi.org/10.2528/PIER06041202
http://dx.doi.org/10.1103/PhysRevE.54.4312
http://dx.doi.org/10.1016/j.amc.2011.02.036
http://dx.doi.org/10.1016/j.physleta.2005.05.085
http://dx.doi.org/10.1016/j.camwa.2006.12.048

	1 Introduction
	2 Weierstrass elliptic functions
	3 The Zakharov equation in plasmas with power law nonlinearity
	3.1 Case 1
	3.2 Case 2

	4 Conclusion
	References

