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Positive solutions to a singular fourth-order
two-point boundary value problem

by Qingliu Yao (Nanjing)

Abstract. This paper studies the existence of multiple positive solutions to a nonlin-
ear fourth-order two-point boundary value problem, where the nonlinear term may be sin-
gular with respect to both time and space variables. In order to estimate the growth of the
nonlinear term, we introduce new control functions. By applying the Hammerstein integral
equation and the Guo–Krasnosel’skĭı fixed point theorem of cone expansion-compression
type, several local existence theorems are proved.

1. Introduction. This paper studies the positive solutions of the fol-
lowing nonlinear fourth-order two-point boundary value problem:

(P1)
{
u(4)(t) = h(t)f(t, u(t)) + ζ(t, u(t)), 0 < t < 1,
u(0) = u′(0) = u(1) = u′′(1) = 0.

Here, the function u∗ is called a positive solution of (P1) if u∗ is a solution
of (P1) and u∗(t) > 0, 0 < t < 1. In mechanics, problem (P1) models the
deflection of an elastic beam rigidly fixed on the left and simply supported
on the right.

Throughout this paper, 0 < α < β < 1, q(t) = 2
3 t

2(1− t) and

(H1) h ∈ L1[0, 1] is a nonnegative function and
	β
α h(t) dt > 0.

(H2) f : [0, 1]× [0,+∞)→ [0,+∞) is a continuous function.
(H3) ζ : (0, 1)× (0,+∞)→ [0,+∞) is continuous and, for every pair of

positive numbers 0 < r1 < r2, there exists a nonnegative function
jr2r1 ∈ L

1[0, 1] ∩ C(0, 1) such that ζ(t, u) ≤ jr2r1 (t) for 0 ≤ t ≤ 1 and
r1q(t) ≤ u ≤ r2.

Thus, we allow the nonlinear term h(t)f(t, u) + ζ(t, u) to be singular in
the time variable at t = 0, t = 1 and in the space variable at u = 0. In this
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paper, the functions f(t, u) and ζ(t, u) are called the continuous part and
singular part of problem (P1) respectively.

A typical example is

(P2)

{
u(4)(t) = γuλ(t) +

η

uτ (t)
, 0 < t < 1,

u(0) = u′(0) = u(1) = u′′(1) = 0,
where λ, τ, γ, η are positive constants. In problem (P2), the nonlinear term
γuλ + η/uτ is singular at u = 0.

When ζ(t, u) ≡ 0 and h(t) ≡ 1, the existence and multiplicity of solutions
and positive solutions of problem (P1) have been studied by several authors
(see [1, 2, 5, 6, 9–11]). Very recently, we proved in [11] the following local
existence theorem.

Theorem 1.1. Assume that h(t) ≡ 1, ζ(t, u) ≡ 0 and there exist positive
numbers a < b such that one of the following conditions is satisfied :

(a1) ϕ(a) ≤ 48a, ψ(b) ≥ 486b
β3(4−3β)−α3(4−3α)

.

(a2) ψ(a) ≥ 486a
β3(4−3β)−α3(4−3α)

, ϕ(b) ≤ 48b.

Then problem (P1) has a positive solution u∗ ∈ K such that a ≤ ‖u∗‖ ≤ b.
In Theorem 1.1, we introduced the following control functions and cone:

ϕ(r) = max{f(t, u) : 0 ≤ t ≤ 1, rq(t) ≤ u ≤ r},
ψ(r) = min{f(t, u) : α ≤ t ≤ β, rq(t) ≤ u ≤ r},
K = {u ∈ C[0, 1] : u(t) ≥ ‖u‖q(t), 0 ≤ t ≤ 1},

where ‖u‖ = max0≤t≤1 |u(t)| is the norm in the Banach space C[0, 1]. Geo-
metrically, ϕ(r) is the maximal height of f(t, u) on the swallow-tailed domain
{(t, u) : 0 ≤ t ≤ 1, rq(t) ≤ u ≤ r}, and ψ(r) is the minimal height of f(t, u)
on the domain {(t, u) : α ≤ t ≤ β, rq(t) ≤ u ≤ r}. We will also use these
symbols in this paper.

The solvability of other singular boundary value problems has been ex-
tensively discussed in the literature in the past ten years: see for example
[3, 4, 7, 8, 12]. However, to the best of our knowledge, the existence of pos-
itive solutions has not been studied previously when the problem (P1) has
singular nonlinear term with respect to the space variable.

The purpose of this paper is to extend Theorem 1.1 to the general singu-
lar problem (P1) under the assumptions (H1)–(H3). In order to achieve this
aim, we will construct new control functions defined on the swallow-tailed
domain {(t, u) : 0 ≤ t ≤ 1, rq(t) ≤ u ≤ r}. By using new control functions,
we will consider not only the height of the continuous part f(t, u), but also
the integral of the singular part ζ(t, u). By applying the Guo–Krasnosel’skĭı
fixed point theorem of cone expansion-compression type, we will prove the
existence of finitely and infinitely many positive solutions for problem (P1).
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Furthermore, we will verify the existence of one and two positive solutions
for problem (P2). Finally, we will illustrate that our method is different
from ones in [3, 4, 7, 8, 12] by two examples. In particular, we will give an
example with infinitely many positive solutions.

2. Preliminaries. It is easy to check that K is a cone of nonnegative
functions in C[0, 1]. Write K[r1, r2] = {u ∈ K : r1 ≤ ‖u‖ ≤ r2}.

Let G(t, s) be the Green function of the homogeneous linear problem

u(4)(t) = 0, 0 ≤ t ≤ 1, u(0) = u′(0) = u(1) = u′′(1) = 0.

From [2], the exact expression of G(t, s) is

G(t, s) =

{
1
12(1− t)s2[3(1− s)− (1− t)2(3− s)], 0 ≤ s ≤ t ≤ 1,
1
12 t

2(1− s)[3(1− t)− (1− s)2(3− t)], 0 ≤ t ≤ s ≤ 1.

Obviously, G : [0, 1] × [0, 1] → [0, 1] is continuous and G(t, s) > 0 for 0 <
t, s < 1.

Let H(s) = 1
4s

2(1− s). By Lemma 2.1 in [11], we have

Lemma 2.1. q(t)H(s) ≤ G(t, s) ≤ H(s) for 0 ≤ t, s ≤ 1.

Define the operator T as follows:

(Tu)(t) =
1�

0

G(t, s)[h(s)f(s, u(s)) + ζ(s, u(s))] ds, 0 ≤ t ≤ 1, u ∈ K \ {0}.

Lemma 2.2. T : K[r1, r2] → K is a completely continuous operator for
any 0 < r1 < r2.

Proof. Let jr2r1 (t) be as in (H3) and

ζ̃(t, u) =


ζ(t, r1q(t)), 0 < t < 1, 0 ≤ u ≤ r1q(t),
ζ(t, u), 0 < t < 1, r1q(t) ≤ u ≤ r2,
ζ(t, r2), 0 < t < 1, r2 ≤ u < +∞;

(T1u)(t) =
1�

0

G(t, s)h(s)f(s, u(s)) ds, 0 ≤ t ≤ 1,

(T2u)(t) =
1�

0

G(t, s)ζ̃(s, u(s)) ds, 0 ≤ t ≤ 1.

Obviously, ζ̃ : (0, 1)× [0,+∞)→ [0,+∞) is continuous and ζ̃(t, u) ≤ jr2r1 (t),
(t, u) ∈ (0, 1)× [0,+∞). By the Arzelà–Ascoli theorem, T1, T2 : K → C[0, 1]
are completely continuous operators.

If u ∈ K[r1, r2], then r1 ≤ ‖u‖ ≤ r2 and r1q(t) ≤ u(t) ≤ r2 for 0 ≤ t ≤ 1.
So, for any u ∈ K[r1, r2], Tu = T1u+T2u. Therefore, T : K[r1, r2]→ C[0, 1]
is completely continuous.
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On the other hand, by Lemma 2.1, for 0 ≤ t ≤ 1,

(Tu)(t) =
1�

0

G(t, s)[h(s)f(s, u(s)) + ζ(s, u(s))] ds

≥ q(t)
1�

0

H(s)[h(s)f(s, u(s)) + ζ(s, u(s))] ds

≥ q(t) max
0≤t≤1

1�

0

G(t, s)[h(s)f(s, u(s)) + ζ(s, u(s))] ds = ‖Tu‖q(t).

Hence, T : K[r1, r2]→ K.

Lemma 2.3 (Guo–Krasnosel’skĭı). Let X be a Banach space, and K be
a cone in X. Assume Ω1, Ω2 are bounded open subsets of K with 0 ∈ Ω1 ⊂
Ω1 ⊂ Ω2, and F : Ω2 \ Ω1 → K is a completely continuous operator such
that either

(1) ‖F (x)‖ ≤ ‖x‖ for x ∈ ∂Ω1 and ‖F (x)‖ ≥ ‖x‖ for x ∈ ∂Ω2, or
(2) ‖F (x)‖ ≥ ‖x‖ for x ∈ ∂Ω1 and ‖F (x)‖ ≤ ‖x‖ for x ∈ ∂Ω2.

Then F has a fixed point in Ω2 \Ω1.

In this paper, we use the following constants:

A = max
0≤t≤1

1�

0

G(t, s)h(s) ds, B = max
α≤t≤β

q(t)
β�

α

H(s)h(s) ds,

M = max
0≤t,s≤1

G(t, s), m = min
α≤t,s≤β

G(t, s).

Direct computations give

M = G(2−
√

2, 2−
√

2) =
17− 12

√
2

3
≈ 1

101.9117
,

m = G(α, β) =
1
12
α2(1− β)[β(3− α)(2− β)− 2α].

If h(t) ≡ 1, then

A=
1
48

max
0≤t≤1

t2(1− t)(3− 2t) =
117 + 115

√
33

196608
≈ 1

252.8315
,

B=


β3(4− 3β)− α3(4− 3α)

486
,

2
3
∈ [α, β],

16 max{α2(1− α), β2(1− β)}[β3(4− 3β)− α3(4− 3α)]
243

,
2
3
6∈ [α, β].
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For r > 0, let

µ(r) =
1�

0

max{ζ(t, u) : rq(t) ≤ u ≤ r} dt,

ν(r) =
β�

α

min{ζ(t, u) : rq(t) ≤ u ≤ r} dt.

Geometrically, max{ζ(t, u) : rq(t) ≤ u ≤ r} is the maximal height of the
singular part ζ(t, u) on the set {(t, u) : 0 < t < 1, rq(t) ≤ u ≤ r}, and
µ(r) is the integral of the maximal height function on [0, 1]. For ν(r), the
geometric meaning is similar.

In order to study the singular problem (P1), we introduce the following
two control functions:

Aϕ(r) +Mµ(r), Bψ(r) +mν(r).

We will use them to estimate the growth of the nonlinear term h(t)f(t, u) +
ζ(t, u) on the swallow-tailed domain

{(t, u) : 0 < t < 1, rq(t) ≤ u ≤ r}.

3. Main results. We obtain the following local existence theorems.

Theorem 3.1. Suppose that there exist positive numbers a < b such that
one of the following conditions is satisfied :

(b1) Aϕ(a) +Mµ(a) ≤ a, Bψ(b) +mν(b) ≥ b.
(b2) Bψ(a) +mν(a) ≥ a, Aϕ(b) +Mµ(b) ≤ b.

Then problem (P1) has a positive solution u∗ ∈ K such that a ≤ ‖u∗‖ ≤ b.

Proof. We prove only the case (b1). The proof of the case (b2) is similar.
Let Ω(r) = {u ∈ K : ‖u‖ < r}. Then K[a, b] = Ω(b) \Ω(a).
If u ∈ ∂Ω(a), then aq(t) ≤ u(t) ≤ a for 0 ≤ t ≤ 1. Thus f(t, u(t)) ≤ ϕ(a)

for 0 ≤ t ≤ 1 and
	1
0 ζ(t, u(t)) dt ≤ µ(a). It follows that

‖Tu‖ = max
0≤t≤1

1�

0

G(t, s)[h(s)f(s, u(s)) + ζ(s, u(s))] ds

≤ max
0≤t≤1

1�

0

G(t, s)h(s)f(s, u(s)) ds+ max
0≤t≤1

1�

0

G(t, s)ζ(s, u(s)) ds

≤ ϕ(a) max
0≤t≤1

1�

0

G(t, s)h(s) ds+M

1�

0

ζ(s, u(s)) ds

≤ Aϕ(a) +Mµ(a) ≤ a = ‖u‖.
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If u ∈ ∂Ω(b), then bq(t) ≤ u(t) ≤ b for 0 ≤ t ≤ 1. Thus f(t, u(t)) ≥ ψ(b)
for α ≤ t ≤ β and

	β
α ζ(t, u(t)) dt ≥ ν(b). Applying Lemma 2.1, we obtain

‖Tu‖ ≥ max
α≤t≤β

β�

α

G(t, s)[h(s)f(s, u(s)) + ζ(s, u(s))] ds

≥ max
α≤t≤β

β�

α

G(t, s)h(s)f(s, u(s)) ds+ min
α≤t≤β

β�

α

G(t, s)ζ(s, u(s)) ds

≥ ψ(b) max
α≤t≤β

q(t)
β�

α

H(s)h(s) ds+ min
α≤t,s≤β

G(t, s)
β�

α

ζ(s, u(s)) ds

≥ Bψ(b) +mν(b) ≥ b = ‖u‖.

By Lemmas 2.2 and 2.3, there exists u∗ ∈ K[a, b] such that Tu∗ = u∗.
In other words, u∗ ∈ K, a ≤ ‖u∗‖ ≤ b and

u∗(t) =
1�

0

G(t, s)[h(s)f(s, u∗(s)) + ζ(s, u∗(s))] ds, 0 ≤ t ≤ 1.

Direct checks give

(u∗)(4)(t) = h(t)f(t, u∗(t)) + ζ(t, u∗(t)), 0 < t < 1,

and u∗(0) = u∗(1) = (u∗)′(0) = (u∗)′′(1) = 0. Therefore, u∗ is a solution of
problem (P1). Since u∗(t) ≥ aq(t) > 0, 0 < t < 1, u∗ is a positive solution.

Theorem 3.2. Assume that there exist positive numbers a < b < c such
that one of the following conditions is satisfied :

(c1) Aϕ(a) +Mµ(a) ≤ a, Bψ(b) +mν(b) > b, Aϕ(c) +Mµ(c) ≤ c.
(c2) Bψ(a) +mν(a) ≥ a, Aϕ(b) +Mµ(b) < b, Bψ(c) +mν(c) ≥ c.

Then problem (P1) has positive solutions u∗1, u
∗
2 ∈ K such that a ≤ ‖u∗1‖ <

b < ‖u∗2‖ ≤ c.

Proof. By the assumptions (H1)–(H3), we can prove that ϕ,ψ, µ, ν :
(0,+∞) → [0,+∞) are continuous.

If Bψ(b) + mν(b) > b, then there exist a < b1 < b < b2 < c such that
Bψ(b1) +mν(b1) ≥ b1 and Bψ(b2) +mν(b2) ≥ b2. By Theorem 3.1, problem
(P1) has positive solutions u∗1, u

∗
2 ∈ K satisfying a ≤ ‖u∗1‖ ≤ b1 < b < b2 ≤

‖u∗2‖ ≤ c. Similarly, we can prove the case (c2).

Generally, we have the following theorem on existence of n positive so-
lutions, where [c] is the integer part of c.

Theorem 3.3. Assume that there exist positive numbers a1 < · · · <
an+1 such that one of the following conditions is satisfied :
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(d1) Aϕ(a2k−1) + Mµ(a2k−1) < a2k−1 for k = 1, . . . , [(n+ 2)/2] and
Bψ(a2k) +mν(a2k) > a2k for k = 1, . . . , [(n+ 1)/2].

(d2) Bψ(a2k−1) + mν(a2k−1) > a2k−1 for k = 1, . . . , [(n+ 2)/2] and
Aϕ(a2k) +Mµ(a2k) < a2k for k = 1, . . . , [(n+ 1)/2].

Then problem (P1) has positive solutions u∗k ∈ K, k = 1, . . . , n, such that
ak < ‖u∗k‖ < ak+1.

Remark 3.1. If ζ(t, u) ≡ 0 and h(t) ≡ 1, then µ(r) = ν(r) ≡ 0 for any
r > 0, and

A <
1
48
, B ≤ β3(4− 3β)− α3(4− 3α)

486
.

From this, we see that Theorem 1.1 is a simple corollary of Theorem 3.1.

4. Results concerning growth limits. In this section, we study some
cases involving the growth limits of the nonlinear term. Let

ϕ
0

= lim inf
r→0

ϕ(r)/r, ϕ∞ = lim inf
r→+∞

ϕ(r)/r,

ψ0 = lim sup
r→+0

ψ(r)/r, ψ∞ = lim sup
r→+∞

ψ(r)/r,

µ
0

= lim inf
r→0

µ(r)/r, µ∞ = lim inf
r→+∞

µ(r)/r,

ν0 = lim sup
r→0

ν(r)/r, ν∞ = lim sup
r→+∞

ν(r)/r.

Theorem 4.1. Assume that one of the following conditions is satisfied :

(e1) Aϕ
0

+Mµ
0
< 1 and Bψ∞ +mν∞ > 1.

(e2) Bψ0 +mν0 > 1 and Aϕ∞ +Mµ∞ < 1.

Then problem (P1) has a positive solution u∗ ∈ K.

Proof. We prove only the case (e1).
Since Aϕ

0
+Mµ

0
< 1, there is a > 0 such that Aϕ(a)/a+Mµ(a)/a < 1.

Thus, Aϕ(a) +Mµ(a) < a.
Since Bψ∞+mν∞ > 1, there is b > a such that Bψ(b)/b+mν(b)/b > 1.

Thus, Bψ(b) +mν(b) > b.
By Theorem 3.1, the proof is complete.

Theorem 4.2. Assume that the following conditions are satisfied :

(f1) There exist r̄, L̄ > 0 such that ζ(t, u) ≥ L̄ for (t, u) ∈ [α, β]× (0, r̄].
(f2) limu→+∞max0≤t≤1 f(t, u)/u < A−1.
(f3) There exists r0 > 0 and a nonnegative function Jr0 ∈ L1[0, 1] such

that
ζ(t, u) ≤ Jr0(t), (t, u) ∈ (0, 1)× [r0,+∞).

Then problem (P1) has a positive solution u∗ ∈ K.
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Proof. By (f1), for any 0 < r ≤ r̄, ν(r) ≥
	β
α L̄ dt = L(β − α). Thus,

ν0 = ν0 = +∞. Let j2r0r0 (t) be as in (H3). By (f3), for any r ≥ r0, we have

ζ(t, u) ≤ j2r0r0 (t) + Jr0(t), 0 < t < 1, rq(t) ≤ u ≤ r.

Thus, µ(r) ≤
	1
0 j

2r0
r0 (t) dt+

	1
0 Jr0(t) dt < +∞ and µ∞ = µ∞ = 0.

Let
ε =

1
3

[A−1 − lim
u→+∞

max
0≤t≤1

f(t, u)/u].

By (f2), ε > 0 and there exists r1 > 0 such that

max
0≤t≤1

f(t, u) < (A−1 − 2ε)u, u ∈ [r1,+∞).

Let
r2 = max{r1 + 1, ε−1 max{max

0≤t≤1
f(t, u) : 0 ≤ u ≤ r1}}.

Then, for any r ≥ r2,

ϕ(r) ≤ max{max
0≤t≤1

f(t, u) : 0 ≤ u ≤ r}

≤ max{max
0≤t≤1

f(t, u) : 0 ≤ u ≤ r1}+ max{max
0≤t≤1

f(t, u) : r1 ≤ u ≤ r}

≤ εr2 + (A−1 − 2ε)r ≤ (A−1 − ε)r.
So, ϕ∞ ≤ ϕ∞ < A−1.

Therefore, Bψ0 + mν0 = +∞ > 1 and Aϕ∞ + Mµ∞ < 1. By Theorem
4.1(e2), the proof is complete.

Similarly, we have the following multiplicity result.

Theorem 4.3. Assume that one of the following conditions is satisfied :

(g1) Aϕ
0

+Mµ
0
< 1, Aϕ∞+Mµ∞ < 1 and there exists d > 0 such that

Bψ(d) +mν(d) > d.
(g2) Bψ0 +mν0 > 1, Bψ∞+mν∞ > 1 and there exists d > 0 such that

Aϕ(d) +Mµ(d) < d.

Then problem (P1) has positive solutions u∗1, u
∗
2 ∈ K such that 0 < ‖u∗1‖ <

d < ‖u∗2‖.
Furthermore, we have the following result on the existence of infinitely

many positive solutions.

Theorem 4.4. Assume that Aϕ∞ +Mµ∞ < 1 and Bψ∞ +mν∞ > 1.
Then problem (P1) has a sequence of positive solutions u∗k, k = 1, 2, . . . ,
such that ‖u∗k‖ → +∞.

Proof. By assumption, there exist sequences of positive numbers ak →
+∞, bk → +∞ such that

Aϕ(ak) +Mµ(ak) < ak, Bψ(bk) +mν(bk) > bk.
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Without loss of generality, we can assume that a1 < b1 < a2 < b2 < · · · <
ak < bk < · · ·. By Theorem 3.3, for each k = 1, 2, . . . , there exists a positive
solution u∗k ∈ K with ak ≤ ‖u∗k‖ ≤ bk.

5. On problem (P2). In this section, we use the notation of prob-
lem (P2).

Let

h(t) ≡ 1, f(t, u) = f(u) = γuλ, ζ(t, u) = ζ(u) = η/uτ .

If 0 < r1 < r2, then

ζ(u) =
η

uτ
≤ η

[r1q(t)]τ
, r1q(t) ≤ u ≤ r2.

Let 0 < τ < 1/2 and

jr2r1 (t) =
η

[r1q(t)]τ
=

η

[23r1t
2(1− t)]τ

.

Then jr2r1 ∈ L
1[0, 1] ∩ C(0, 1). This shows that condition (H3) is satisfied if

0 < τ < 1/2.

Theorem 5.1. Assume that one of the following conditions is satisfied :

(h1) 0 < λ < 1, 0 < τ < 1/2.
(h2) λ = 1, 0 < τ < 1/2 and γ < A−1.

Then problem (P2) has a positive solution u∗ ∈ K.

Proof. We have ζ(u) ≥ η for 0 < u ≤ 1, and ζ(u) ≤ η for 1 ≤ u <
+∞. If (h1) holds, then limu→+∞ f(u)/u = 0 < A−1; if (h2) holds, then
limu→+∞ f(u)/u = γ < A−1. By Theorem 4.2, problem (P2) has a positive
solution u∗ ∈ K.

Theorem 5.2. Assume λ > 1 and 0 < τ < 1/2.

(j1) Let η > 0 be fixed. Then problem (P2) has two positive solutions
u∗1, u

∗
2 ∈ K for any 0 < γ ≤ 1

2A

[2τ (1−2τ)
31+τηM

](λ−1)/(1+τ).
(j2) Let γ > 0 be fixed. Then problem (P2) has two positive solutions

u∗1, u
∗
2 ∈ K for any 0 < η ≤ 2τ (1−2τ)

31+τM

[
1

2Aγ

](1+τ)/(λ−1).

Proof. Obviously, Bψ
0

+mν0 = +∞ > 1 and Bψ∞ +mν∞ = +∞ > 1.
If η > 0 is fixed, let

a =
[

31+τηM

2τ (1− 2τ)

]1/(1+τ)

> 0, so
3τηM

2τaτ (1− 2τ)
=
a

3
.

Direct computations give ϕ(a) = γaλ and

µ(a) =
1�

0

ηdt

(aq(t))τ
=

1�

0

ηdt

(2
3at

2(1− t))τ
≤ 3τη

2τaτ

1�

0

dt

t2τ
=

3τη
2τaτ (1− 2τ)

.
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Therefore,

Aϕ(a) +Mµ(a) ≤ Aγaλ +
3τηM

2τaτ (1− 2τ)
.

Let

γ∗ =
1

2A

[
2τ (1− 2τ)
31+τηM

](λ−1)/(1+τ)

=
1

2Aaλ−1
, so Aγ∗aλ =

a

2
.

It follows that, for any 0 < γ ≤ γ∗,

Aϕ(a) +Mµ(a) ≤ Aγaλ +
3τηM

2τaτ (1− 2τ)
≤ a

2
+
a

3
< a.

By Theorem 4.3(g2), the conclusion (j1) is proved.
If γ > 0 is fixed, then choose

a =
[

1
2Aγ

]1/(λ−1)

, so Aγaλ =
a

2
.

Let

η∗ =
2τ (1− 2τ)

31+τM

[
1

2Aγ

](1+τ)/(λ−1)

, so
3τη∗M

2τaτ (1− 2τ)
=
a

3
.

It follows that, for any 0 < η ≤ η∗,

Aϕ(a) +Mµ(a) ≤ Aγaλ +
3τηM

2τaτ (1− 2τ)
≤ a

2
+
a

3
< a.

By Theorem 4.3(g2), the conclusion (j2) is proved.

6. Two examples. In this section, we illustrate our improvements by
two examples.

Example 6.1. The example shows that our method is different from
those used in [8–12].

Consider the fourth-order boundary value problemu(4)(t) = (1 + sinu(t))
[

3

√
u(t)

t(1− t)
+

1
3
√
u(t)

]
, 0 < t < 1,

u(0) = u′(0) = u(1) = u′′(1) = 0.

In this problem h(t) = 1/
√
t(1− t), f(t, u) = f(u) = (1+sinu) 3

√
u, ζ(t, u) =

ζ(u) = (1 + sinu)/ 3
√
u. So assumptions (H1)–(H3) are satisfied and ζ(u) is

singular at u = 0.
We have ζ(u) ≥ 1 for 0 < u ≤ 1, ζ(u) ≤ 2 for 1 ≤ u < +∞, and

limu→+∞ f(u)/u = 0. By Theorem 4.2, the problem has a positive solution
u∗ ∈ K.

If u = (2k + 1)π, then f(u) = ζ(u) = 0. So infu>r[h(t)f(u) + ζ(u)] = 0
for any r > 0 and 0 < t < 1. Moreover, ζ(u) is not nonincreasing in u.
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Therefore, the conclusion cannot be derived by applying the methods in [3,
4, 7, 8, 12].

Example 6.2. The example shows that the existence of infinitely many
positive solutions is possible.

Let α = 1
2 , β = 2

3 , C = 13
B sin π

16
. Consider the fourth-order boundary

value problemu(4)(t) = C max{0, sin
√

max{0, lnu(t)}}u(t) +
1

3
√
u(t)

, 0 < t < 1,

u(0) = u′(0) = u(1) = u′′(1) = 0.

In this problem h(t) ≡ 1, f(t, u) = f(u) = C max{0, sin
√

max{0, lnu}}u,
ζ(t, u) = ζ(u) = 1/ 3

√
u. So assumptions (H1)–(H3) are satisfied and ζ(u) is

singular at u = 0.
Let σ = min1/2≤t≤2/3 q(t) = 1

12 . Then σ > e−
7
8
π ≈ 1

15.6253 .
For arbitrary k = 1, 2, . . . , we have

sin
√

lnu ≥ 0, f(u) ≥ 0, e(2kπ)2 ≤ u ≤ e[(2k+1)π]2 ,

sin
√

lnu ≤ 0, f(u) = 0, e[(2k+1)π]2 ≤ u ≤ e[(2k+2)π]2 .

Since σ>e−
7
8
π, we have σe(2k+

15
16

)π≥e(2k+
1
16

)π. So

σe[(2k+
15
16

)π]2≥e[(2k+
1
16

)π]2 .

Hence, we get

ϕ(e[(2k+2)π]2) = C max{max{0, sin
√

max{0, ln}}u : 0 ≤ u ≤ e[(2k+2)π]2}
= C max{sin

√
lnuu : e[2kπ]2 ≤ u ≤ e[(2k+1)π]2}

≤ Ce[(2k+1)π]2 ,

ψ(e[2k+
15
16
π]2) ≥ C min{sin

√
lnuu : σe[(2k+

15
16

)π]2 ≤ u ≤ e[(2k+
15
16

)π]2}

≥ C sin
√

ln(e[(2k+
15
16

)π]2) · σe[(2k+
15
16

)π]2

≥ Cσe[(2k+
15
16

)π]2 sin
π

16
.

It follows that

ϕ∞ ≤ lim
k→∞

Ce[(2k+1)π]2

e[(2k+2)π]2
= lim

k→∞

C

e(4k+3)π2 = 0,

ψ∞ ≥ lim
k→∞

Cσe[(2k+
15
16

)π]2 sin π
16

e[(2k+
15
16

)π]2
= Cσ sin

π

16
=

13
12B

.

Obviously, µ∞ = 0 and ν∞ = 0.
Therefore,Aϕ∞+Mµ∞ = 0 < 1 andBψ∞+mν∞ = 13

12 > 1. By Theorem
4.4, the problem has a sequence of positive solutions u∗k, k = 1, 2, . . . , such
that ‖u∗k‖ → +∞.
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