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A note on the number of zeros of polynomials in an annulus
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Abstract. Let p(z) be a polynomial of the form

p(z) =

nX
j=0

ajz
j , aj ∈ {−1, 1}.

We discuss a sufficient condition for the existence of zeros of p(z) in an annulus

{z ∈ C : 1− c < |z| < 1 + c},

where c > 0 is an absolute constant. This condition is a combination of Carleman’s formula
and Jensen’s formula, which is a new approach in the study of zeros of polynomials.

1. Introduction. Let p denote a polynomial of the form

p(z) =
n∑
j=0

ajz
j , |aj | ≤ 1, aj ∈ C.

Such polynomials and various related classes have been studied from a num-
ber of points of view. In [2]–[6] and [8], the number and location of zeros of
polynomials with bounded coefficients are considered. Many problems con-
cerning polynomials with restricted coefficients are explored in [2] and [5].

In this paper, we are concerned with one of the open problems which
are listed in [5]. We try to attack Question 4 in [5] which seems to be quite
interesting (see Question A below).

Many results in this direction are based on Jensen’s formula. Our purpose
here is to determine whether the polynomials with coefficients −1 or 1 have
at least one zero in some annulus by Carleman’s formula approach. We
will prove that the existence of zeros for such a polynomial in an annulus
{z ∈ C : 1− c < |z| < 1 + c} can be determined by the averaged number of
zeros in |z| < 1 + c and the sine value of the zeros in |z| < 1− c.
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Let us consider in greater detail the question of the number of polyno-
mials in an annulus. The following earlier result related to this question is
proved in [8].

Theorem A ([8]). For every n ∈ N there is a polynomial pn of the form

pn(z) =
n∑
j=0

aj,nz
j , |aj,n| = 1, aj ∈ C,

such that pn has no zeros in the annulus{
z ∈ C : 1− c log n

n
< |z| < 1 +

c log n
n

}
,

where c > 0 is an absolute constant.

Furthermore, the following conjecture is put forward in [8].

Conjecture A ([8]). Every polynomial of the form

p(z) =
n∑
j=0

ajz
j , aj ∈ {−1, 1},

has at least one zero in the annulus

{z ∈ C : 1− c/n < |z| < 1 + c/n},
where c > 0 is an absolute constant.

In the recent paper [5], the following question is presented.

Question A ([5]). Establish whether every polynomial p of degree n with
coefficients in the set {−1, 1} has at least one zero in the annulus

{z ∈ C : 1− c/n < |z| < 1 + c/n},
where c > 0 is an absolute constant.

Let us present the main result of this paper. With a sequence of numbers
Λ = {λn = |λn|eiθn : n = 1, 2, . . .}, λn ∈ C, we associate the averaged
counting function ([10])

NΛ(r) =
r�

0

nΛ(t)
t

dt, nΛ(t) =
∑
|λn|≤t

1,(1)

and

CΛ(t) =
∑
|λn|≤t

|sin θn|.(2)

Theorem 1. Let p be a polynomial of the form

p(z) =
n∑
j=0

ajz
j , aj ∈ {−1, 1},(3)
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and let Λ = {bk}nk=1 be its zero sequence. If for some c > 0,

NΛ(1 + c)− 16
9
CΛ(1− c) > 0,

where NΛ and CΛ are defined in (1) and (2) respectively, then p(z) has at
least one zero in the annulus {z ∈ C : 1− c < |z| < 1 + c}.

Remark 1. We will show the existence of a positive constant c satisfying
the condition in Theorem 1.

It is easy to see that

1+c�

1−c

nΛ(t)
t

dt ≥
1+c�

1−c

nΛ(1− c)
t

dt ≥
1+c�

1−c

CΛ(1− c)
t

dt.

If we choose c satisfying

1 > c >
e16/9 − 1
e16/9 + 1

,

then

NΛ(1 + c) =
1+c�

0

nΛ(t)
t

dt ≥
1+c�

1−c

nΛ(1− c)
t

dt ≥
1+c�

1−c

CΛ(1− c)
t

dt,

thus, we have

NΛ(1 + c)− 16
9
CΛ(1− c) > 0.

2. Proof of the Theorem. In contrast to previous works on the num-
ber of zeros of polynomials, we will apply Carleman’s formula which is often
used to describe the property of functions analytic in a half annulus.

Lemma 1 ([7], [10]). Let f(z) be a function analytic on S = {z : =z ≥ 0,
|z| ≤ R}. Then

∑
|bn|<R, 0<θn<π

(
1
|bn|
− |bn|
R2

)
sin θn =

1
πR

π�

0

log |f(Reiθ)| sin θ dθ

+
1

2π

R�

0

(
1
x2
− 1
R2

)
log |f(x)f(−x)| dx+

1
2
=f ′(0)

where {bn} is the zero of f(z) in S and {θn} is the corresponding sequence
of arguments.
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Lemma 2 ([10]). Let f(z) be a function analytic on {z : |z| ≤ R}, with
f(0) 6= 0, and let Λ be the zero sequence of f . Then

1
2π

2π�

0

log |f(Reiθ)| dθ = NΛ(R) + log |f(0)|,

where NΛ is defined in (1).

We are now ready to prove Theorem 1.

Proof of Theorem 1. Without loss of generality, we may assume that
p(1− c) 6= 0 and p(1 + c) 6= 0. Applying Carleman’s formula of Lemma 1 to
P (z) = p(z)

c(1+c)n+1 on S = {z : =z ≥ 0, |z| ≤ 1 + c}, we have

(4)
∑

|bk|<1+c, 0<θk<π

(
1
|bk|
− |bk|

(1 + c)2

)
sin θk

=
1

π(1 + c)

π�

0

log |P ((1 + c)eiθ)| sin θ dθ

+
1

2π

1+c�

0

(
1
x2
− 1

(1 + c)2

)
log |P (x)P (−x)| dx

where {bk} are the zeros of f(z) in S and {θk} are the arguments of {bk}.
By the same reasoning on S′ = {z : =z ≤ 0, |z| ≤ 1 + c}, we have

(5)
∑

|bk|<1+c, π<θk<2π

(
1
|bk|
− |bk|

(1 + c)2

)
sin θk

=
1

π(1 + c)

2π�

π

log |P ((1 + c)eiθ)| sin θ dθ

+
1

2π

1+c�

0

(
1
x2
− 1

(1 + c)2

)
log |P (x)P (−x)| dx

where {bk} are the zeros of f(z) in S′ and {θk} are the arguments of {bk}.
From (4) and (5), we have

(6)
∑

|bk|<1+c, 0<θk<π

(
1
|bk|
− |bk|

(1 + c)2

)
sin θk

−
∑

|bk|<1+c, π<θk<2π

(
1
|bk|
− |bk|

(1 + c)2

)
sin θk
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=
1

π(1 + c)

π�

0

log |P ((1 + c)eiθ)| sin θ dθ

− 1
π(1 + c)

2π�

π

log |P ((1 + c)eiθ)| sin θ dθ.

Since log a ≤ 0 for 0 < a ≤ 1, from (3) it is obvious that

log |P ((1 + c)eiθ)| ≤ 0.(7)

By (6) and (7), we have

(8)
∑

|bk|<1−c

(
1
|bk|
− |bk|

(1 + c)2

)
|sin θk|

+
∑

1−c≤|bk|<1+c

(
1
|bk|
− |bk|

(1 + c)2

)
|sin θk|

≥ 1
π(1 + c)

2π�

0

log |P ((1 + c)eiθ)| dθ.

We claim that all the zeros of P (z) are located in the annulus c0 < |z| < 2
where c0 is some positive constant satisfying c ≤ c0 < 1. Actually, the zeros
of p(z) and P (z) are the same. If 0 < r = |z| ≤ c0 and

p(z) =
n∑
j=0

ajz
j , aj ∈ {−1, 1},

then

|p(z)| ≥ |a0| − |a1z| − · · · − |anzn| = 1− (c0 + c20 + · · ·+ cn0 )

= 1− c0(1− cn0 )
1− c0

≥ 1− (1− cn0 ) > 0.

And for r = |z| ≥ 2,

|p(z)| ≥ |anzn| − |an−1z
n−1| − · · · − |a1z| − |a0|

= rn − rn−1 − · · · − r − 1 = rn − rn − 1
r − 1

> 0.

Whence, by combining (8) and Lemma 2, we have

(9)
∑

1−c≤|bk|<1+c

(
1
|bk|
− |bk|

(1 + c)2

)
|sin θk|

≥ 2
1 + c

NΛ(1 + c)−
∑

1/2<|bk|<1−c

(
1
|bk|
− |bk|

(1 + c)2

)
|sin θk|.
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Let m denote the number of zeros of p(z) in {z ∈ C : 1 − c ≤ |z| < 1 + c}.
By (9), we have∑

1−c≤|bk|<1+c

(
1
|bk|
− |bk|

(1 + c)2

)
|sin θk| ≤

∑
1−c≤|bk|<1+c

4c
(1− c)(1 + c)2

= m
4c

(1− c)(1 + c)2
.

Since c < 1 and

−
∑

1/2<|bk|<1−c

(
1
|bk|
− |bk|

(1 + c)2

)
|sin θn| ≥ −

16
9
CΛ(1− c),

if

NΛ(1 + c)− 16
9
CΛ(1− c) > 0

then p(z) has at least one zero in the annulus {z ∈ C : 1− c < |z| < 1 + c}.
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