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On totally umbilical submanifolds of Finsler spaces

by QUN HE, WEI YANG and WEI ZHAO (Shanghai)

Abstract. The notion of a totally umbilical submanifold of a Finsler manifold is
introduced. Some Gauss equations are given and some results on totally umbilical sub-
manifolds of Riemannian manifolds are generalized. Totally umbilical submanifolds of
Randers spaces are studied; a rigidity theorem and an example are given.

1. Introduction. In recent decades, Finsler geometry has been rapidly
developed. The study of the geometry of submanifolds has also made some
progress ([HS1], [HS2], [S], [SST], [ST]). By using the Busemann-Hausdorff
volume form, Z. Shen ([9]) investigated the geometry of Finsler submani-
folds. Avoiding any connections in Finsler geometry, he introduced the no-
tions of mean curvature and normal curvature for Finsler submanifolds.
By using the Holmes—Thompson volume form, i.e., the volume form in-
duced from the projective sphere bundle of the Finsler manifold, Q. He and
Y. B. Shen ([HS1)) introduced the notions of another mean curvature and
the second fundamental form, which coincide with the usual notions in the
Riemannian case.

The usual approach in the geometry of submanifolds is to consider the
induced (resp. intrinsic) connections and to establish some equations re-
lated to the curvatures of submanifolds and the curvatures of the ambient
space. These equations are usually too complicated to use. In this paper,
first of all, we shall establish some straightforward equations and use them
to study totally umbilical submanifolds of Finsler manifolds, which are de-
fined by using the second fundamental form introduced in [HS1]. Secondly,
we shall study submanifolds of Randers spaces, give relations between to-
tally umbilical submanifolds of the Randers space (M, & + B) and of the
Riemannian manifold (]\7 ,@), and obtain a rigidity theorem for complete
and connected totally umbilical submanifolds of a special Randers space.
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Lastly, an example of a totally umbilical submanifold of a Randers spaces
is given.

2. Finsler volume forms and minimal immersions. Let M be an
n-dimensional smooth manifold and 7w : TM — M be the natural projection.
A Finsler metric on M is a function F' : TM — [0,00) with the following
properties: (i) F' is smooth on TM \ {0}; (ii) F(z,\y) = AF(z,y) for all
A > 0; (iii) the induced quadratic form g is positive definite, where
1

1P

(2.1) g = gij(a:, y)dxi & d(L’j, 9ij ‘= yiyd -

o oF _0°F
yiyd €A 55, 5557 etc., and we shall use

the following convention of index ranges unless otherwise stated:
1<4,j,...<m; n+1<ab,...<m; 1<a,(,...<m(>n).
The projection w : TM — M gives rise to the pull-back bundle 7*1'M
and its dual 7*T™ M. We shall work on T'M \ {0} and rigidly use only objects
that are invariant under rescaling y — Ay (A > 0), so that one may view
them as objects on the projective sphere bundle SM using homogeneous
coordinates (see also [BCS| p. 29, lines 31-39]).
In 7*T* M there is a global section w = [F],:dx", called the Hilbert form,

whose dual is | = [* 8?0“ I' =4/ F, called the distinguished field. Set

Here and from now on, [F],, [F]

. 1 ) o ) 0 0
2.2 Y= —(dy* + Nida? — = — - NF_ .
(2.2) 0y' = L (dy' + Njd?),  ——5 = e
The volume element dVgps of SM with the Riemannian metric § is
(2.3) dVsyr = 2d1 N dz,
where
(2.4) 0= det@j), dr = dz* A+ A da™,
(2.5) dr =Y (1) yldy' Ao ANdyi A Ady™

i=1
The volume form of a Finsler n-manifold (M, F') is defined by ([HS1])
1
(2.6) AV ==o(x)dx, o(x):= S Q2dr,
Cn—1

Sz M

where ¢,_1 denotes the volume of the unit Euclidean (n — 1)-sphere S"~!,
SeM ={[y] | y € ToM}. It is well known that there exists a unique Chern
connection V on m*T'M with V% =wj 8?:1' and wj = F]?kdazk, satisfying

d(dz®) — dx? A w§ =0,

dgi; — gz’kUJf — gjkwf = ZA,-jk(Syk,

(2.7)
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where A;j;, = FCjyj and Cyj, = %[Fﬂyiyjyk are called the Cartan tensors.
The curvature 2-forms of the Chern connection V are

1. ,
(2.8) dw] w Awt = Q} 5 jzkldajk Ada! + szkldxk A 8y,

where Rjikl = R i, and P ¢ = Pkijl are the hh-curvature and the hv-
curvature respectlvely The Riemannian curvature tensor and the Landsberg
curvature tensor are defined by

3 A A
(29) R]Z . RZ]kl l :l]k = —lspsljk,

respectively, and we have

(2.10) Liji = gilLé‘k = Az‘jkv

where “.” denotes the covariant derivative along the Hilbert form. There is
another torsion-free Berwald connection ®V defined by

(2.11) 'W=V+A I =T+ Al

It is obvious that V; = ng
Let (M, F) and (M, F) be Finsler manifolds, and f : M — M be an
immersion. If F(z,y) = F(f(x),df(y)) for all (x,y) € TM \ {0}, then f is

called an isometric immersion. It is clear that

for the isometric immersion f : (M, F) — (M, FV), where
e o ~o a, i afa

~ Oxt
From (2.7)-(2.11), we have

LEMMA 2.1 (see also [HS1]). Let ®V be the pullback Berwald connection

on TF*(f_lTM) and h = bVdf be the second fundamental form with respect
to the Berwald connection. For any X € C(m*TM), X = X' 5 denotes
the horizontal part of X. Then

WX, Y) = bvx<de> dfVxY) ="Vxu(dfY) = df "VxnY),
OV xumg) (U, W) = 2A(U, W, h(l, X)) — 2L(U, W, df X),
for any U, W € C(n* o ffl(TM)) and X,Y € C(m*TM).

(2.14)1 can be rewritten as

(2.15) h = fo —TEfe + T8 £ 17,

(2.14)

where = d;sl axj Set

h® hz]y y - %yzy] - fl?Gk + Gaa hoz = gaﬁhﬂa
(2.16) . he O
T F2? 93’

* 1 ~o
B = ghadi®,
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where GF and G* are the geodesic coefficients for (M, F) and (M ,F), re-
spectively, and h is the normal curvature. Then we see easily that

- 1 P |
(217) h% = §[ha]yiyja h%y] = §[ha]yl

LEMMA 2.2 (sce also [HS3, Proposition 3.1)). Let f : (M,F) — (M, F)
be an tmmersion. Then

218 (i) = dRX) — S RX) + T
for any X € C(n*TM), where R = Ridxj ® 822"
Let By = e Flhglyiyi be the second fundamental form as defined in
[HS1]. Then
B(X,Y) = h(X,Y) 4+ 24A(h(l, X), dfY)
(2.19) +2A(R(1,Y),df X) + C*(df X, dfY, h),

B(X,1) = h(X,1) + A(h,df X),

where C# = FQCN',\M(;“Z]’\O‘ aga ® di’ @ di" @ di°, CN'AM(S aézma 2o, The trace
of Bis H = (1/n)trg B which is called the mean curvature vector field in
[HST). From A = AB Bmo‘ ®di’ ®d:v'y the Cartan normal curvature operator
Ay : C(n*TM) — C(m* o f~Y(T'M)) is defined by
(2.20) Ap(X) = A(h,dfX) for any X € C(x*TM).
Let (7*T M)+ be the orthogonal complement of 7*TM in 7* o f~(TM)
with respect to g, and let
= {E e C(S*T"M) | £(df(X)) =0, VX € C(TM)},

which are both called the normal bundle of f in [3].

We know that h, H, B(X,Y) € C(m*TM)* in [HSI]. Then from (2.16)
we have

k _ keB, i, ] ~3

(2.21) G" = Cbﬁ(fijy v+ G7),
where d)g = fl"‘glkgag. Let p- : 7% 0 f 1 (T M) — (7*T'M)* be the orthogonal
projection with respect to g. Then (2.21) and (2.16) show that

(2.22) W = piP(foy'y + G,
where paLﬁ =0 — ffd)g. Set
1 he
(2.23) = | 5dr)die.
Cn—10 F2
S M

Then p € V*, and it is called the mean curvature form of f. An isometric
immersion f: (M, F) — (M F) is called a minimal immersion if any com-
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pact domain of M is a critical point of its volume functional with respect
to any variation vector field.

LEMMA 2.3 (sce also [HSI, Theorem 2.2]). Let f : (M,F) — (M, F) be
an isometric immersion. Then f is minimal if and only if p = 0.

3. Gauss equations and totally umbilical submanifolds. First,
from Lemma 2.1, Lemma 2.2 and (3.8.3)—(3.8.5) in [BCS], we have

(Vi Vidf)(X) = Vu [(Vidf )(X)] = (Vidf ) (Vi X)
= Vi [W(X,1)] = (Vidf) (Vi X)
= (Virh)(X,1) = (Vi B)(X, 1) — (Vi Ap)(X),
Fy

Fya(h%)yk = —7(b155ay5f;ffff] - bPiljkfla)

1 3
= = (=24a 1171 + 9l Bly)

1 5 .
= F(_QAﬁ'yéflgfiﬁf] + 24;j1).-

From the formulas above, we have

THEOREM 3.1 (Gauss equations). Let f : (M,F) — (M, F) be an iso-
metric immersion. Then

(3.1) K(X)=K(dfX)+g((Virh)(X,1) = "Vyuh,df X)

= K(dfX) + §((Vir B)(X,1) = (Vi Ap)(X) = "V e h, df X)
for any X € C(n*TM) satisfying X L | and | X|| = 1, where h and h are
defined in (2.16) and (2.18) respectively, and
(32)  L(X.Y,2) = LFX,dfY,df2) + 5a((Vyoh)(X, 2), dfi)

for any X,Y,Z € C(W*TM)’ where YV = Fdxz(y)azz .

From Theorem 3.1 and the fact that °V yzh = (°V xuh)(1,1), we deduce
easily

PROPOSITION 3.2. Let f : (M, F) — (M, F) be an isometric immersion.

(1) If (M, ﬁ) has constant flag curvature ¢, and the second fundamental
form h with respect to the Berwald connection is parallel along the
horizontal directions, then (M, F) also has the constant flag curva-
ture c. _

(2) If (M, F) is a Landsberg manifold, and the second fundamental form
h with respect to the Berwald connection is parallel along the vertical
directions, then (M, F) is also a Landsberg manifold.



152 Q. He et al.

An isometric immersion f : (M, F) — (]\/Z~ ,F) is called totally umbilical
if there exists a vector field v € C((m o f)*T'M) such that
(3.3) B(X,Y) = (X, Y

for any X,Y € C(n*TM).

LEMMA 3.3. Let f : (M, F) — (M, F) be an isometric immersion. Then
M is totally umbilical if and only if v=h = H and h* is independent of y.

Proof. Necessity: It is obvious that

1
H:EtrgB:v, h = B(l,1l) =v.

So, (3.3) means By} = (1/F?)h%g;;. On the other hand, from (2.16), (2.17)
and (2.19), we see that
By’ = (hiy + 245 Wyl 1] + 243 I 17 + C3 b7 17 7y

- B%yﬂ + égvhﬁfzyv
from which we have

o BRI — 2a B i — o

[hoz]yi = 29aﬁBijy = ﬁgaﬂh 9ijY° = 2FhaFyi-

Hence,

ha L
[F2] = F3(F[hal, — 2F,iha) = 0.

Conversely, if [%]yl = 0, then
1
(ha)yi = QFhaFyi,

2 2
(h/a)yiyj = f(haFyiyj + Fyi(ha)yj) — ﬁhaFyiij
2
T F2
So B,?éj = (1/F2)hagij. L]

Similar to the Riemannian case, we have

2
(FFyiyj + Fyiij)ha = ﬁgijha-

PROPOSITION 3.4. An isometric immersion f : (M,F) — (M, F) is
totally umbilical minimal if and only if f is totally geodesic.

Proof. If f is a totally umbilical minimal immersion, then A* is indepen-
dent of y and

1 1 h
= Mo — =y aQ = 7&7
0=p o 1o (S SM F2h d7'> 5

from which we see that h, = 0, i.e., h = 0 and f is totally geodesic. =
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THEOREM 3.5. Any totally umbilical submanifold of a Landsberg mani-
fold with Ay, = 0 is also a Landsberg manifold.

Proof. From (3.3), (2.20) and Lemma 3.3, we know that B(X,Y) =
g9(X,Y)h, and
CH(df X, dfY,h) = 2A(h(1,Y), df X)

for any X, Y € C(m*T'M). We infer from (2.19) that

h(X,1) = B(l, X) = Ap(X) = g(X, 1)h,

h(X,Y)=B(X,Y)—2A(h(I,X),dfY)

—2A(h(1,Y), df X) — C*(df X, dfY, h)
=g(X,Y)h,

from which and (3.2) we have
L(X,Y,Z) = L(dfX,dfY,df Z)+§ <1A(X Y, Z)h+g(X, Z)h(Y, 1), dfl)

for any XY, Z € C(n*TM). u

THEOREM 3.6. Let (M, F) be an n-dimensional totally umbilical sub-
manifold of a locally Minkowski space (M,F) (n > 3). If there exists a
function \ such that Ap(X) = Adf X —w(X)I) for any X € C(x*TM), then
M has scalar flag curvature ||h|? — 17 (X) — A2

Proof. From (2.19), for any X € C(m*T M) satisfying X L [ and || X||=1,
we have

h(X, 1) = g(X, )h — \df X —w(X)I) = —Adf X,
(Vi h)(X,1) = 1T (\)df X + N\2df X.
From (3.1), (3.2), (2.16) and (2.19), we obtain
K(X) =M =15\ + 2A(h, df X, h(l, X)) + g(h, h(X, X))
= 22— (\) 4+ g(h, h) + ANA(df X, df X, h) — C*(df X, df X, h, h).
From Ap(X) = AMdf X — w(X)l), we obtain
CH(df X,df X, h,h) = ANA(df X, df X, h) = 42
Hence,

K(X)=|r|? =17 (\) =\ =

4. Totally umbilical submanifolds in Randers spaces. Let f :
(M, F) — (M, F) be an isometric immersion into a Randers (n + p)-space
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(M, F) with

18]l = \/@a*Pbabs =b (0<b<1)
Clearly, we have
(4.1) F=fF=a+p= \/azyy + by,
where
(4.2) aij = aasfP S, b =Dbaff,

which means (M, F) is also a Randers n-space.

LEMMA 4.1. Let f : (M,F) — (M, + f3) be an isometric immersion
into a Randers (n + p)-space, and let {n,} be a local orthonormal frame
of the normal bundle TM~ of f with respect to the Riemannian metric G.
Denote

(43) ito = || 5 [0 — B0

Then {n.} is a local orthonormal frame of the normal bundle [T*T M+ of
[ with respect to gz for § = df(y) in (M, F).

Proof. Let n, = n? -2 and h, = ﬁg%. Then from [BCS], we have

a 9x°
_ o = = F .-
g =\ s = B = £ g0,
N F
Gapng [ = \[%ﬁn? ; =0,
(4.4)

=N~ a0 _ E~a7’~ o~ iz

g(navnb) = GapBMqMy = Oég AraTg Qap Ty,

b
— B(00)I™aapn) = aagngny

= (n, n>& = 5ab- |

Let G' and G be the geodesic coefficients for (M, F') and (M,_ﬁ) with
respect to the Riemannian metrics a and @, respectively, and h be the
normal curvature of f with respect to &, that is,

he = Z‘;yzyj - f,?ék e
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From (2.21), (2.22) and [BCS]|, we have
G = G + by i 5T + (@ = 15%) (bgyy — by p)ais,
G" = fra%aas(fly'y’ +GP),

e =S (fy'y’ + GP)agengng.

Then, from (2.22) and (4.4), we have
he = (foy'y + G)gsaiicing

Sy + GPageng [ng — B(ng)l°]

) =D albgy = byg)§ ning — B(na)i,

a

ha == [fla + ) and(bsr — bris)i nlaag)|-

I
>
o

\

Q
(Y]
=y
=

From the formulas above, we see that

PROPOSITION 4.2. Let f : (M,a + ) — (M,d + B) be an isometric
immersion into a Randers (n + p)-space. If 5 is a closed 1-form, then

[Ny . a,*
where h* = (h /a?)dz®. Hence (M,a+ ) is a totally geodesic submanifold

of (M &+ B) iff (M, ) is a totally geodesic submanifold of (M Q).

THEOREM 4.3. Let f: (M,a+3) — (M,d—i—ﬁ) be an isometric immer-
sion into a Randers (n + p)-space with closed 1-form 3. Then (M,a+ () is
totally umbilical if and only if either (M, a+(3) is a totally geodesic subman-

ifold of (M,&+ ), or B=0 and (M, ) is a totally umbilical submanifold
of (M, a).

Proof. From Lemma 3.3 and (4.6), we know that H, = ho/F? is inde-
pendent of y, and

_ 1 1 1 -
ho = aFH, = H, (2(12 + §F2 - 2ﬂ2)a (ha)yiyj = Ha(aij + gij — bibj)-

Since ﬁf‘j = a™? (%Eﬁ)yiyj is the second fundamental form with respect to

Riemannian connections, it is independent of y, which implies that
- 1
0= [h%]yk = EaaﬁHg(QCijk) = aaﬁchijk.
Thus, either H =0 or C = 0.
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If H=h = 0, then (M,a + ) is a totally geodesic submanifold of
(M, &+ 3).

If C = 0, then M is a Riemannian manifold with F' = «a, so h* is in-
dependent of y iff h* is independent of y. From Lemma 4.1, we know that
(M, «) is a totally umbilical submanifold of (M, &) iff (M, F') is a totally
umbilical submanifold of (M JF). u

From Theorem 4.3 and Proposition 4.2, we immediately deduce

THEOREM 4.4. Let (V™" &+ B) be a Randers space, where & is a Eu-
clidean metric and B is a closed 1-form. Then any complete and connected
n-dimensional totally umbilical submanifold of (V"1 & —i—B) must be either
a plane or a Fuclidean sphere. The latter case happens only when there exist
a point Fo and a function N(&) on V™! such that § = N&)d(||F — %o||2)
and the sphere is centered at T.

EXAMPLE 4.5. Let (V"1 F) be a Randers manifold with F = & + f,
where

A= [ =Y A

[e%

where b is a constant and 0 < |b| < 1. Then dj = 0.

Let
{ GVnH‘Z —Zg) :7”2},
and f: (M, F) < (V"1 F) be an isometric immersion. It is obvious that

S (= E) =0,

(67

Then the unit normal vector with respect to & is n = (1/7)(f —Zo), and the
unit normal vector with respect to F'is n = y/a/F[n — B(n)l].
Let FF = o+ 3, where

= o £Qiq] o Y
/Eajfzijy, B = Zfﬁ

It is obvious that 8 = 0 for any « € M if and only if Zy = 0. It is well known
that (M, «) is a totally umbilical submanifold of (V™! &) in any case. But
from Theorem 4.3, we see that (M, F) is a totally umbilical submanifold of
(V"1 &+ 3) if and only if &y = 0.
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