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On zeros of differences of meromorphic functions
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Abstract. Let f be a transcendental meromorphic function and g(z) = f(z + c1) +
· · ·+ f(z+ ck)−kf(z) and gk(z) = f(z+ c1) · · · f(z+ ck)− fk(z). A number of results are
obtained concerning the exponents of convergence of the zeros of g(z), gk(z), g(z)/f(z),
and gk(z)/fk(z).

1. Introduction and main results. In this paper, we shall assume
that the reader is familiar with the fundamental results and the standard
notation of Nevanlinna’s value distribution theory of meromorphic func-
tions (see, e.g., [11, 16, 18]). In addition, we will use σ(f), µ(f), λ(f), λ(f)
to denote the order, the lower order, the exponent of convergence of the
zero-sequence and the exponent of convergence of the distinct zeros of a
meromorphic function f(z) respectively.

Recently, a number of papers (including [1, 3, 5, 8, 9, 13, 15, 17]) have
focused on complex difference equations and difference analogues of Nevan-
linna’s theory. Bergweiler and Langley [3] were the first to investigate the
existence of zeros of 4f and 4f(z)/f(z), and obtained many profound and
significant results. Those results may be viewed as discrete analogues of the
following theorem on the zeros of f ′.

Theorem A ([2, 7, 14]). Let f be transcendental and meromorphic in
the plane with

lim inf
r→∞

T (r, f)
r

= 0.

Then f ′ has infinitely many zeros.

Theorem A is sharp. If f satisfies the hypotheses of Theorem A, it follows
from Hurwitz’s theorem that if z0 is a zero of f ′ then f(z + c)− f(z) has a
zero near z0 for all sufficiently small c ∈ C \ {0}. This makes it natural to
ask whether f(z+ c)−f(z) must have infinitely many zeros. Bergweiler and
Langley [3] answered this problem, and obtained the following theorems.
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Theorem B ([3]). There exists δ0 ∈ (0, 1/2) with the following property.
Let f be a transcendental entire function with order

σ(f) ≤ σ < 1/2 + δ0 < 1.

Then

G(z) =
f(z + 1)− f(z)

f(z)
has infinitely many zeros.

Theorem C ([3]). Let f be a function transcendental and meromorphic
of lower order µ(f) < 1 in the plane. Let c ∈ C \ {0} be such that at most
finitely many poles zj , zk of f satisfy zj−zk = c. Then g(z) = f(z+c)−f(z)
has infinitely many zeros.

The results above show that there are a large number of zeros of differ-
ences and divided differences in the complex plane.

Recently, differences of the forms f(zj+c1)+f(zj+c2), f(zj+c1)f(zj+c2)
appear in a number of papers (see [1, 5, 13, 17]).

Thus, it is natural to ask the following questions.

Problem 1.1. What are the exponents of convergence of zeros of dif-
ferences and divided differences?

Problem 1.2. What can be said about the zeros of the differences g(z) =
f(z+c1)+ · · ·+f(z+ck)−kf(z) and gk(z) = f(z+c1) · · · f(z+ck)−fk(z)?

For k = 2, Chen and Shon [4, Theorems 1–6] get some estimates for the
zeros of g(z) = f(z+c1)+f(z+c2)−2f(z), g2(z) = f(z+c1)f(z+c2)−f2(z).

For the general case, we obtain the following results.

Theorem 1.1. Let f(z) be a transcendental entire function of order of
growth σ(f) = σ < 1. Let c1, . . . , ck ∈ C \ {0} be such that c1 + · · ·+ ck 6= 0.
Then g(z) has infinitely many zeros and satisfies λ(g) = σ(g) = σ.

In particular, if f has at most finitely many zeros zj satisfying f(zj +c1)
+ · · ·+ f(zj + ck) = 0, then G(z) = g(z)/f(z) satisfies λ(G) = σ(G) = σ.

Theorem 1.2. Let f , cj (j = 1, . . . , k) satisfy the conditions of Theo-
rem 1.1. Then gk(z) has infinitely many zeros and satisfies λ(gk) = σ(gk)
= σ.

In particular, suppose that the set H = {zj} of all distinct zeros of f(z)
satisfies one of the following two conditions:

(i) at most finitely many zeros zi, zl satisfy zi − zl = cj (j = 1, . . . , k);
(ii) lim infj→∞ |zj+1/zj | = l > 1.

Then Gk(z) = gk(z)/fk(z) has infinitely many zeros and satisfies λ(Gk) =
σ(Gk) = σ.
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Theorem 1.3. Let f(z) be a transcendental entire function of order of
growth σ(f) = σ < 1. Let c1, . . . , ck ∈ C \ {0} be such that c1 + · · ·+ ck 6= 0.
If f has at most finitely many poles bj , bs satisfying

bj − bs = k1cl1 + k2cl2 (kd = 0,±1, d = 1, 2; l1, l2 ∈ {1, . . . , k}),
then g(z) has infinitely many zeros and satisfies λ(g) = σ(g) = σ.

In particular, if f has at most finitely many zeros zj satisfying f(zj +c1)
+ · · ·+ f(zj + ck) = 0, then G(z) = g(z)/f(z) has infinitely many zeros and
satisfies λ(G) = σ(G) = σ.

Theorem 1.4. Let f , cj (j = 1, . . . , k) satisfy the conditions of Theo-
rem 1.3. If f has at most finitely many poles bj satisfying

f(bj + k1cl1 + k2cl2) = 0,∞ (kd = 0,±1, d = 1, 2; l1, l2 ∈ {1, . . . , k}),
then gk(z) has infinitely many zeros and satisfies λ(gk) = σ(gk) = σ.

In particular, suppose that the set H = {zj} of all distinct zeros of f(z)
satisfies one of the following two conditions:

(i) at most finitely many zeros zi, zl satisfy zi − zl = cj (j = 1, . . . , k);
(ii) lim infj→∞ |zj+1/zj | = l > 1.

Then Gk(z) = gk(z)/fk(z) has infinitely many zeros and satisfies λ(Gk) =
σ(Gk) = σ.

2. Some lemmas. In order to prove our theorems, we need the following
lemmas.

Lemma 2.1 ([3]). Let f be transcendental and meromorphic of order less
than 1 in the plane. Let h > 0. Then there exists an ε-set En such that

f(z + c)− f(z) = cf ′(z)(1 + o(1)) as z →∞ in C \ En,
uniformly in c for |c| ≤ h.

Remark 2.1. Following Hayman [12, pp. 75–76], we define an ε-set to
be a countable union of open discs not containing the origin and subtending
angles at the origin, whose sum is finite. If E is an ε-set then the set of r ≥ 1
for which the circle S(0, r) meets E has finite logarithmic measure, and for
almost all real θ the intersection of E with the ray arg z = θ is bounded.

Lemma 2.2. Let f be a transcendental and meromorphic function of
order less than 1. Let c1, . . . , ck ∈ C \ {0} be such that c1 + · · · + ck 6= 0.
Then g(z) and G(z) = g(z)/f(z) are both transcendental.

Proof. Assume that g(z) is a rational function. Then

(2.1) f(z + c1) + · · ·+ f(z + ck) = R(z) + kf(z),

whereR(z) is a rational function. Now we prove that f(z) has at most finitely
many poles. Suppose the contrary. Choose a pole z0 of f(z) of multiplicity
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m ≥ 1 such that z0 is not a pole of R(z). Then the right-hand side of (2.1)
has a pole of multiplicity m at z0. Hence, there exists at least one index
l1 ∈ {1, . . . , k} such that z0 + cl1 is a pole of f(z) of multiplicity m1 ≥ m.
Substituting z0 + cl1 for z into (2.1), we obtain

f(z0 + c1 + cl1) + · · ·+ f(z0 + ck + cl1) = R(z0 + cl1) + kf(z0 + cl1).

Then there are the following two possibilities:
If z0 +cl1 is a pole of R(z), we terminate this process and choose another

pole z0 of f(z) in the way we did above.
If z0 + cl1 is not a pole of R(z), then the right-hand side of (2.1) has

a pole of multiplicity m1 at z0 + cl1 . Hence, there exists at least one index
l2∈{1, . . . , k} such that z0 + cl1 + cl2 is a pole of multiplicity m2≥m1≥m.
We know that R(z) has only finitely many poles (so the process above ter-
minates), all of which are in a finite disc |z| < R.

Since f(z) has infinitely many poles, we will find a pole z0 of f(z) such
that

z0 + cl1 + · · ·+ cln = ωn (n ∈ N)

is a pole of f(z) of multiplicity mn for all n ∈ N. Hence, f(z) has a sequence
of poles

{ωn = z0 + cl1 + · · ·+ cln : n = 1, 2, . . . },

so that λ(1/f) = 1. This is a contradiction. Hence f has at most finitely
many poles.

Thus, there exists a rational function R1 such that h(z) = f(z)−R1(z)
is a transcendental entire function. By (2.1), we have

(2.2) h(z + c1) + · · ·+ h(z + ck) = kh(z) + P (z),

where P (z) = R(z) + kR1(z)− R1(z + c1)− · · · − Rk(z + ck). As h(z + cj)
(j = 1, . . . , k) and h(z) are entire functions, we see that P (z) is a polynomial.
By Lemma 2.1, there exists an ε-set E such that

(2.3) h(z + cj)− h(z) = cjh
′(z)(1 + o(1)) (j = 1, . . . , k)

as z →∞ in C \ E.

If P (z) ≡ 0, by (2.2) and (2.3), as z →∞ in C \ E, we have

(c1 + · · ·+ ck)h′(z)(1 + o(1)) = 0;

since c1 + · · ·+ ck 6= 0, this yields h′(z) = 0 (as z 6∈ E), which is impossible.
Hence P (z) 6≡ 0. Set degP = l ≥ 0. Then P (z) = czm(1 + o(1)), where c
(6= 0) is a constant. By (2.2) and (2.3), as z →∞ in C \ E, we get

(c1 + · · ·+ ck)h′(z)(1 + o(1)) = czl(1 + o(1)),

which contradicts the fact that h′(z) is transcendental.
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Next, we assume that G(z) is a rational function. Then
f(z + c1) + · · ·+ f(z + ck)− kf(z)

f(z)
= θ(z),

where θ(z) is a rational function. By Lemma 2.1, there exists an ε-set E
such that

(2.4)
(c1 + · · ·+ ck)f ′(z)(1 + o(1))

f(z)
= θ(z) as z →∞ in C \ E.

But since f(z) is transcendental and has either infinitely many poles or
infinitely many zeros, f ′(z)/f(z) must be transcendental. Thus (2.4) is im-
possible.

Lemma 2.3. Let f , cj (j = 1, . . . , k) satisfy the conditions of Lemma 2.2.
Then gk(z) is transcendental.

Proof. Assume

(2.5) f(z + c1) · · · f(z + ck) = θ(z) + fk(z),

where θ(z) is a rational function. Using a similar method to the proof of
Lemma 2.2, we find that f has at most finitely many poles. By Lemma 2.1,
there exists an ε-set E such that

(2.6) f(z + cj)− f(z) = cjf
′(z)(1 + o(1)) (j = 1, . . . , k)

as z →∞ in C \ E.
By (2.5) and (2.6), we have

(2.7) c1 · · · ck(f ′)k(1 + o(1)) +Ak−1(f ′)k−1f(z)(1 + o(1)) + · · ·
+A2f

′′fk−2(z)(1 + o(1)) + (c1 + · · ·+ ck)f ′fk−1(z)(1 + o(1)) = θ(z),

where Aj (j = 2, . . . , k − 1) are constant in c1, . . . , ck. Set f1(z) = f(z)l(z),
where l(z) is a polynomial whose zeros are all poles of f(z). Obviously, f1(z)
is a transcendental entire function with σ(f1) = σ(f) = σ < 1. From the
Wiman–Valiron theory, there exists a subset E1 ⊂ (1,∞) of finite logarith-
mic measure such that for large r 6∈ E1, for all z satisfying |z| = r and
|f1(z)| = M(r, f1), we get

(2.8)
f ′1(z)
f1(z)

=
υ(r)
z

(1 + o(1)),

where υ(r) is the central index of f1(z). From (2.8) and f1(z) = f(z)l(z) for
all z satisfying |z| = r and |f1(z)| = M(r, f1), we have

(2.9)
f ′(z)
f(z)

=
f ′1(z)
f1(z)

− l′(z)
l(z)

=
υ(r)
z

(1 + o(1)).

Set E2 = {|z| : z ∈ E}. Since E is an ε-set, E2 has finite logarithmic
measure. By (2.7) and (2.9), for all z satisfying |z| = r 6∈ [0, 1]∪E1∪E2 and
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|f1(z)| = M(r, f1), we get

(2.10) c1 · · · ck
(
υ(r)
z

)k−1

(1 + o(1)) +Ak−1

(
υ(r)
z

)k−2

(1 + o(1)) + · · ·

+ (c1 + · · ·+ ck)(1 + o(1)) =
θ(z)lk(z)z
[M(r, f1)]k

1
υ(r)

(1 + o(1)).

Since f1(z) is transcendental and σ(f1) < 1, we obtain

(2.11) υ(r)/z → 0, υ(r)→∞ (z →∞),

and

(2.12)
θ(z)lk(z)z
[M(r, f1)]k

1
υ(r)

((1 + o(1))→ 0 (z →∞).

From (2.11), (2.12) and c1+· · ·+ck 6= 0, we deduce that (2.10) is impossible.
Hence g(z) is transcendental.

Lemma 2.4 ([3]). Let f be a function transcendental and meromorphic
in the plane of lower order µ(f) < µ < 1. Then there exists an arbitrarily
large R with the following properties. First,

T (32R, f ′) < Rµ.

Second, there exists a set JR ⊆ [R/2, R] of linear measure (1 − o(1))R/2
such that, for r ∈ JR,

f(z + c)− f(z) ∼ cf ′(z) on |z| = r.

Lemma 2.5. Let f be a transcendental and meromorphic function of
order of growth σ(f) = σ < 1. Let aj (j = 0, 1, . . . , k) ∈ C and ai 6= 0
(i = 0, k). If λ(1/f) = λ(1/f), then

max{λ(f ′), λ(ak(f ′)k + ak−1(f ′)k−1f + · · ·+ a0f
k)} = σ(f) = σ.

Proof. If λ(f ′) < σ, then λ(1/f ′) = σ. By hypothesis,

(2.13) λ(1/f ′) = λ(1/f) = λ(1/f) = σ(f) = σ.

Set
f(z) = q(z)/p(z), f ′(z) = q1(z)/p1(z),

where q(z) [q1(z)] and p(z) [p1(z)] are canonical products (or polynomials)
formed by the zeros and poles of f(z) [f ′(z)] respectively, such that q(z) and
p(z) [q1(z) and p1(z)] are irreducible. From λ(f ′) < σ and (2.13), we get

σ(p) = σ(p1) = σ(f), λ(q1) = σ(q1) < σ(f).

If f(z) has a pole of multiplicity m at z0, then f ′ has a pole of multiplicity
m+ 1 at z0, so we have

p1(z) = p(z)d(z),
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where d(z) is the canonical product formed by different poles of f(z). By
(2.13), we have

σ(d) = λ(d) = λ(1/f) = σ(f) = σ.(2.14)

Since

ak(f ′)k + ak−1(f ′)k−1f + · · ·+ a0f
k

=
akq

k
1 (z) + ak−1q

k−1
1 (z)q(z)d(z) + · · ·+ a0q

k(z)dk(z)
pk1(z)

,

we see that if z0 is a pole of f ′, then d(z0) = 0, but q1(z0) 6= 0. So, z0
is not a zero of akqk1 (z) + ak−1q

k−1
1 (z)q(z)d(z) + · · · + a0q

k(z)dk(z). Hence
akq

k
1 (z)+ak−1q

k−1
1 (z)q(z)d(z)+ · · ·+a0q

k(z)dk(z) and p1(z) are irreducible.
By (2.14), we get

λ(ak(f ′)k + ak−1(f ′)k−1 + · · ·+ a0f) = λ(akqk1 + ak−1q
k−1
1 qd+ · · ·+ a0q

kdk)

= σ(akqk1 + ak−1q
k−1
1 qd+ · · ·+ a0q

kdk)
≥ σ(d) = σ(f).

Lemma 2.5 is thus proved.

3. Proof of Theorem 1.1. By Lemma 2.2, g(z) is transcendental. By
Lemma 2.1, there exists an ε-set E such that

(3.1) g(z) = (c1 + · · ·+ ck)f ′(z)(1 + o(1)) as z →∞ in C \ E.

Set
H = {|z| : z ∈ E, g(z) = 0 or f ′(z) = 0}.

Then H has finite linear measure. By (3.1), for |z| = r 6∈ H, we obtain

|g(z)− (c1 + · · ·+ ck)f ′(z)| = |o(f ′(z))| < |g(z)|+ |(c1 + · · ·+ ck)f ′(z)|.

Applying Cauchy’s argument principle, for |z| = r 6∈ H, we have

n(r, 1/g)− n(r, g) = n(r, 1/f ′)− n(r, f ′).

Since f is a transcendental entire function and σ(f) < 1, we have

(3.2) λ(g) = λ(f ′) = σ(f ′) = σ(f) = σ.

Next, we prove that λ(G) = σ(G) = σ(f) = σ. Suppose that zj is a zero
of g(z). If f(zj) 6= 0, then zj must be a zero of G(z). If f(zj) = 0, then
f(zj + c1) + · · · + f(zj + ck) = 0. By the hypotheses, there exist at most
finitely many such points. Hence

(3.3) n(r, 1/G) = n(r, 1/g) +O(1).

By (3.2) and (3.3), λ(G) = σ(G) = σ(f) = σ. Theorem 1.1 is thus proved.
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4. Proof of Theorem 1.2. By Lemma 2.3 and the fact that f is tran-
scendental, gk(z) is a transcendental entire function. Thus,

σ(gk) ≤ σ(f).(4.1)

Using the same method as in the proof of Lemma 2.3, for |z| = r 6∈ [0, 1] ∪
E1 ∪E2 and |f(z)| = M(r, f), with E, E1 and E2 defined as in the proof of
Lemma 2.3, we have

(4.2) c1 · · · ck
(
υ(r)
z

)k

(1 + o(1)) + · · ·+ (c1 + · · ·+ ck)
υ(r)
r

=
gk(z)

M(r, f)k
.

Together with σ(f) < 1, as r →∞ we get

(4.3)
(
υ(r)
r

)j

= o

(
υ(r)
r

)
(j = 2, . . . , k).

Now (4.2) and (4.3) imply that

(4.4) C
υ(r)
r

(1 + o(1)) ≤ |gk(z)|
M(r, f)k

,

where C is a constant. By (4.4), we get

(4.5) σ(gk) ≥ σ(f).

By (4.1) and (4.5), we get σ(gk) = σ(f), so λ(gk) = σ(gk) = σ(f).
Next, we prove that λ(Gk) = σ(Gk) = σ(f) = σ.

Since Gk(z) = gk(z)/fk(z) and f is an entire function, we know that if
z0 is a zero of gk(z) but not a zero of Gk(z), then z0 must be a zero of f(z).
Thus, there exists at least one cj (j = 1, . . . , k) such that z0 + cj is a zero of
f(z0 + cj). Now suppose that (i) holds: at most finitely many zeros zl, zm of
f(z) satisfy zl − zm = cj (j = 1, . . . , k). Hence, f(z) has only finitely many
such zeros z0. If z0 is a zero of Gk(z), then z0 is also a zero of gk(z), so that

n(r, 1/Gk) = n(r, 1/gk) + o(1).

Now assume that (ii) holds. Then there exist α (0 < α < l − 1) and N
(> 0) such that when j > N , α|zj | > c > max{c1, . . . , ck} and |zj+1|−|zj | >
α|zj | > c. Thus (i) holds. It is easy to get

n(r, 1/Gk) = n(r, 1/gk) + o(1).

This completes the proof of Theorem 1.2.

5. Proof of Theorem 1.3. Let E be an ε-set which contains all zeros
and poles of g(z), f(z), f(z + cj) (j = 1, . . . , k), f ′, and define

ER = {r : z ∈ E, |z| = r < R}, R ∈ (1,∞),
E∞ = {r : z ∈ E, |z| = r <∞}.
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Then by the properties of ε-sets and σ(f) < 1, we see that E∞ has finite
linear measure and ER has linear measure o(1)R/2.

By Lemma 2.4, there exist R arbitrarily large and σ1 (σ < σ1 < 1) with

(5.1) T (32R, f ′) < Rσ1 ,

and there exists a set JR ⊆ [R/2, R] \ ER of linear measure (1 − o(1))R/2
such that for |z| = r ∈ JR,

(5.2) f(z + c1) + · · ·+ f(z + ck)− kf(z) = (c1 + · · ·+ ck)f ′(z)(1 + o(1)).

Let

(5.3) FR = {r ∈ [R/2, R] : n(r, f) = n(r − (|c1|+ · · ·+ |ck|), f)}.
Then FR has linear measure

(5.4) m(FR) ≥ (1− o(1))R/2.

To see this, note that there are at most o(R) points pk ∈ [R/3, R] at which
n(t, f) is discontinuous, by (5.1), and if r ∈ [R/2, R] is such that n(r, f) >
n(r − (|c1|+ · · ·+ |ck|), f), then r ∈ [pk, pk + 1] for some k.

From (5.1)–(5.4) and JR ∩ER = ∅, we see that there exists r ∈ FR ∩ JR
such that g(z), f(z), f(z+cj) (j = 1, . . . , k), f ′ have no zeros and poles with
|z| = r.

Without loss of generality, for all poles bj of f(z), we may assume that
bj + k1ci + k2cl (kd = 0,±1, d = 1, 2; i, l ∈ {1, . . . , k}) are not poles.

From the condition of Theorem 1.3, there exists r0, independent of R
and r, such that if f(z) has a pole of multiplicity m at z0 and r0 ≤ |z0| ≤
r − (|c1|+ · · ·+ |ck|), then f(z0) =∞, f(z0 ± cj) 6=∞, thus from

g(z) = f(z + c1) + f(z + c2) + · · ·+ f(z + ck)− kf(z),
g(z − cj) = f(z + c1 − cj) + · · ·+ f(z + cj+1 − cj)

+ f(z) + · · ·+ f(z + ck − cj)− kf(z − cj) (j = 1, . . . , k),

we know that g(z) has poles at z0, z0 − cj (j = 1, . . . , k), each with multi-
plicity m. So

n(r, g) ≥ (k + 1)n(r − (|c1|+ · · ·+ |ck|), f) = (k + 1)n(r, f).

By (5.2) and g(z), f(z), f(z + cj) (j = 1, . . . , k), f ′ have no zeros and poles
with |z| = r ∈ FR ∩ JR. Applying Cauchy’s argument principle, we obtain

n(r, 1/g) = n(r, 1/f ′)− n(r, f ′) + n(r, g)(5.5)
≥ n(r, 1/f ′)− n(r, f ′) + (k + 1)n(r, f) +O(1)
≥ n(r, 1/f ′) + kn(r, f) +O(1).

If λ(f ′) < σ(f ′) = σ(f), then λ(1/f ′) = σ(f ′) = σ(f), so that λ(1/f) =
σ(f). Hence λ(g) = σ(g) = σ(f). If λ(1/f) < σ(f), then λ(1/f ′) < σ(f), so
that λ(f ′) = σ(f). Hence λ(g) = σ(g) = σ(f).
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Finally, using the same method as in the proof of Theorem 1.2, we can
prove that if f(z) has at most finitely many zeros aj which satisfy f(aj +c1)
+ · · · + f(aj + ck) = 0, then G(z) has infinitely many zeros and λ(G) =
σ(G) = σ(f). Theorem 1.3 is proved.

6. Proof of Theorem 1.4. Set

(6.1) F (z) = f ′[c1 · · · ck(f ′)k−1 +Ak−1(f ′)k−2f + · · ·+ (c1 + · · ·+ ck)fk−1].

By Lemma 2.3, gk(z) is transcendental. As in the proof of Theorem 1.3, as
|z| → ∞ and |z| = r ∈ JR, we obtain

gk(z) = F (z)(1 + o(1))

and

(6.2) n(r, 1/gk) = n(r, 1/F )− n(r, F ) + n(r, gk)
for |z| = r ∈ (FR ∩ JR) \ ER,

where FR, JR, E and ER are defined as in the proof of Theorem 1.3; E con-
tains all zeros and poles of gk, F , f , f(z + cj) (j = 1, . . . , k) and f ′.

Under the assumptions of Theorem 1.4, there exists r0, independent of
R and r, such that if f(z) has a pole of multiplicity m at z0 and r0 ≤
|z0| ≤ r − (|c1| + · · · + |ck|), then by the hypotheses and the expression of
gk(z), gk(z − cj) (j = 1, . . . , k), we know that gk(z) has poles at z0, z0 − cj
(j = 1, . . . , k) of multiplicity km,m, respectively. Hence

(6.3) n(r, gk) ≥ 2kn(r − (|c1|+ · · ·+ |ck|), f) +O(1) = 2kn(r, f) +O(1).

Since F (z) has a pole of multiplicity km+ k at z0, we have

(6.4) n(r, F ) = kn(r, f) + kn(r, f).

By (6.1),

(6.5) n(r, 1/F ) = n(r, 1/f ′)

+ n

(
r,

1
c1 · · · ck(f ′)k−1 + · · ·+ (c1 + · · ·+ ck)fk−1

)
.

By (6.2)–(6.5), we get

(6.6) n(r, 1/gk) ≥ n(r, 1/f ′) + kn(r, f)− kn(r, f)

+ n

(
r,

1
c1 · · · ck(f ′)k−1 + · · ·+ (c1 + · · ·+ ck)fk−1

)
+O(1).

If λ(1/f) < λ(1/f), then by (6.5) and (6.6), we have

(6.7) n(r, 1/gk) ≥ n(r, 1/f ′) + n(r, f) +O(1).

As in the proof of Theorem 1.3, we can deduce λ(gk) = σ(gk) = σ(f).
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If λ(1/f) = λ(1/f), then by (6.3), we have

(6.8) n(r, 1/gk) ≥ n(r, 1/f ′)

+ n

(
r,

1
c1 · · · ck(f ′)k−1 + · · ·+ (c1 + · · ·+ ck)fk−1

)
+O(1).

By Lemma 2.5 and (6.8), λ(gk) = σ(gk) = σ(f).
Finally, similarly to the proof of Theorem 1.3, we can prove that λ(Gk)

= σ(f).
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