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Quasi-homogeneous linear systems on P2 with base points of
multiplicity 7, 8, 9, 10

by Marcin Dumnicki (Kraków)

Abstract. We prove that the Segre–Gimigliano–Harbourne–Hirschowitz conjecture
holds for quasi-homogeneous linear systems on P2 for m = 7, 8, 9, 10, i.e. systems of
curves of a given degree passing through points in general position with multiplicities at
least m, . . . , m, m0, where m = 7, 8, 9, 10, m0 is arbitrary.

1. Introduction. In what follows we assume that the ground field K
is of characteristic zero. Let d ∈ Z and m1, . . . ,mr ∈ N. Pick r base points
p1, . . . , pr ∈ P2 := P2(K). We denote by L(d;m1, . . . ,mr) the linear system
of curves of degree d passing through points p1, . . . , pr with multiplicities at
least m1, . . . ,mr, respectively:

L(d;m1, . . . ,mr) := {C ⊂ P2 : deg(C) = d,

multpj (C) ≥ mj for j = 1, . . . , r}

(by a curve C ⊂ P2 of degree deg(C) = d we understand its defining homo-
geneous polynomial). The dimension of such a system (as a projective linear
space) is denoted by dimL(d;m1, . . . ,mr). Define the virtual dimension of
L = L(d;m1, . . . ,mr) to be

vdimL :=
(
d+ 2

2

)
−

r∑
j=1

(
mj + 1

2

)
− 1

and the expected dimension of L to be

edimL := max{vdimL,−1}.

Observe that dimL ≥ edimL. If this inequality is strict then L is called spe-
cial (non-special otherwise). The system L is called non-empty if dimL ≥ 0
(empty otherwise). We will use the notation m×p for repeated multiplici-
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ties,
m×p := m, . . . ,m︸ ︷︷ ︸

p

.

Let π : X → P2 be the blow-up of P2 at p1, . . . , pr with exceptional divi-
sors E1, . . . , Er, respectively. The Picard group Pic(X) of X is generated by
H,E1, . . . , Er, where H is the pullback of the class of a line in P2. The sys-
tem L(d;m1, . . . ,mr) is isomorphic to the complete linear system L (on X)
associated to the divisor dH −m1E1− · · ·−mrEr. Observe that in this way
we can define L(d;m1, . . . ,mr) for d,m1, . . . ,mr ∈ Z. In what follows we
always allow negative multiplicities unless stated otherwise.

Consider the standard intersection form onX given byH2 = 1, E2
j = −1,

H.Ej = 0, Ej .E` = 0 for j 6= `. Now (by Riemann–Roch)

(1) vdimL =
L2 − L.KX

2
,

where KX is the canonical divisor on X.

Definition 1. We say that a curve C ⊂ X is a −1-curve on X if C is
irreducible and C2 = C.KX = −1.

We recall the following definition of a −1-special system (see e.g.
[Cil-Mir 98]):

Definition 2. A linear system L = L(d;m1, . . . ,mr) (considered as a
system on X) is −1-special if there exist −1-curves C1, . . . , Cs ⊂ X such
that

• L.Cj = −kj , kj ≥ 1 for j = 1, . . . , s,
• kj ≥ 2 for some j,
• the system M = L − (k1C1 + · · · + ksCs) has non-negative virtual

dimension and non-negative intersection with every −1-curve.

From the above definition it is clear that if L is −1-special then it is
non-empty and its dimension is at least dimM . To compare the virtual
dimensions of L and M , assume that L.Cj = −kj for j = 1, . . . , s. By
formula (1) and Definition 1, we obtain

vdimL = vdimM +
s∑
j=1

kj − k2
j

2
,

hence every −1-special system is special.
The converse is only conjectured to hold (see e.g. [Hir 89]), and only for

base points in general position:

Conjecture 3 (Segre–Gimigliano–Harbourne–Hirschowitz). A linear
system L(d;m1, . . . ,mr) with base points in general position is special if and
only if it is −1-special.
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The above formulation, involving −1-curves, makes sense only for base
points in general position. In the non-general case we would also have to
consider curves with self-intersection less than −1 and the problem seems to
be far more complicated. In this paper we deal with the general case since
the main methods (the reduction algorithm and Cremona transformations
of systems) work only for base points in general position. So from now on
we always assume that the base points are in general position.

The Segre–Gimigliano–Harbourne–Hirschowitz conjecture is known to
hold in some cases. The case r ≤ 9 has been solved in [Nag 60]. For low
multiplicities (i.e. bounded by some constant) it has begun with [Hir 85],
where the case m1 = · · · = mr ≤ 3 has been solved. The case when all
multiplicities are bounded by 4 has been settled by [Mig 00]; the bound has
been extended to 7 in [Yan 07] and 11 in [Dum-Jar 07].

The homogeneous case (m1 = · · · = mr) with multiplicities up to 42 has
been solved in [Dum 07a]. The quasi-homogeneous case (m1 = · · · = mr−1,
mr arbitrary) has been handled for m1 = 3 in [Cil-Mir 98], for m1 = 4 in
[Sei 01, Laf 99], for m1 = 5 in [Laf-Uga 03], and for m1 = 6 in [Kun 05]. Our
result is the following:

Theorem 4. The Segre–Gimigliano–Harbourne–Hirschowitz conjecture
holds for quasi-homogeneous systems with almost all multiplicities equal to 7,
8, 9 or 10, i.e. for systems L(d;m×r,m0) with r+1 base points in general po-
sition, with multiplicities at least m, . . . ,m,m0 respectively, m ∈ {7, 8, 9, 10}.

The methods of proving the conjecture for m = 3, 4, 5, 6 used by the
authors mentioned above are of the same type. Namely, using the degenera-
tion method introduced in [Cil-Mir 98], we can show the non-speciality of a
large family of systems with many base points. In fact, with the help of this
method, we can show that if the family of systems

{L(d;m×r,m0) : d,m0 ∈ N, r1 ≤ r ≤ r2}
(for carefully chosen r1 and r2) contains only non-special ones then all sys-
tems of the form L(d;m×r,m0) for r ≥ r2 are non-special. Another task is
to show that if the difference between d and m0 in the system L(d;m×r,m0)
is large enough then the system is non-special.

Having the above, we are left with a family of cases that can be solved
using the degeneration method, Cremona transformations, ad hoc arguments
and computations of the rank of interpolation matrices.

The authors of [Cil-Mir 98, Sei 01, Laf 99, Laf-Uga 03, Kun 05] used
computer programs to deal with a large number of cases. These programs
are of two kinds. The first one is an implementation of the degeneration
technique—for a large number of cases we must check whether the degener-
ation exists or not. The result (for each single case) can be easily checked
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by hand, the reason for using software is the number of cases. The second
kind uses computer programs to evaluate the dimension of a given system
by direct computation of the rank of the interpolation matrix, which, in in-
teresting cases, is of large size (e.g. 105×105). This cannot be done by hand,
for obvious reasons.

In this paper we use the same approach, but different methods. Instead
of the degeneration method we use the reduction algorithm introduced in
[Dum 07b] and [Dum-Jar 07] together with direct computation of dimen-
sions of systems. To deal with the remaining cases we use the Cremona
transformation (see Definition 7), “glueing” of points (see Theorem 6) and
known results.

We note here that both approaches, by the degeneration and the reduc-
tion algorithm, promise to be usable for larger values of m (quasi-homo-
geneous multiplicity). We prefer the second one—observe that this paper is
not much longer than [Sei 01, Laf-Uga 03, Kun 05], although we deal with
four higher multiplicities at once.

The paper is organized as follows: The next section is devoted to pre-
senting some methods of showing −1-speciality or non-speciality of systems.
Section 3 contains a brief introduction to the reduction method together with
the results obtained with the help of this method and computer programs.
In Section 4 we deal with the remaining cases, i.e. systems with few base
points and low difference between the degree and the quasi-homogeneous
multiplicity. The last section contains a note on Seibert’s work.

2. Tools. We begin by recalling [Dum 09b, Theorem 1]. Let us recall
that the base points are always in general position.

Theorem 5 (splitting). Let d, k,m1, . . . ,mr,mr+1, . . . ,ms ∈ N. If

• L1 = L(k;m1, . . . ,ms) is non-special,
• L2 = L(d;ms+1, . . . ,mr, k + 1) is non-special,
• (vdimL1 + 1)(vdimL2 + 1) ≥ 0,

then the system L3 = L(d;m1, . . . ,mr) is non-special.

However, it would be more convenient to “glue” equal multiplicities, so
we will use the following weaker version of the above theorem.

Theorem 6 (glueing). Let L(k;m×s) be non-special, and set

L3 = L(d;m1, . . . ,mr,m
×s), L2 = L(d;m1, . . . ,mr, k + 1).

If either −1 ≤ vdimL2 ≤ vdimL3 or vdimL3 ≤ vdimL2 ≤ −1 then in
order to show non-speciality of L3 it is enough to show non-speciality of L2.

Proof. Follows immediately from Theorem 5.
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Definition 7. Let d,m1, . . . ,mr ∈ Z and k = d − (m1 + m2 + m3).
Define the Cremona transformation of the system L(d;m1, . . . ,mr) to be

Cr(L(d;m1, . . . ,mr)) := L(d+ k;m1 + k,m2 + k,m3 + k,m4, . . . ,mr).

Theorem 8. Let L = L(d;m1, . . . ,mr) be a linear system. Then:

(1) dim Cr(L) = dimL,
(2) L is special if and only if Cr(L) is special,
(3) L is −1-special if and only if Cr(L) is −1-special.

Proof. The proof can be found, for example, in [Gim 89]. The idea is to
show that the Cremona transformation induces an action on Pic(X) such that
H 7→ 2H−E1−E2−E3, Ej 7→ H− (E1 +E2 +E3)+Ej for j = 1, . . . , 3 and
Ej 7→ Ej for j ≥ 4. Observe that−1-curves are transformed into−1-curves.

Definition 9. We say that L(d;m1, . . . ,mr) is in standard form if either
d < 0, or:

• m1, . . . ,mr are non-increasing,
• d− (m1 +m2 +m3) ≥ 0.

Every system can be transformed (by a finite number of Cremona trans-
formations and sorting of multiplicities) into a standard form. For a system
L choose one of its standard forms and denote it by Cr◦(L). The standard
form is not unique, since e.g. Cr(L(−1; 1, 0, 0)) = L(−3;−1,−2,−2) and
both systems are in standard form. However, if a system cannot be trans-
formed (by a sequence of Cremona transformations) into another system
with negative degree then its standard form is unique. To see this, consider
the following anti-symmetric relation:

(d;m1, . . . ,mr) ∼ (d′;m′1, . . . ,m
′
r)

if and only if d > d′ and we can map L(d;m1, . . . ,mr) to L(d′;m′1, . . . ,m
′
r) by

a single Cremona transformation. Now the relation is obviously noetherian,
and by easy computation it can be shown that it is locally confluent (by
definition, ∼ is locally confluent if whenever a ∼ b1, a ∼ b2 there exists c
such that b1 ∼∗ c and b2 ∼∗ c, where ∼∗ denotes a sequence of ∼’s). Such
relations enjoy the property of having unique normal forms, which, in our
case, are exactly standard forms.

Let L = L(d;m1, . . . ,mr) be a linear system in standard form. From
[Gim 89] we may understand what happens if some of d,m1, . . . ,mr are
negative:

(1) If d < 0 then L is empty.
(2) If mj = −1 then Ej is a fixed component for L; let

L′ = L(d;m1, . . . ,mj−1, 0,mj+1, . . . ,mr).

Since vdimL = vdimL′ and dimL = dimL′, it is enough to study L′.
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(3) If mj ≤ −2 then Ej is a multiple fixed component; since Ej is a
−1-curve, the system L is special if and only if

L′ = L(d;m1, . . . ,mj−1, 0,mj+1, . . . ,mr)

is non-empty. Moreover, if L′ is non-empty and non-special, or if it
is −1-special, then L is −1-special.

Observe also that the intersection number L.C, where C is a −1-curve, is
non-negative for any system in standard form with non-negative multiplici-
ties (see [Gim 89]), hence such a system cannot be −1-special. If, addition-
ally, it is a system for which the Segre–Gimigliano–Harbourne–Hirschowitz
conjecture has been proved (e.g. multiplicities bounded by 11 or based on at
most 9 points) then it is non-special.

We recall the following result (mentioned in the introduction).

Theorem 10 ([Dum-Jar 07]). The Segre–Gimigliano–Harbourne–Hir-
schowitz conjecture holds for systems with multiplicities bounded by 11.

3. Results using the reduction method. The first step is to show
that the systems with the number of base points large enough and the differ-
ence between the degree and the free multiplicity greater thanm−2 are non-
special. To do this we will use the reduction method introduced in [Dum 07b]
and then exploited in [Dum-Jar 07]. The results are gathered in Table 1.

For a finite D ⊂ T2 := {xα1yα2 ⊂ K[x, y] : α1, α2 ∈ N} and multiplicities
m1, . . . ,mr define

V (D;m1, . . . ,mr) :=
{
f =

∑
t∈D

ctt ∈ K[x, y] : multpj (f) ≥ mj

}
for p1, . . . , pr ∈ K2 in general position. We say that V (D;m1, . . . ,mr) is non-
special if its dimension (as a vector space over K) is equal to its expected
dimension

edimV (D;m1, . . . ,mr) := max{vdimV (D;m1, . . . ,mr), 0},

vdimV (D;m1, . . . ,mr) := #D −
r∑
j=1

(
mj + 1

2

)
.

Observe that L(d;m1, . . . ,mr) is non-special if and only if V (D;m1, . . . ,mr)
is non-special for D = {t ∈ T2 : deg t ≤ d}.

Definition 11. Let a1, . . . , ak ∈ N, aj ≤ j, j = 1, . . . , k. Define the
diagram

(a1, . . . , ak) =
k⋃
j=1

{xα1yα2 ∈ T2 : α1 + α2 = j − 1, α2 < aj}.
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A single set {xα1yα2 ∈ T2 : α1 + α2 = j − 1, α2 < aj} will be called the jth
layer, or simply a layer. For a, a1, . . . , ak ∈ N with aj ≤ a+ j define

(a, a1, . . . , ak) := (1, 2, . . . , a− 1, a, a1, . . . , ak).

We will also use the notation

(a, {b}×p, a1, a2, . . . ) := (a, b, . . . , b︸ ︷︷ ︸
p times

, a1, a2, . . . ).

Observe that for d ≥ 1 we have {t ∈ T2 : deg t ≤ d} = (d+ 1).

Example 12.

T2

the diagram (5, 2)

T2

the diagram (3, 2, 2, 1)

Definition 13. Let m ∈ N∗, and let D = (b1, . . . , b`, a1, . . . , am) be a
diagram with am > 0. Define vj ∈ N, j = 1, . . . ,m, and sets Vj , j = 0, . . . ,m
by downward induction (beginning with m, going down to 0):

Vm := {1, . . . ,m},

Vj−1 := Vj \ {vj}, vj :=
{
aj , aj < m and maxVj ≥ aj ,
maxVj , otherwise.

If V0 = ∅ then we say that D is m-reducible. The diagram

redm(D) := (b1, . . . , b`, a1 − v1, . . . , am − vm)

will be called the m-reduction of D.

Example 14.

T2

the 4-reduction of (5, 3, 2) is equal to (3, 3, 1)

As another example take the diagram (32) and perform one 12-reduction
and four 9-reductions to obtain the diagram (19, 18, 17, 16, 14, 10, 5):
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(19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32)

−1 −2 −3 −4 −5 −6 −7 −8 −9 −10 −11 −12

(19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20)

−1 −2 −3 −4 −5 −6 −7 −8 −9

(19, 20, 20, 20, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11)

−1 −2 −3 −4 −5 −6 −7 −8 −9

(19, 20, 20, 20, 20, 18, 16, 14, 12, 10, 8, 6, 4, 2)

−1 −3 −5 −7 −9 −8 −6 −4 −2

(19, 20, 20, 20, 20, 17, 13, 9, 5, 1)

−2 −3 −4 −6 −7 −8 −9 −5 −1

(19, 18, 17, 16, 14, 10, 5)

We can perform another five 9-reductions to obtain (6, 6, 6, 5, 5, 2). The se-
quence of reductions presented above will be used later to show non-speciality
of L(31; 12, 9×9).

Definition 15. For an mr-reducible diagram D we will say that the
space

V (redmr(D);m1, . . . ,mr−1)

is the mr-reduction of V (D;m1, . . . ,mr).

The reduction method is based on the following fact (see [Dum 07b] for
the detailed proof; also a sketch of proof can be found in [Dum-Jar 07]):

Theorem 16. Let m1, . . . ,mr ∈ N. Let V = V (D;m1, . . . ,mr). If D is
mr-reducible and the mr-reduction of V is non-special then V is non-special.

Let V = V (D;m1, . . . ,mr). We can reduce V until all the multiplici-
ties disappear or the resulting diagram is no longer mj-reducible for all the
remaining mj ’s. Observe that an m-reduction is performed on the last m
layers of a diagram. Let D = (. . . , b1, . . . , bm). We will try to reduce D to
(. . . , b′1, . . . , b

′
m). Observe that D is m-reducible if and only if, at each step

of the reduction procedure described in Definition 13, the set Vj−1 has ex-
actly one element less than Vj . If #Vj−1 = #Vj − 1 then we say that the
m-reduction is possible on the bj-layer. We have the following:

• if bj + 1 ≥ bj+1 ≥ 2m then the m-reduction on the bj-layer is possible;
after the reduction we will have b′j ≥ b′j+1 ≥ m;
• if bj ≥ bj+1 ≥ m then the m-reduction on the bj-layer is possible; after

the reduction we will have b′j > b′j+1;
• finally, if bj > bj+1 then the m-reduction on the bj-layer is possible.

In [Dum 07b] one can find additional information on how long one can re-
duce. We deduce that a diagram D = (b, {b}×p) for b ≥ m and a given ` ≤ p
can be reduced (using m-reductions; if p − ` ≤ m − 1 then we can use no
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reduction) to a diagram (b, {b}×`, b1, . . . , bm−1). If, moreover, 2m ≤ c ≤ b
then D can be reduced to a diagram (c, b1, . . . , bm−1).

We will use reductions to show non-speciality of large families of systems.
First define (for a diagram D and m > 0)

p(D) :=
⌊

#D(
m+1

2

)⌋.
Proposition 17. Let m > 0, k ≥ m− 1, and s ≥ 0. Set

D = {(k + 1, {k + 1}×s, a1, . . . , am−1) : k + 1 ≥ a1 ≥ · · · ≥ am−1}.
If for all D ∈ D the spaces V (D;m×p(D)) and V (D;m×(p(D)+1)) are non-
special then for every r ≥ max{p(D) : D ∈ D} + 2 and m0 ∈ N the system
L(m0 + k;m0,m

×r) is non-special.

Proof. We show that V (D;m0,m
×r) is non-special forD = (m0 + k + 1).

We can m0-reduce our space to V ′ = V ((k + 1, {k + 1}×`);m×r) for some
` ≥ 0. If ` < s then vdimV ′ < 0 and, since r is large enough, the same holds
for V ((k + 1, {k+1}×s);m×r). So, without loss of generality, we may assume
` ≥ s. Performing m-reductions on the diagram (k + 1, {k + 1}×`) (which is
possible due to the preceding discussion) leads to some diagram D ∈ D, or
we obtain a system without conditions. In any case, using Theorem 16, we
complete the proof.

Proposition 18. Let m ∈ N and suppose k + 1 ≥ 2m. Set

D = {(k + 1, a1, . . . , am−1) : k+1 ≥ a1−1 ≥ a2−2 ≥ · · · ≥ am−1−(m−1)}.
If for all D ∈ D the spaces V (D;m×p(D)) and V (D;m×(p(D)+1)) are non-
special then for every m0 ∈ N, r ≥ max{p(D) : D ∈ D}+ 2 and d ≥ m0 + k
the system L(d;m0,m

×r) is non-special.

Proof. The proof is analogous to the previous one. We begin with an
m0-reduction to obtain (b, {b}×`) for b = d + 1 − m0 ≥ k + 1 and some
` ∈ N. The last diagram can be reduced to some D ∈ D, or we end up with
a system without conditions.

For given m, k and s the set D defined in Proposition 17 or 18 can be
very large. On the other hand we do not need to consider diagrams which
cannot be obtained as reductions of diagrams of type (k + 1, {k + 1}×`).

Proposition 19. Let D = (. . . , a, b, . . . ) be a diagram obtained by a
sequence of m-reductions from a diagram D = (. . . , a′, b′, . . . ) (a′ and b′

stand at the same position as a and b). If b > 0 then

(∗) a+ (a− b+ b′ − a′)m ≥ a′.
Proof. Assume the contrary. Each reduction working on the a-layer works

also on the b-layer, moreover, the b-layer is reduced more strongly. Therefore
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at most a−b+b′−a′ such m-reductions are possible, each lowers the a-layer
by at most m, which gives the (initial) size of this layer at most a+ (a− b+
b′ − a′)m, a contradiction.

Example 20. Let D = {(16, a1, . . . , a5) : 16 ≥ a1 − 1 ≥ · · · ≥ a5 − 5}.
We have #D = 27896, but if we remove all the diagrams not satisfying (∗)
for m = 6 we have 12799 diagrams.

Observe that the dimension of V (D;m1, . . . ,mr) can be computed by
solving some (large) system of linear equations. Usually this involves the
computation of the rank of a #D×

∑r
j=1

(mj+1
2

)
matrix (see e.g. [Dum 07b]).

To prove non-speciality of a large class of systems we will use the following
algorithms.

Algorithm InitialCasesA

Input: m, k, s ∈ N.
Output: r0 such that L(m0 + k; m0, m

×r) is non-special for each m0 ≥ 0, r ≥ r0,
or not ok.

if k < m− 1 then return not ok;
set D = {(k + 1, {k + 1}×s, a1, . . . , am−1) : k + 1 ≥ a1 ≥ · · · ≥ am−1};
D ← {D ∈ D : D satisfies (∗)};
for each D ∈ D do

compute p = p(D);
check non-speciality of V (D; m×p) and V (D; m(×p+1)) by direct computation;
if one of these systems is special then return not ok;

end for each
return max{p(D) : D ∈ D}+ 2;

Algorithm InitialCasesB

Input: m, k ∈ N.
Output: r0 such that L(d; m0, m

×r) is non-special for each m0 ≥ 0, d ≥ m0 + k,
r ≥ r0,
or not ok.

if a < 2m− 1 then return not ok;
set D = {(k + 1, a1, . . . , am−1) : k + 1 ≥ a1 − 1 ≥ a2 − 2 ≥ · · · ≥ am−1 − (m− 1)};
D ← {D ∈ D : D satisfies (∗)};
for each D ∈ D do

compute p = p(D);
check non-speciality of V (D; m×p) and V (D; m(×p+1)) by direct computation;
if one of these systems is special then return not ok;

end for each
return max{p(D) : D ∈ D}+ 2;

These algorithms have been implemented by the author (in Free Pascal;
the source code can be downloaded from [Dum 09a]). In Table 1 we present
the results of InitialCases for m = 7, 8, 9, 10 and various values of k
and s. During the implementation the following trick has been added. Let D
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be a set of diagrams whose non-speciality is to be decided, and choose p ≥ 1.
First, we compute

Dpred = {redpm(D) : D ∈ D},
where

redpm(D) := redm(redm(. . . redm(D) . . . ))︸ ︷︷ ︸
p times

.

Then, by matrix computation, create

Dpred,ok ={D ∈ Dpred : V (D;m×p(D)) and V (D;m×(p(D)+1)) are non-special}.
Let

Dpdone = {D ∈ D : redpm(D) ∈ Dpred,ok}.

By the reduction algorithm, V (D;m×p(D)) and V (D;m×(p(D)+1)) are non-
special for all D ∈ Dpdone. We must check the remaining cases belonging to
D \Dpdone. To do this, proceed with new D := D \Dpdone and new p := p− 1.
For p = 0 (final step) no reduction is performed, we only check non-speciality.

4. Remaining cases. According to Propositions 17, 18 and Table 1 we
are left with the cases presented in Table 2. In what follows we will solve
all these cases. This may be boring; for every system we must show that it
is either non-special or −1-special. We will use Cremona transformations,
glueing (Theorem 6; in most cases we glue four points) and the known facts
about the Segre–Gimigliano–Harbourne–Hirschowitz conjecture (e.g. that it
holds for multiplicities bounded by 11). Observe that if a system with non-
negative multiplicities is in standard form and is based on at most nine points
then it is non-special.

In what follows we write (for simplicity) L(d; . . . ,m×a,b,c,...) for a family
of systems

{L(d; . . . ,m×`) : ` = a, b, c, . . . }.

The remaining cases can be divided according to methods of showing
non-speciality or −1-speciality. Therefore we present all the methods used
(and an example for each of them); then, for each method, we give a list
of cases that can be handled by this method. For all systems considered we
assume that m0 ≥ 12.

4.1. Glueing. Glue four points L(m0 + k;m0,m
×r) → L(m0 + k;m0,

2m + 1,m×(r−4)). The resulting system should be in standard form, based
on at most nine points, hence non-special, and with non-negative dimension.
As an example take L(m0 + k;m0, 7×9,10,11), k ≥ 22, m0 ≥ 12. After glueing
we have L(m0 + k;m0, 15, 7×5,6,7). This system is in standard form since
m0 +k−m0−15−7 = k−22 ≥ 0 and m0 +k−15−7−7 ≥ 5. We also have
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vdimL(m0 + k;m0, 15, 7×7) = (k2 + 2m0k + 3k + 2m0 − 630)/2− 1 ≥ 235.
This method can be applied to the following systems:

L(m0 + k;m0, 7×9,10,11), k ≥ 22, L(m0 + k;m0, 8×9,10,11), k ≥ 25,
L(m0 + k;m0, 9×9,10,11), k ≥ 28, L(m0 + k;m0, 10×9,10,11), k ≥ 31.

4.2. Double glueing. As before, but we must glue twice (i.e. eight
points of multiplicitym into two points of multiplicity 2m+1). As an example
consider L(m0 + k;m0, 8×12) for k ≥ 34, m0 ≥ 12. Glue twice to obtain
L(m0 + k;m0, 17×2, 8×4) in standard form. This method can be applied to
the following systems:

L(m0 + k;m0, 8×12), k ≥ 34, L(m0 + k;m0, 9×12), k ≥ 38,
L(m0 + k;m0, 10×12), k ≥ 42.

4.3. Glueing and Cremona. Glue four points L(m0 + k;m0,m
×r)

→ L(m0 + k;m0, 2m + 1,m×(r−4)). Then use the Cremona transformation
based on points with multiplicities m0, 2m+ 1 and m to obtain

L(m0 + 2k − 3m− 1;m0 + k − 3m− 1, k −m, k − 2m− 1,m×(r−5)).

The last system should be non-special and in standard form. As an example
take L(m0 + k;m0, 7×9,10,11), k ∈ {17, . . . , 21}, m0 ≥ 12. After glueing we
have Cr(L(m0 + k;m0, 15, 7×5,6,7)) = L(m0 + 2k − 22;m0 + k − 22, k − 7,
k−15, 7×4,5,6). This system is in standard form since (m0 +2k−22)− (m0 +
k−22)−(k−7)−(k−15)=−k+22≥0, (m0+2k−22)−(m0+k−22)−(k−7)−7
= 0 and (m0+2k−22)−(k−7)−7−7 = m0+k−29 ≥ 0. The computation of
the virtual dimension is straightforward and gives vdim = (k2 +2m0k+3k+
2m0−630)/2−1 ≥ 70. This method can be applied to the following systems:

L(m0 + k;m0, 7×9,10,11), k ∈ {17, . . . , 21},
L(m0 + k;m0, 8×9,10,11), k ∈ {20, . . . , 24},
L(m0 + k;m0, 9×9,10,11), k ∈ {25, 26, 27},
L(m0 + k;m0, 10×9,10,11), k ∈ {28, 29, 30}.

4.4. Double glueing and Cremona. As before, but we must glue
twice. As an example consider L(m0 + k;m0, 8×12) for k ∈ {23, . . . , 33},
m0 ≥ 12. Glue twice to obtain Cr(L(m0 + k;m0, 17×2, 8×4)) = L(m0 + 2k−
34;m0+k−34, (k−17)×2, 8×4) in standard form. This method can be applied
to the following systems:

L(m0 + k;m0, 8×12), k ∈ {23, . . . , 33},
L(m0 + k;m0, 9×12), k ∈ {25, . . . , 37},
L(m0 + k;m0, 10×12), k ∈ {30, . . . , 41}.
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4.5. Glueing and Cremona(s). Glue four points L(m0 + k;m0,m
×r)

→ L(m0 + k;m0, 2m + 1,m×(r−4)). Then use the Cremona transformation
based on points with multiplicities m0, 2m+1 and m to obtain L(m0 +2k−
3m−1;m0 +k−3m−1, k−m, k−2m−1,m×(r−5)). The last system should
be non-special in standard form except for a finite number of cases for low
values of m0. For each of these cases we must use an additional sequence
of Cremona transformations to end up with a system in standard form. As
an example take L(m0 + 16;m0, 7×9,10) for m0 ≥ 12. After glueing we have
Cr(L(m0 + 16;m0, 15, 7×5,6)) = L(m0 + 10;m0 − 6, 9, 7×4,5, 1). Since m0 +
10−9−7−7 = m0−13, the last system is in standard form form0 ≥ 13. The
remaining case m0 = 12 can be settled as follows: Cr◦(L(22; 6, 9, 7×4,5, 1)) =
L(20; 7×1,2, 6×5, 1). This method can be applied to the following systems:

L(m0 + k;m0, 7×9,10), k ∈ {16, 15, 14},
L(m0 + k;m0, 8×9,10,11), k ∈ {19, 18},
L(m0 + 17;m0, 8×9,10),

L(m0 + 16;m0, 8×9,10), m0 ≥ 13,

L(m0 + k;m0, 9×9,10,11), k ∈ {24, 23, 22, 21},
L(m0 + 20;m0, 9×9,10),

L(m0 + 20;m0, 9×11), m0 ≥ 14,

L(m0 + 19;m0, 9×9,10), m0 ≥ 13,

L(m0 + 19;m0, 9×11), m0 ≥ 15,

L(m0 + 18;m0, 9×9,10), m0 ≥ 14,

L(m0 + k;m0, 10×9,10,11), k ∈ {25, 26, 27},
L(m0 + 24;m0, 10×9,10,11),

L(m0 + 23;m0, 10×9,10),

L(m0 + 23;m0, 10×11), m0 ≥ 14,

L(m0 + 22;m0, 10×9,10), m0 ≥ 13,

L(m0 + 22;m0, 10×11), m0 ≥ 15,

L(m0 + 21;m0, 10×9,10), m0 ≥ 14,

L(m0 + 20;m0, 10×9,10), m0 ≥ 16.

4.6. Double glueing and Cremona(s). As before, but we must glue
twice. As an example consider L(m0 +22;m0, 8×12) for m0 ≥ 12. Glue twice
to obtain Cr(L(m0 + 22;m0, 17×2, 8×4)) = L(m0 + 10;m0 − 12, 8×4, 5×2).
For m0 ≥ 14 the last system is in standard form, the remaining cases
are
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Cr◦(L(23; 8×4, 5×2, 1)) = L(22; 8, 7×3, 5×2, 1),

Cr◦(L(22; 8×4, 5×2)) = L(20; 8, 6×3, 5×2).

This method can be applied to the following systems:

L(m0 + 22;m0, 8×12), L(m0 + 21;m0, 8×12),
L(m0 + 20;m0, 8×12), m0 ≥ 13, L(m0 + 24;m0, 9×12), m0 ≥ 13,
L(m0 + 23;m0, 9×12), m0 ≥ 14, L(m0 + 29;m0, 10×12),
L(m0 + 28;m0, 10×12), m0 ≥ 13, L(m0 + 27;m0, 10×12), m0 ≥ 14,
L(m0 + 26;m0, 10×12), m0 ≥ 15, L(m0 + 25;m0, 10×12), m0 ≥ 16.

4.7. Glue, Cremona(s), glue, Cremona(s). Glue four points of equal
multiplicity, then perform the Cremona transformation several times to ob-
tain a system with lower multiplicities. Then glue four points (but now the
multiplicities are lower) and use Cremona transformation(s) to obtain a non-
special system in standard form. As an example consider L(32; 12, 8×12).
Glue to obtain Cr◦(L(32; 17, 12, 8×8)) = L(24; 9, 8, 7×7, 3). Glue again to
consider Cr◦(L(24; 15, 9, 8, 7×3, 3)) = L(10; 6, 2×3, 1×2). This method can be
applied to the following systems:

L(32; 12, 8×12), L(36; 12, 9×12),
L(36; 13, 9×12), L(35; 12, 9×12),
L(40; 12, 10×12), L(40; 13, 10×12),

L(39; 12, 10×12), L(40; 14, 10×12),
L(39; 13, 10×12), L(38; 12, 10×12),
L(40; 15, 10×12), L(39; 14, 10×12),
L(38; 13, 10×12).

4.8. Cremona (even) and glueing. Consider L(m0 + k;m0,m
×2r)

such that k − 2m < 0. Perform Cremona transformations based on the first
point and two points with multiplicity m. Each time the degree and the
first multiplicity is changed by k − 2m. We end up with L(m0 + k + r(k −
2m);m0 +r(k−2m), (k−m)×2r). For m0 such that m0 +r(k−2m) ≤ 11 the
situation is known (observe that this multiplicity can be negative). Otherwise
glue four points of multiplicity k−m and end up with a system in standard
form. As an example consider L(m0+9;m0, 7×10) form0 ≥ 12. Use Cremona
transformations to obtain L(m0−16;m0−25, 2×10). Form0 ≥ 37 glue points
to obtain L(m0− 16;m0− 25, 5, 2×6) in standard form. This method can be
applied to the following systems:

L(m0 + 10;m0, 7×10), L(m0 + 9;m0, 7×10),

L(m0 + 11;m0, 8×10), L(m0 + 10;m0, 8×10),
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L(m0 + 13;m0, 9×10), L(m0 + 12;m0, 9×10),

L(m0 + 14;m0, 10×10), L(m0 + 13;m0, 10×10),

L(m0 + 12;m0, 10×10).

4.9. Cremona (even) and multiple glueing. As before, but we must
glue several times to produce a system based on at most nine points. As an
example consider L(m0 + 9;m0, 7×12) for m0 ≥ 12. Use Cremona transfor-
mations to obtain L(m0 − 21;m0 − 30, 2×12). For m0 ≥ 42 glue twice and
finish with L(m0 − 21;m0 − 30, 5×2, 2×4) in standard form. This method
can be applied to the following systems (in square brackets we indicate how
many times we glue):

L(m0 + 9;m0, 7×12), [2], L(m0 + 10;m0, 8×12,14), [2],

L(m0 + 11;m0, 9×10,12,14), [2], L(m0 + 11;m0, 9×16,18,20), [4],

L(m0 + 12;m0, 10×12,14), [2], L(m0 + 12;m0, 10×16,18), [4],

L(m0 + 12;m0, 10×20,22), [5].

4.10. Cremona (even), glueing and Cremona(s). As before, con-
sider L(m0 + k;m0,m

×2r) such that k − 2m < 0, but now the system after
glueing L(m0 + k+ r(k− 2m);m0 + r(k− 2m), 2k− 2m+ 1, (k−m)×(2r−4))
is not in standard form, and we must use another Cremona transformation
based on points with multiplicities m0 + r(k− 2m), 2k− 2m+ 1, k−m. Af-
ter this, the system is in standard form for m0 large enough, but for a finite
set of values of m0 (this set may be empty) we must use an additional se-
quence of Cremona transformation(s). As an example L(m0 + 11;m0, 7×10)
for m0 ≥ 12. Transform this system into L(m0 − 4;m0 − 15, 4×10). For
m0 ≥ 27 glue points to L(m0 − 4;m0 − 15, 9, 4×6). The standard form is
L(m0− 6;m0− 17, 7, 4×5, 2). Another example is L(m0 +15;m0, 8×10). This
system can be transformed into L(m0 + 10;m0 − 5, 7×10). For m0 ≥ 17 use
glueing to obtain L(m0+10;m0−5, 15, 7×6). For m0 ≥ 19 the standard form
is L(m0 + 3;m0 − 12, 8, 7×5), the remaining cases are

Cr◦(L(20; 8, 7×5, 5)) = L(14; 5×2, 4×5),

Cr◦(L(21; 8, 7×5, 6)) = L(19; 7, 6×6).

This method can be applied to the following systems:

L(m0 + 11;m0, 7×10), L(m0 + 15;m0, 8×10),

L(m0 + 12;m0, 8×10), L(m0 + 17;m0, 9×10),

L(m0 + 16;m0, 9×10), L(m0 + 14;m0, 9×10),

L(m0 + 19;m0, 10×10), m0 6= 17, L(m0 + 17;m0, 10×10),

L(m0 + 16;m0, 10×10), L(m0 + 15;m0, 10×10).
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4.11. Cremona (even), multiple glueing and Cremona(s). As
before, but we must glue several times. As an example take L(m0 + 10;
m0, 8×16) for m0 ≥ 12. This system can be transformed into L(m0 − 38;
m0− 48, 2×16). For m0 ≥ 60 glue three times to obtain L(m0− 38;m0 − 48,
5×3, 2×4), which can be transformed into the standard form L(m0 − 43;
m0 − 53, 2×4). This method can be applied to the following systems (in
square brackets we indicate how many times we glue):

L(m0 + 10;m0, 8×16), [3], L(m0 + 12;m0, 9×12), [2],

L(m0 + 14;m0, 10×12), [2], L(m0 + 13;m0, 10×12,14), [2].

4.12. Cremona (odd), glueing and Cremona(s). Consider L(m0 +
k;m0,m

×2r+1) such that k − 2m < 0. This system can be transformed into
L(m0 + k + r(k − 2m);m0 + r(k − 2m),m, (k −m)×2r). For m0 such that
m0 + r(k − 2m) ≤ 11 the situation is known. Otherwise glue four points of
multiplicity k−m to obtain L(m0+k+r(k−2m);m0+r(k−2m), 2k − 2m+ 1,
m, (k − m)×(2r−4)). Use another Cremona transformation based on points
with multiplicities m0 + r(k − 2m), 2k − 2m + 1, m to obtain the system
L(m0 + r(k− 2m) +m− 1;m0 +m− k+ r(k− 2m)− 1, k−m, 2m− k− 1,
(k − m)×(2r−4)) in standard form for m0 large enough. For the remaining
values of m0 we must use additional Cremona transformation(s) to end up in
standard form. As an example consider L(m0+13;m0, 7×9) form0 ≥ 12. This
system can be transformed into L(m0 + 9;m0 − 4, 7, 6×8). For m0 < 16 the
situation is known. For m0 ≥ 16 glue points to L(m0 + 9;m0− 4, 13, 7, 6×4).
The standard form of the last system is L(m0+2;m0−11, 6×5). This method
can be applied to the following systems:

L(m0 + k;m0, 7×9), k ∈ {13, 12, 10},
L(m0 + k;m0, 7×9,11), k ∈ {11, 9},
L(m0 + k;m0, 8×9), k ∈ {12, . . . , 15},
L(m0 + k;m0, 8×9,11), k ∈ {11, 10},
L(m0 + k;m0, 9×9), k ∈ {17, 16, 15},
L(m0 + k;m0, 9×9,11), k ∈ {14, 13, 12},
L(m0 + 19;m0, 10×9), m0 6= 16,

L(m0 + 18;m0, 10×9),

L(m0 + k;m0, 10×9,11), k ∈ {12, . . . , 17}.

4.13. Cremona (odd), multiple glueing and Cremona(s). As be-
fore, but we must glue several times to obtain the system with at most nine
multiplicities. As an example take L(m0 + 9;m0, 7×13) for m0 ≥ 12. Trans-
form our system into L(m0−21;m0−30, 7, 2×12). For m0 ≥ 42 glue twice to
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obtain Cr(L(m0 − 21;m0 − 30, 7, 5, 5, 2×4)) = L(m0 − 24;m0 − 33, 5, 4, 2×5)
in standard form. This method can be applied to the following systems (in
square brackets we indicate how many times we glue):

L(m0 + 9;m0, 7×13), [2], L(m0 + 10;m0, 8×13), [2],

L(m0 + 10;m0, 8×15,17), [3], L(m0 + 12;m0, 9×13), [2],

L(m0 + 11;m0, 9×9,11,13), [2], L(m0 + 11;m0, 9×15), [3],

L(m0 + 11;m0, 9×17,19), [4], L(m0 + 11;m0, 9×21), [5],

L(m0 + 13;m0, 10×13), [2], L(m0 + 13;m0, 10×15), [3],

L(m0 + 12;m0, 10×13), [2], L(m0 + 12;m0, 10×15,17), [3],

L(m0 + 12;m0, 10×19), [4], L(m0 + 12;m0, 10×21,23), [5].

4.14. Negative glueing and Cremona. We use glueing to show that
the system L(m0 + k;m0,m

×r) with negative virtual dimension is empty.
Therefore we glue four points of multiplicity m to one point of multiplicity
2m, then we use Cremona transformation(s) to show that the resulting sys-
tem is empty. As an example consider L(32; 13, 9×11). Use glueing to consider
L(32; 18, 13, 9×7), which can be transformed intoL(0; 2×3, 1, (−1)×5,−2,−4).
The last system is empty. This method can be applied to the following sys-
tems:

L(32; 12, 9×11), L(32; 13, 9×11),

L(31; 12, 9×11), L(31; 13, 9×10),

L(30; 12, 9×10), L(35; 12, 10×11),

L(35; 13, 10×11), L(34; 12, 10×11),

L(34; 13, 10×10), L(33; 12, 10×10),

L(34; 14, 10×10), L(33; 13, 10×10),

L(32; 12, 10×10).

4.15. Low multiplicities. Consider L(m0 +k;m0,m
×r) for k−m ≤ 1.

As before, this system can be transformed (by a sequence of Cremona trans-
formations) into a system in standard form with at most two arbitrary “high”
multiplicities, the other being strictly less than 2. Let L = L(d;m1,m2,m

×s)
be such a system, m ≤ 1. If m ≤ −2 then L is −1-special if and only if L
is non-empty, which is equivalent to the non-emptiness of L(d;m1,m2). For
m = −1 or m = 0 it is enough to consider L(d;m1,m2) based on at most
two points. For m = 1 we have two cases. If m1 ≥ −1, m2 ≥ −1 then L
is non-special since multiplicity 1 always imposes an independent condition.
For the opposite case we must decide whether L is non-empty. Dropping neg-
ative multiplicities we end up with a system with at most one multiplicity
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not equal to 1. As an example consider L(m0 +8;m0, 7×(2r+1)). This system
can be transformed to L(m0 + k− 6r;m0− 6r, 7, 1×(2r)) in standard form. If
m0− 6r ≥ −1 then the system is non-special. If m0− 6r < −1 then the sys-
tem is −1-special if and only if L(m0 +8− 6r; 7, 1×(2r)) is non-empty, which
holds for

(
m0−6r+10

2

)
≥ 28 + 2r. In fact we have

(
m0−6r+10

2

)
≤
(
8
2

)
= 28, so

r = 0 and our system is non-special. This method can be applied to

L(m0 + k;m0, 7×r), k ≤ 8, r ≥ 9,

L(m0 + k;m0, 8×r), k ≤ 9, r ≥ 9,

L(m0 + k;m0, 9×r), k ≤ 10, r ≥ 9,

L(m0 + k;m0, 10×r), k ≤ 11, r ≥ 9.

4.16. Additional methods. We use non-standard glueing, the reduc-
tion algorithm, etc.

• L(28; 12, 8×9) Glue three points (using non-special system L(15; 8×3))
to obtain L(28; 16, 12, 8×6). The standard form of the last system is L(4; 4).
• L(31; 12, 9×9) This system is non-special due to the reduction algo-

rithm. We begin with the diagram (32), use 12-reduction followed by nine
9-reductions. The last diagram is equal to (6, 6, 6, 5, 5, 2).
• L(31; 13, 9×9) It is enough to show that L(30; 13, 9×9) is non-special

(observe that the last system has virtual dimension −1). We have Cr◦(L(30;
13, 9×9)) = L(26; 9×2, 8×8). Since all multiplicities are bounded by 11 we can
use Theorem 10.
• L(34; 12, 10×9) This system has positive virtual dimension. Since L(19;

10×3) is non-empty and non-special we use glueing to consider

Cr◦(L(34; 20, 12, 10×6)) = L(4; 2).

• L(35; 15, 10×9) This system has positive virtual dimension. As above,
we glue to consider Cr◦(L(35; 20, 15, 10×6)) = L(5; 5).
• L(32; 12, 10×9) This system is empty due to the reduction algorithm.

We begin with the diagram (33), use 12-reduction followed by eight 10-
reductions. The last diagram is equal to (6, 6, 6, 5, 5), which can be enlarged
to (10) and reduced to the empty diagram.
• L(35; 16, 10×9) This system can be transformed into L(31; 12, 10, 9×8).

It is enough to show that the system L(30; 12, 10, 9×8) is non-empty and
non-special. The last system can be transformed into L(29; 11, 9×8, 8), which
is non-special due to Theorem 10.

4.17. Direct computation. Sometimes we are forced to compute the
rank of the matrix associated to a system. To make this task possible, we
specialize to random points and compute over Fp for some prime p. If the
rank is maximal for specialized points over Fp then it is maximal over Q (and
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hence over any field of characteristic zero) and for points in general position.
Alternatively, we may use the diagram cutting method of [Dum 07a] (the
author has checked that it is possible in all cases). This method must be
applied to the following systems:

L(28; 12, 8×10), L(33; 13, 9×11),

L(33; 14, 9×11), L(31; 12, 9×10),

L(32; 14, 9×10), L(30; 12, 9×9),

L(37; 12, 10×12), L(36, 13, 10×11),

L(36; 14, 10×11), L(34; 12, 10×10),

L(34; 13, 10×9), L(33; 12, 10×9),

L(35; 15, 10×10), L(34; 14, 10×9),

L(33; 13, 10×9), L(36; 17, 10×10).

5. List of special systems. To produce the list of all special quasi-
homogeneous systems L(d;m0,m

×r) with m = 7, 8, 9, 10 we will use Cre-
mona transformations. From [Gim 89] (see the discussion after Definition 9)
and Theorem 4 it follows that the system as above is special if and only
if

• while performing Cremona transformations some doubly negative (i.e.
≤ −2) multiplicities appear, and
• its standard form has nonnegative virtual dimension.

Fix m ∈ {7, 8, 9, 10}. We will begin with systems L(m0 + k;m0,m
×2r)

for k = 0, . . . ,m − 2. By a sequence of Cremona transformations we can
transform L(m0 + k;m0,m

×2r) into

L(m0 + k + r(k − 2m);m0 + r(k − 2m), (k −m)×2r).

Since k −m ≤ −2, we know that L(m0 + k;m0,m
×2r) is special if and only

if L(m0 + k + r(k − 2m);m0 + r(k − 2m)) is non-empty. The system with
one base point cannot be special, so non-emptiness is equivalent to

m0 + k + r(k − 2m) ≥ 0.

To deal with L(m0 +k;m0,m
×(2r+1)) for k = 0, . . . ,m− 2 we proceed as

above with one more Cremona at the end (based on points with multiplicities
m0 + r(k − 2m),m, 0). The condition for being special is

m0 + 2k + r(k − 2m)−m ≥ 0.

Now let k be either m − 1 or m. We proceed as above by transforming
L(m0 +k;m0,m

×2r) into L(m0 +k+r(k−2m);m0 +r(k−2m), (k−m)×2r),
but now k − m is either −1 or zero and can be dropped out. Therefore
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L(m0 + k;m0,m
×2r) is special if and only if L(m0 + k + r(k − 2m);m0 +

r(k − 2m), (k −m)×2r) is special. The last is equivalent to

m0 + k + r(k − 2m) ≥ 0, m0 + r(k − 2m) ≤ −2,

which can be written as 0 ≤ m0 +k+r(k−2m) ≤ k−2. The case L(m0 + k;
m0,m

×(2r+1)) can be handled similarly, and the condition for speciality is
0 ≤ m0 + 2k + r(k − 2m)−m ≤ k − 2.

Let k ∈ {m+1, . . . , 2m−1}. Transform L(m0+k;m0,m
×2r) into L(m0+

k+r(k−2m);m0 +r(k−2m), (k−m)×2r) =: L. Observe that L is empty for
m0+k+r(k−2m) < k−m, in standard form form0+k+r(k−2m) ≥ 3(k−m)
and without doubly negative multiplicities for m0 + k + r(k − 2m) ≥ −1.
Hence L can be special only for

m0 + r(k − 2m) ∈ {−m, . . . ,max{3(k −m)− k − 1,−2}}.
Observe that for r large enough L must be empty, since k−m ≥ 1. This gives
a finite number of cases that should be dealt with separately, for example
by a suitable computer program.

The same applies to L(m0 + k;m0,m
×(2r+1)), but now we must search

through systems satisfying

m0 + r(k − 2m) ∈ {m− k, . . . ,max{k −m− 1,−2}}.
For k ∈ {2m, . . . , 3m− 1} the system L(m0 + k;m0,m

×r) is in standard
form for m0 + k ≥ 3m, so we must check a finite number of cases for

m0 ∈ {0, . . . , 3m− k − 1}.
For k ≥ 3m the system L(m0 + k;m0,m

×r) is always in standard form
and hence non-special.

The author did all the computations mentioned above for m = 7, 8, 9, 10
and k ≥ m + 1. The full list for a fixed m contains an infinite family of
special systems for k ≤ m (which can be easily described) and additional 81
(resp. 128, 179, 257) systems for m = 7 (resp. m = 8, m = 9, m = 10). This
list can be presented in a shorter form by gathering some systems into small
families (e.g. L(5 + 6r;−3 + 6r, 7×2r) for r = 1, . . . , 10). The list for m = 7
is presented in Table 3. Similar lists for multiplicities 8, 9, 10 are available
online at [Dum 09a].

6. A note on Seibert’s proof for m = 4. In [Sei 01] all special sys-
tems of the form L(d;m, 4×r) have been classified. For all non-special cases
but one the proof involved techniques avoiding computation of the rank of
the interpolation matrix. For L(13; 5, 4×9) Seibert used a Maple program to
compute the rank of a 105× 105 matrix. The rank appeared to be maximal,
so the system is non-special. Using the diagram cutting method (introduced
in [Dum-Jar 07]) we propose a much nicer proof of this fact, which can be
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easily checked by hand. The cutting is presented in Fig. 1. The order of cut-
ting is indicated by the numbers in the diagram. Now, Seibert’s proof does
not rely on computations that cannot be done by hand.

2
2
2
2
6
6
6
6
8
1
1
1
1
1

2
2
2
6
6
6
8
8
8
1
1
1
1

2
2
6
6
8
8
8
8
4
1
1
1

2
6

9
8
8
7
4
1
1

9
9
7
4
4
1

9
9
7
7
4
4

5

9
9
9
7
7
4

5
5
9
9
7
7
4

5
5
5
7
7
4

5
5
5
5
7

3
3
3
3

3
3
3

3
3 3

Fig. 1. Diagram cutting for L(13; 5, 4×9)

7. Tables and figures

Table 1. Results of InitialCases. It follows that
L(d; m0, m

×r) is non-special for d = m0 + k (d ≥
m0 + k for type B) and r ≥ r0.

Type m k s r0 Type m k s r0

B 7 17 12 A 9 19 4 12

A 7 16 1 11 A 9 18 5 11

A 7 15 2 11 A 9 17 6 11

A 7 14 3 11 A 9 16 7 11

A 7 13 4 10 A 9 15 8 10

A 7 12 5 10 A 9 14 14 12

A 7 11 11 12 A 9 13 17 12

A 7 10 13 11 A 9 12 29 14

A 7 9 24 14 A 9 11 62 22

B 8 20 13 B 10 25 13

A 8 19 1 12 A 10 24 1 12

A 8 18 2 12 A 10 23 2 12

A 8 17 3 11 A 10 22 3 12

A 8 16 5 11 A 10 21 4 11

A 8 15 5 11 A 10 20 5 11

A 8 14 6 10 A 10 19 6 11

A 8 13 7 10 A 10 18 7 10

A 8 12 13 11 A 10 17 13 12
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Type m k s r0 Type m k s r0

A 8 11 19 12 A 10 16 15 12

A 8 10 41 18 A 10 15 17 12

B 9 23 13 A 10 14 26 13

A 9 22 1 12 A 10 13 41 16

A 9 21 2 12 A 10 12 79 24

A 9 20 3 12

Table 2. Cases to be considered separately

L(m0 + k; m0, 7
×r)

k ≥ 17, r ∈ {9, 10, 11}
L(m0 + k; m0, 7

×r)

k ∈ {16, 15, 14}, r ∈ {9, 10}
L(m0 + k; m0, 7

×9)

k ∈ {13, 12} L(m0 + 11; m0, 7
×r), r ∈ {9, 10, 11}

L(m0 + 10; m0, 7
×r)

r ∈ {9, 10} L(m0 + 9; m0, 7
×r), r ∈ {9, 10, 11, 12, 13}

L(m0 + k; m0, 7
×r)

k ∈ {0, . . . , 8}, r ≥ 9

L(m0 + k; m0, 8
×r)

k ≥ 20, r ∈ {9, . . . , 12}
L(m0 + k; m0, 8

×r)

k ∈ {17, 16, 15, 12}, r ∈ {9, 10}
L(m0 + k; m0, 8

×r)

k ∈ {19, 18, 11}, r ∈ {9, 10, 11}
L(m0 + k; m0, 8

×9)

k ∈ {14, 13}
L(m0 + 10; m0, 8

×r)

r ∈ {9, . . . , 17}
L(m0 + k; m0, 8

×r)

k ∈ {0, . . . , 9}, r ≥ 9

L(m0 + k; m0, 9
×r)

k ≥ 23, r ∈ {9, . . . , 12}
L(m0 + k; m0, 9

×r)

k ∈ {22, . . . , 19, 14, 13}, r ∈ {9, 10, 11}
L(m0 + k; m0, 9

×r)

k ∈ {18, 17, 16}, r ∈ {9, 10}
L(m0 + 15; m0, 9

×9)

L(m0 + 12; m0, 9
×r)

r ∈ {9, . . . , 13} L(m0 + 11; m0, 9
×r), r ∈ {9, . . . , 21}

L(m0 + k; m0, 9
×r)

k ∈ {0, . . . , 10}, r ≥ 9

L(m0 + k; m0, 10×r)

k ≥ 25,

r ∈ {9, . . . , 12}

L(m0 + k; m0, 10×r)

k ∈ {24, 23, 22, 17, 16, 15},
r ∈ {9, 10, 11}

L(m0 + k; m0, 10×r)

k ∈ {21, 20, 19}, r ∈ {9, 10}
L(m0 + 18; m0, 10×9)

L(m0 + 14; m0, 10×r), r ∈ {9, . . . , 12} L(m0 + 13; m0, 10×r), r ∈ {9, . . . , 15}

L(m0 + 12; m0, 10×r)

r ∈ {9, . . . , 23}
L(m0 + k; m0, 10×r)

k ∈ {0, . . . , 11}, r ≥ 9
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Table 3. Quasi-homogeneous special systems for m = 7

L(m0 + k; m0, 7
×2r) k ≤ 5, m0 + k + r(k − 14) ≥ 0

L(m0 + k; m0, 7
×(2r+1)) k ≤ 5, m0 + 2k + r(k − 14)− 7 ≥ 0

L(m0 + 7; m0, 7
×2r) 0 ≤ m0 + 7− 7r ≤ 5

L(m0 + 7; m0, 7
×(2r+1)) 0 ≤ m0 + 7− 7r ≤ 5

L(m0 + 6; m0, 7
×2r) 0 ≤ m0 + 6− 6r ≤ 4

L(m0 + 6; m0, 7
×(2r+1)) 0 ≤ m0 + 5− 6r ≤ 4

L(8 + 6k; 6k, 7×(2+2k)) k ∈ {0, 1}
L(9 + 6k; 1 + 6k, 7×(2+2k)) k ∈ {0, . . . , 3}
L(10 + 6k; 2 + 6k, 7×(2+2k)) k ∈ {0, . . . , 6}
L(11 + 6k; 3 + 6k, 7×(2+2k)) k ∈ {0, . . . , 9}
L(12 + 6k; 4 + 6k, 7×(2+2k)) k ∈ {0, . . . , 12}
L(9 + 5k; 5k, 7×(2+2k)) k ∈ {0, 1}

L(10 + 5k; 1 + 5k, 7×(2+2k)) k ∈ {0, 1, 2}
L(11 + 5k; 2 + 5k, 7×(2+2k)) k ∈ {0, . . . , 3}
L(12 + 5k; 3 + 5k, 7×(2+2k)) k ∈ {0, . . . , 4}

L(12; 3, 7×3)

L(10 + 4k; 4k, 7×(2+2k)) k ∈ {0, 1}
L(11 + 4k; 1 + 4k, 7×(2+2k)) k ∈ {0, 1}
L(12 + 4k; 2 + 4k, 7×(2+2k)) k ∈ {0, 1, 2}
L(11 + k; 1 + k, 7×3) k ∈ {0, 1}
L(22; 12, 7×7)

L(11 + 3k; 3k, 7×(2+2k)) k ∈ {0, 1}
L(12 + 3k; 1 + 3k, 7×(2+2k)) k ∈ {0, 1}

L(11 + k; k, 7×3) k ∈ {0, 1}
L(16 + 5k; 5 + 5k, 7×(5+2k)) k ∈ {0, 1}
L(12 + 2k; 2k, 7×(2+2k)) k ∈ {0, 1}
L(12 + 4k; 4k, 7×(3+2k)) k ∈ {0, 1}
L(15 + k; 2 + k, 7×5) k ∈ {0, 1}
L(14 + k; k, 7×5) k ∈ {0, 1, 2}
L(15 + k; k, 7×5) k ∈ {0, 1}
L(16; 7×5)
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