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Gelfand transform for a Boehmian space
of analytic functions

by V. Karunakaran and R. Angeline Chella Rajathi (Madurai)

Abstract. Let H∞(D) denote the usual commutative Banach algebra of bounded
analytic functions on the open unit disc D of the finite complex plane, under Hadamard
product of power series. We construct a Boehmian space which includes the Banach algebra
A where A is the commutative Banach algebra with unit containing H∞(D). The Gelfand
transform theory is extended to this setup along with the usual classical properties. The
image is also a Boehmian space which includes the Banach algebra C(∆) of continuous
functions on the maximal ideal space ∆ (where ∆ is given the usual Gelfand topology).
It is shown that every F ∈ C(∆) is the Gelfand transform of a suitable Boehmian. It
should be noted that in the classical theory the Gelfand transform from A into C(∆) is
not surjective even though it can be shown that the image is dense. Thus the context of
Boehmians enables us to identify every element of C(∆) as the Gelfand transform of a
suitable convolution quotient of analytic functions. (Here the convolution is the Hadamard
convolution).

1. Introduction. The theory of Gelfand transform is applicable to the
Banach algebra A containing the Banach algebra H∞(D) of bounded an-
alytic functions in the open unit disc D with unit element added. If ∆
denotes the usual maximal ideal space of this algebra (or the non-trivial
complex homomorphisms on A), equipped with its Gelfand topology, then
the Gelfand transform is an injective continuous mapping of A onto a dense
subset of C(∆). Since the Gelfand transform is not surjective, it is inter-
esting to ask whether it is possible to define new objects whose Gelfand
transforms exhaust C(∆). We answer this question affirmatively by con-
structing a Boehmian space (which are convolution quotients of elements
of H∞(D)) and proving that every element of C(∆) is indeed the Gelfand
transform of a suitable Boehmian. In fact we show that the Gelfand trans-
form can be extended as a linear, bijective, bicontinuous (in the delta sense)
map of one Boehmian space onto another. The required preliminaries are
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developed in Section 2 and the main theorem is proved in the final section.
Indeed we shall also give a necessary and sufficient condition on a Boehmian
for its Gelfand transform to represent an element of C(∆).

2. Preliminaries. Let R and C denote the usual real line and the com-
plex plane. For f, g ∈ H∞(D) with f(z) =

∑∞
n=0 anz

n, g(z) =
∑∞

n=0 bnz
n,

define

(f ∗ g)(z) =
∞∑
n=0

anbnz
n.

Let

B =
{
φ : D→ C, analytic

/
φ(z) =

∞∑
n=0

cnz
n with

∞∑
n=0

|cn| <∞
}
.

For f ∈H∞(D) we have ‖f‖∞ = supz∈D |f(z)| and hence if φ(z)=
∑∞

n=0 cnz
n

∈ B then ‖φ‖∞ ≤
∑∞

n=0 |cn| < ∞. This shows that B ⊂ H∞(D). The
following results can be found in [Re], [CD], [Sz].

Lemma 2.1. H∞(D) is a Banach algebra under Hadamard convolution
(without unit) and if f, g ∈ H∞(D) then f ∗ g ∈ B ⊂ H∞(D).

Theorem 2.2. The non-trivial complex homomorphisms on H∞(D) are
of the form δn, n = 0, 1, 2, . . . , where δn is defined by δn(f) = f (n)(0)/n!.

Theorem 2.3. If E is the maximal ideal space of H∞(D) then E is a
locally compact Hausdorff space and the maximal ideal space ∆ of A is the
one-point compactification of E.

Theorem 2.4. The Gelfand transform Φ : H∞(D)→ C(E) maps H∞(D)
onto a subset of C0(E) (which in turn is a subset of C(E)), where C0(E) is
the space of all continuous complex functions on E vanishing at ∞.

We shall prove the following result in respect of the theory of Gelfand
transform on A where A is the commutative Banach algebra containing
H∞(D) with unit. We first note that if ∆ denotes the maximal ideal space of
A with its usual Gelfand topology then the Gelfand transform Φ : A→ C(∆)
is given by Φ(f) = f̂ , where f̂(h) = h(f), h ∈ ∆ and f ∈ A.

Theorem 2.5. The Gelfand transform Φ : A → C(∆) is an injective
continuous linear map with ‖f̂‖∞ ≤ ‖f‖∞ for f ∈ H∞(D). Moreover, h ∈ ∆
if and only if h = δn for some n = 0, 1, 2, . . . or h = δ∞ where δ∞(f, α) = α
for all f ∈ H∞(D) and α ∈ C. Further Â is dense in C(∆).

Proof. Using Theorem 2.2, the required conclusions readily follow from
their analogs in the Gelfand theory of integrable functions except for the
denseness, which is an easy consequence of the Stone–Weierstrass theorem
(see [Ru]).
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We now start constructing the required Boehmian spaces. We recall that
(see [M1]) a Boehmian space is obtained using a base space G which is a
additive commutative semigroup and S a subsemigroup of G with a map
∗ : G× S → G satisfying

1. For f, g ∈ S, f ∗ g = g ∗ f ∈ S.
2. If f ∈ G and g, h ∈ S then (f ∗ g) ∗ h = f ∗ (g ∗ h).
3. If f, g ∈ G and h ∈ S then (f + g) ∗ h = (f ∗ h) + (g ∗ h).

We also need χ (called a set of delta sequences) ⊂ SN (where N is the set of
natural numbers) satisfying

1. For f, g ∈ G, [f ∗ φn = g ∗ φn (n = 1, 2, . . .), {φn} ∈ χ] ⇒ f = g.
2. {φn}, {ψn} ∈ χ⇒ {φn ∗ ψn} ∈ χ.
Consider the class A1 of ordered pairs of sequences defined by

A1 = {({fk}, {φk}) : fk ∈ G, {φk} ∈ χ (k ∈ N)}.
An element ({fk}, {φk}) ∈ A1 is said to be a quotient of sequences (also
denoted by fk

φk
) if

fk ∗ φl = fl ∗ φk ∀k, l ∈ N.

Let A denote the set of all quotients of sequences in A1.
Two quotients of sequences fk

φk
and gk

ψk
are said to be equivalent (denoted

by fk
φk
∼ gk

ψk
) if

fk ∗ ψl = gl ∗ φk ∀k, l ∈ N.
It can be easily shown that ∼ is an equivalence relation on A. The equiv-
alence class containing a quotient of sequence fk

φk
is called a Boehmian and

is denoted by
[ fk
φk

]
. The set B of all such Boehmians is called a Boehmian

space.
We now observe that condition 1 for delta sequences ensures that G gets

embedded injectively in B using the map f 7→
[f∗φk
φk

]
for f ∈ G and any

sequence {φk} ∈ χ.
Definition 2.6. Let G be as above with a notion of convergence of

sequences. A sequence {xn} of Boehmians is δ-convergent to a Boehmian x
(we write δ-limxn = x or xn

δ→ x as n→∞) if there exists a delta sequence
{δk} such that xn ∗ δk, x ∗ δk ∈ G for all k, n ∈ N and xn ∗ δk → x ∗ δk as
n→∞ in G for each k ∈ N.

For a complete description of the construction of Boehmian spaces and
their properties we refer the reader to [M1]. There are also various other
types of construction of generalized quotient spaces which are studied in
detail in the literature (see [AM], [M2]). However we shall restrict ourselves
to the original construction described above.
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We now define two Boehmian spaces as follows. B1 is formed using

G = H∞(D), S = B,

∗ being the Hadamard convolution and χ={{φk}⊂B /φk(z) =
∑∞

n=0 cnkz
n

with cnk 6= 0 for all k, n, cnk → 1 for each n as k →∞, and
∑∞

n=0 |cnk| ≤M,
where M is independent of k}. For example the sequence defined by φk(z) =∑∞

n=0 e
−n2/kzn (k = 1, 2, . . .) is a delta sequence. The second Boehmian

space B2 is obtained by taking G = C0(E), S = B̂ = {f̂ : f ∈ B},
χ = {{φ̂k} | {φk} is a delta sequence in B1} and taking ∗ to be point-
wise multiplication. (Note that here ˆ refers to the Gelfand transform on
H∞(D)). We also observe that C(∆) can be identified in B2 using the map
f 7→

[fφ̂k

φ̂k

]
, as can be easily verified. Since the Boehmian space B1 already

contains the Dirac delta (which is represented by
[φk
φk

]
∈ B1), it is not ne-

cessary for us to construct our Boehmian space using the Banach algebra A.
For this reason it is easy to see that the Banach algebra A can be identified
inside the Boehmian space B1 using the continuous map

(f, α) 7→
[
f ∗ φk + αφk

φk

]
.

Here the continuity is understood in the sense that fn → f as n→∞ in G

implies xn =
[fn∗φk

φk

] δ→ x =
[f∗φk
φk

]
in B1. Further it is easy to see that B1

is larger than A using the following example. Consider f(z) =
∑∞

n=0 n!zn

(whose radius of convergence is 0). This can be identified with
[ gk
φk

]
where

gk(z) =
∑∞

n=0 n!e−n
2/kzn and φk(z) =

∑∞
n=0 e

−n2/kzn.

Addition and scalar multiplication in the Boehmian spaces B1 and B2

are defined canonically. Moreover we can define convolution of two Boehmi-
ans in B1 as follows: [

fk
φk

]
∗
[
gk
ψk

]
=
[
fk ∗ gk
φk ∗ ψk

]
.

In a similar way we can define the product of two Boehmians in B2. We
observe that the Gelfand transform theory which is available on A can be
extended to the Boehmian space B1 and we can study the extended Gelfand
theory in this context. While in the classical case the Gelfand transform
maps A onto a proper subalgebra of C(∆), in our theory it is possible to show
that the extended Gelfand transform is a linear, bijective and bicontinuous
(in the delta sense) map of B1 onto B2. In particular every element of C(∆)
can be viewed as the Gelfand transform of a suitable Boehmian. Thus the
framework of Boehmians enables us to realise the whole of C(∆) as the
Gelfand transforms of convolution quotients of H∞(D). We shall give the
full details in the following section.
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3. Main results

Definition 3.1. Let x =
[ fk
φk

]
∈ B1. Then the Gelfand transform x̂ of

x is defined as the Boehmian
[ f̂k

φ̂k

]
∈ B2.

It is easy to see that x̂ ∈ B2 and is well-defined. Further if x represents
(f, α) ∈ A in the sense that x =

[f∗φk+αφk
φk

]
then x̂ =

[ (f̂+α)φ̂k

φ̂k

]
represents

f̂ +α, which is nothing but the Gelfand transform of (f, α) ∈ A, and there-
fore our definition is consistent with the classical definition of the Gelfand
transform on A.

Definition 3.2. A bijective map Φ from a Boehmian space B1 onto a
Boehmian space B2 is said to be bicontinuous if xn

δ→ x in B1 as n → ∞
implies yn = Φ(xn) δ→ y = Φ(x) in B2 as n→∞ and vice versa.

Theorem 3.3. The Gelfand transform Φ : B1→B2 given by Φ(x)= x̂ is
linear, bijective and bicontinuous (in the delta sense). Moreover (x∗y)∧= x̂ŷ.

Proof. It is obvious that Φ is linear and we can also easily show that the
Gelfand transform is injective and that (x ∗ y)∧ = x̂ŷ for x, y ∈ B1. We now
show that the Gelfand transform on B1 is surjective. Let y =

[ fk

φ̂k

]
∈ B2.

Fix {ψk} ∈ χ (with ψk(z) =
∑∞

n=0 dnkz
n) and consider gk(z) =

∑∞
n=0 bnkz

n,

where bnk = fk(δn)ψ̂k(δn) = fk(δn)dnk. We have |bnk| ≤ Mk|dnk| (where
Mk = suph∈E |fk(h)| < ∞). It is now easy to see that gk(z) ∈ B for every
k = 1, 2, . . . and that

ĝk(δn) = bnk = fk(δn)ψ̂k(δn).

(Note that in view of Theorem 2.3 every element of E is of the form δn,
n = 0, 1, 2, . . .). Hence

y =
[
fk

φ̂k

]
=
[
fkψ̂k

φ̂kψ̂k

]
=
[
ĝk

φ̂kψ̂k

]
=
[

gk
φk ∗ ψk

]∧
= x̂

with x =
[ gk
φk∗ψk

]
∈ B1. This completes the proof of the fact that Φ is

surjective.

We next claim that Φ is continuous in the sense that xm
δ→ x in B1 as

m → ∞ implies x̂m
δ→ x̂ in B2 as m → ∞ (see Definition 3.2). Indeed we

can assume xm =
[fkm
φk

]
, x =

[ fk
φk

]
and fkm → fk in H∞(D) as m →∞ for

each k = 1, 2, . . . . Using the fact that the Gelfand transform is continuous
on A it follows that f̂km → f̂k in C0(E) as m → ∞ for each k = 1, 2, . . . .
Since x̂m =

[ f̂km

φ̂k

]
, x̂ =

[ f̂k

φ̂k

]
we see that x̂m

δ→ x̂ in B2 as m→∞. Thus Φ

is continuous. For the continuity of Φ−1 we shall assume ym → y as m→∞,
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where ym =
[ f̂km

φ̂k

]
, y =

[ f̂k

φ̂k

]
∈ B2 (note that Φ is bijective), and show that

in B1, xm
δ→ x as m→∞.

Our claim is that fkm ∗ φk → fk ∗ φk in H∞(D) as m → ∞ for each
k = 1, 2, . . . . Indeed, by hypothesis, we have |ankm − ank| < ε uniformly
for all n as m → ∞ for each fixed k, where fk(z) =

∑∞
n=0 ankz

n, fkm(z) =∑∞
n=0 ankmz

n and φk(z) =
∑∞

n=0 cnkz
n. Hence

sup
z∈D
|(fkm ∗ φk)(z)− (fk ∗ φk)(z)| ≤

∞∑
n=0

|ankm − ank| |cnk|

≤ ε
∞∑
n=0

|cnk| ≤ εM (say).

This shows that (xm ∗ φk) ∗ φk → (x ∗ φk) ∗ φk as m → ∞ or equivalently
xm

δ→ x in B1 as m→∞. Thus Φ−1 is continuous. The proof of the theorem
is now complete.

The above theorem in particular implies that given f ∈ C(∆) there
exists x =

[ fk
φk

]
∈ B1 such that x̂ =

[fφ̂k

φ̂k

]
. However it is also possible to

characterise the Boehmians whose Gelfand transforms represent functions
in C(∆). We have the following.

Theorem 3.4. Let x =
[ fk
φk

]
∈ B1 with fk(z) =

∑∞
n=0 ankz

n ∈ H∞(D).

Then x̂ =
[ f̂k

φ̂k

]
represents f ∈ C(∆) (in the sense that fφ̂k = f̂k) if and

only if limk→∞ ank = bn exists for each n ∈ N and limn→∞ bn = α exists
for some α ∈ C.

Proof. Let f̂k = fφ̂k in C0(E) and note that

f̂k(δn) = f(δn)φ̂k(δn),

ank = f(δn)cnk (φ̂k(δn) = cnk),
lim
k→∞

ank = f(δn) lim
k→∞

cnk = f(δn),

lim
n→∞

lim
k→∞

ank = lim
n→∞

f(δn) = f(δ∞) exists.

(Note that f is continuous on ∆ and its Gelfand topology implies δn → δ∞
as n→∞).

Conversely assume that limn→∞ limk→∞ ank = α exists. Define

f(δn) =
f̂k(δn)

φ̂k(δn)
for δn 6= δ∞ and f(δ∞) = α.

Thus f is defined for all h ∈ ∆. Since cnk 6= 0 for all k, n, we have φ̂k(δn) 6= 0,
so f(δn) is well defined on E. Being the quotient of two continuous functions,
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f is continuous on E. Using the quotient property of
[ fk
φk

]
, it also follows

that f(δn) is independent of k. In order to prove that f is continuous on ∆
we have to show that f(δn)→ f(δ∞) as n→∞. Indeed,

f(δn) = lim
k→∞

f̂k(δn)/ lim
k→∞

φ̂k(δn)

= lim
k→∞

ank (since cnk → 1 as k →∞ for each n).

Now
lim
n→∞

f(δn) = lim
n→∞

lim
k→∞

ank = α = f(δ∞).

Thus f ∈ C(∆). This completes the proof of our theorem.
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