Hausdorff dimension of invariant measures related to Poisson driven stochastic differential equations

by Tomasz Bielaczyc (Katowice)

Abstract

It is shown that the Hausdorff dimension of an invariant measure generated by a Poisson driven stochastic differential equation is greater than or equal to 1 .

1. Introduction. We consider a stochastic differential equation of the form

$$
\begin{equation*}
d \xi(t)=a(\xi(t)) d t+\int_{\Theta} \sigma(\xi(t), \theta) \mathcal{N}_{p}(d t, d \theta), \quad t \geq 0 \tag{1.1}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
\xi(0)=\xi_{0} \tag{1.2}
\end{equation*}
$$

where $(\xi(t))_{t \geq 0}$ is a stochastic process with values in a separable Banach space X. We make the following five assumptions:
i. The coefficient $a: X \rightarrow X$ is Lipschitzian,

$$
\|a(x)-a(y)\| \leq l_{a}\|x-y\| \quad \text { for } x, y \in X .
$$

ii. $(\Theta, \mathcal{G}, \kappa)$ is a probability space.
iii. The perturbation coefficient $\sigma: X \times \Theta \rightarrow X$ is $\mathcal{B}_{X} \times \mathcal{G} / \mathcal{B}_{X}$-measurable and

$$
\|\sigma(x, \cdot)-\sigma(y, \cdot)\|_{L^{2}(\kappa)} \leq l_{\sigma}\|x-y\| \quad \text { for } x, y \in X .
$$

iv. There are given a probability space $(\Omega, \mathcal{A}, \mathbb{P})$, a sequence $\left(t_{n}\right)_{n \geq 0}$ of nonnegative random variables and a sequence $\left(\theta_{n}\right)_{n \geq 1}$ of random elements with values in the space Θ. The variables $\Delta t_{n}=t_{n}-t_{n-1}$ $\left(t_{0}=0\right)$ are nonnegative, independent and equally distributed with density function $\lambda e^{-\lambda t}$ for $t \geq 0$. The elements θ_{n} are independent, equally distributed with distribution κ. The sequences $\left(t_{n}\right)_{n \geq 0}$ and

[^0]$\left(\theta_{n}\right)_{n \geq 1}$ are also independent. It is well known that the mapping
$$
\Omega \ni \omega \mapsto p(\omega)=\left(t_{n}(\omega), \theta_{n}(\omega)\right)_{n \geq 1}
$$
defines a stationary Poisson point process. Moreover, for every measurable set $Z \subset(0, \infty) \times \Theta$ the variable
$$
\mathcal{N}_{p}(Z)=\operatorname{card}\left\{n:\left(t_{n}, \theta_{n}\right) \in Z\right\}
$$
is Poisson distributed and
$$
\mathbb{E}\left(\mathcal{N}_{p}((0, t] \times G)\right)=\lambda t \kappa(G) \quad \text { for } t \in(0, \infty), G \in \mathcal{G},
$$
where \mathbb{E} denotes expectation with respect to the probability \mathbb{P}.
v. For every $\mu \in \mathcal{M}_{1}$ there is an X-valued random vector ξ_{μ} defined on Ω, independent of p and having distribution μ.

Recently equation (1.1) was considered for example in [LT, MS, $[$, T . It is well known [GS that equations (1.1) and (1.2) define a semigroup of Markov operators $\left(P^{t}\right)_{t \geq 0}$ acting on the space of all Borel measures on X. J. Myjak and T. Szarek [MS] gave sufficient conditions for the existence of a unique invariant measure with respect to $\left(P^{t}\right)_{t \geq 0}$. They also proved that the lower capacity of this measure is greater than or equal to 1 . T. Szarek [S] showed that the Hausdorff dimension of this measure is greater than or equal to $\log 2 / \log 3$. In this paper we will show that the Hausdorff dimension of the invariant distribution with respect to $\left(P^{t}\right)_{t \geq 0}$ is greater than or equal to 1. A similar result, but with much stronger assumptions, can be obtained from Theorem 5.1.1 of [H].
2. Preliminaries. Let $(X,\|\cdot\|)$ be a separable Banach space. We denote by $B(x, r)$ the open ball with center at $x \in X$ and radius $r>0$, and by \mathcal{B}_{X} the family of all Borel subsets of X.

Let \mathcal{M} be the family of all finite Borel measures on X. Then $\mathcal{M}_{\text {sig }}$ denotes the family of finite signed measures, and \mathcal{M}_{1} the set of all $\mu \in \mathcal{M}$ such that $\mu(X)=1$. The elements of \mathcal{M}_{1} will be called distributions. Given $\mu \in \mathcal{M}$ we define the support of μ by the formula

$$
\operatorname{supp} \mu=\{x \in X: \mu(B(x, r)>0 \text { for } r>0\} .
$$

Let $C(X)$ be the space of bounded continuous functions $f: X \rightarrow \mathbb{R}$ with the supremum norm. We will use the abbreviation

$$
\langle f, \mu\rangle=\int_{X} f(x) \mu(d x) .
$$

For $A \subset X$ and $s, \delta>0$ define

$$
\mathcal{H}_{\delta}^{s}(A)=\inf \left\{\sum_{i=1}^{\infty}\left(\operatorname{diam} U_{i}\right)^{s}: A \subset \bigcup_{i=1}^{\infty} U_{i}, \operatorname{diam} U_{i} \leq \delta\right\}
$$

and

$$
\mathcal{H}^{s}(A)=\lim _{\delta \rightarrow 0} \mathcal{H}_{\delta}^{s}(A)
$$

The value

$$
\operatorname{dim}_{\mathrm{H}} A=\inf \left\{s>0: \mathcal{H}^{s}(A)=0\right\}
$$

is called the Hausdorff dimension of the set A. The Hausdorff dimension of a measure $\mu \in \mathcal{M}_{1}$ is defined by the formula

$$
\operatorname{dim}_{\mathrm{H}} \mu=\inf \left\{\operatorname{dim}_{\mathrm{H}} A: A \in \mathcal{B}_{X}, \mu(A)=1\right\}
$$

For a given $\mu \in \mathcal{M}$ we define the lower pointwise dimension of μ at $x \in X$ by

$$
\underline{\mathrm{d}}_{x} \mu=\liminf _{r \rightarrow 0} \frac{\log \mu(B(x, r))}{\log r}
$$

(here $\log 0=-\infty$).
Lemma 2.1. Let μ be a distribution. If $A \subseteq X$ is such that $\mu(A)=1$ then

$$
\forall x \in A \underline{\mathrm{~d}}_{x} \mu \geq \delta \Rightarrow \operatorname{dim}_{\mathrm{H}} A \geq \delta
$$

The proof can be found in [Y] (it was formulated in the case when $X=$ \mathbb{R}^{n} but it remains valid for any separable Banach space).

By a solution of (1.1), (1.2) we mean a process $(\xi(t))_{t \geq 0}$ with values in X such that with probability one the following two conditions are satisfied:

- Each sample path is a right continuous function such that for every $t>0$ the limit $\xi(t-)=\lim _{s / t} \xi(s)$ exists,
- $\xi(t)=\xi_{0}+\int_{0}^{t} a(\xi(s)) d s+\int_{0}^{t} \int_{\Theta} \sigma(\xi(s-), \theta) \mathcal{N}_{p}(d s, d \theta)$ for $t \geq 0$.

It is easy to give an explicit formula for the solution of (1.1), 1.2). Consider the ordinary differential equation

$$
\begin{equation*}
y^{\prime}(t)=a(y(t)) \quad \text { for } t \geq 0 \tag{2.1}
\end{equation*}
$$

and denote by $y(t)=S^{t}(x), t \in \mathbb{R}$, the solution of (2.1) satisfying the initial condition $y(0)=x$. Then for every fixed $p=\left(t_{i}, \theta_{i}\right)_{i \in \mathbb{N}}$ the solution is given by the formula

$$
\begin{align*}
\xi_{x}\left(t_{n}\right) & =\xi_{x}\left(t_{n}-\right)+\sigma\left(\xi_{x}\left(t_{n}-\right), \theta_{n}\right) & & \text { for } n \in \mathbb{N}\left(\xi_{x}(0)=x\right) \tag{2.2}\\
\xi_{x}(t) & =S^{t-t_{n}}\left(\xi_{x}\left(t_{n}\right)\right), & & \text { for } n \in \mathbb{N}_{0}, t_{n} \leq t<t_{n+1}
\end{align*}
$$

Define

$$
\begin{equation*}
U^{t} f(x)=\int_{\Omega} f\left(\xi_{x}(t)(\omega)\right) \mathbb{P}(d \omega) \quad \text { for } t \geq 0, f \in C(X) \tag{2.3}
\end{equation*}
$$

The classical theory of equation 1.1 ensures that $\left(U^{t}\right)_{t \geq 0}$ is a continuous semigroup of bounded linear operators on $C(X)$. Analogously, for given $\mu \in \mathcal{M}_{1}$ we may find a solution $\xi_{\mu}(t), t \geq 0$ of (1.1), 1.2) such that $\xi_{\mu}(0)$
has distribution μ. For every $t \geq 0$ we define $P^{t} \mu$ to be the distribution of $\xi_{\mu}(t)$.

The operators P^{t} and U^{t} satisfy the duality condition

$$
\begin{equation*}
\left\langle f, P^{t} \mu\right\rangle=\left\langle U^{t} f, \mu\right\rangle \quad \text { for } f \in C(X), \mu \in \mathcal{M}_{1} \tag{2.4}
\end{equation*}
$$

The operator $U^{t}, t \geq 0$, defined by 2.3 may be extended to all nonnegative Borel functions. Then condition 2.4 is also satisfied. The operators P^{t} are defined independently of the choice of $\xi_{\mu}(0)$ and form a semigroup acting on \mathcal{M}_{1}. Moreover using (2.4) the semigroup $\left(P^{t}\right)_{t \geq 0}$ can be extended to $\mathcal{M}_{\text {sig }}$.

Lemma 2.2. For $\mu \in \mathcal{M}_{1}, A \in B(X)$ and $t \geq 0$,

$$
P^{t} \mu(A) \geq e^{-\lambda t} \int_{X} \mathbb{1}_{A}\left(S^{t}(x)\right) \mu(d x)
$$

For the proof see [MS, Lemma 5.1].
A measure $\mu \in \mathcal{M}$ is called invariant with respect to $\left(P^{t}\right)_{t \geq 0}$ if $P^{t} \mu=\mu$ for $t \geq 0$.
3. Main theorem. Suppose that there exists a measure $\mu_{*} \in \mathcal{M}_{1}$ invariant with respect to $\left(P^{t}\right)_{t \geq 0}$. We define the sequence $\left(D_{n}\right)_{n \in \mathbb{N}}$ of sets by the formula

$$
D_{n}:=\left\{S^{1 / n}(x): x \in \operatorname{supp} \mu_{*}\right\} \quad \text { for } n \in \mathbb{N}
$$

Lemma 3.1.

$$
\operatorname{dim}_{\mathrm{H}} \mu_{*}=\inf \left\{\operatorname{dim}_{\mathrm{H}} A: A \in \mathcal{B}_{X}, A \subseteq \bigcup_{n \in \mathbb{N}} D_{n}, \mu_{*}(A)=1\right\}
$$

Proof. By Lemma 2.2 we have

$$
\mu_{*}\left(D_{n}\right)=P^{1 / n} \mu_{*}\left(D_{n}\right) \geq e^{-\lambda / n} \int_{X} \mathbb{1}_{D_{n}}\left(S^{1 / n}(x)\right) \mu_{*}(d x)=e^{-\lambda / n}
$$

Consequently, $\mu_{*}\left(\bigcup_{n \in \mathbb{N}} D_{n}\right)=1$ and

$$
\begin{aligned}
\operatorname{dim}_{\mathrm{H}} \mu_{*} & =\inf \left\{\operatorname{dim}_{\mathrm{H}} A: A \in \mathcal{B}_{X}, A \subseteq X, \mu_{*}(A)=1\right\} \\
& =\inf \left\{\operatorname{dim}_{\mathrm{H}} A: A \in \mathcal{B}_{X}, A \subseteq \bigcup_{n \in \mathbb{N}} D_{n}, \mu_{*}(A)=1\right\}
\end{aligned}
$$

Theorem 3.2. If $a(x) \neq 0$ for every $x \in X$ and there exists $\beta>0$ such that

$$
\begin{equation*}
e^{-\beta t}\|x-y\| \leq\left\|S^{t}(x)-S^{t}(y)\right\| \leq e^{\beta t}\|x-y\| \quad \text { for } x, y \in X, t \geq 0 \tag{3.1}
\end{equation*}
$$

then $\operatorname{dim}_{\mathrm{H}} \mu_{*} \geq 1$.
Proof. Let $x \in \bigcup_{n \in \mathbb{N}} D_{n}$. We will prove that

$$
\forall_{\gamma \in(0,1)} \exists_{K>0} \quad \mu_{*}(B(x, r)) \leq K r^{1-\gamma} \quad \text { for } r \in(0, \infty)
$$

Pick $\gamma \in(0,1)$. Let $\eta \in(0,1 / 2)$ be such that

$$
\begin{equation*}
3^{1-\gamma} \leq(1+\eta)^{-1}(3-2 \eta)(1-\eta)^{2} \tag{3.2}
\end{equation*}
$$

There exists $n \in \mathbb{N}$ such that $x \in D_{n}$. From the definition of S^{t} it follows that

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{\left\|x-S^{t}(x)\right\|}{t}=a(x) \tag{3.3}
\end{equation*}
$$

For abbreviation set $a=a(x)$. Let $r_{0} \in(0, \min \{4, a /(4 n)\})$ be such that

$$
\begin{equation*}
e^{4 r_{0} \beta / a} \leq 1+\eta, \quad e^{-4 r_{0} \lambda / a} \geq 1-\eta, \quad e^{-4 r_{0} \beta / a} \geq 1-\eta \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\forall_{w \leq 8 r_{0} / a} \quad \frac{3}{4} a \leq \frac{\left\|x-S^{w}(x)\right\|}{w} \leq \frac{5}{4} a . \tag{3.5}
\end{equation*}
$$

Set

$$
K=\max \left\{\frac{4 \lambda}{\eta(1-\eta)^{2} a}, \frac{4}{r_{0}}\right\}
$$

For every $r \geq r_{0} / 4$ we have

$$
\mu_{*}(B(x, r)) \leq 1 \leq K r .
$$

We define

$$
r_{*}:=\inf \left\{r^{\prime}>0: \mu_{*}(B(x, r)) \leq K r^{1-\gamma} \text { for } r \geq r^{\prime}\right\}
$$

Of course $r_{*} \leq r_{0} / 4$. We will show that $r_{*}=0$. Suppose, contrary to our claim, that $r_{*}>0$. Let $\hat{r} \in\left(r_{*} / 3, r_{*}\right)$ be such that

$$
\begin{equation*}
\mu_{*}(B(x, \hat{r}))>K \hat{r}^{1-\gamma} \tag{3.6}
\end{equation*}
$$

Set $r:=\hat{r}(1-\eta)^{-2}$. We have

$$
r \leq \frac{r_{*}}{(1-\eta)^{2}} \leq \frac{r_{0}}{4} \cdot 4=r_{0}
$$

From (3.5) and continuity of the semigroup S^{t} it follows that there exists $b \in[3 a / 4,5 a / 4]$ such that

$$
b=\frac{\left\|x-S^{2 r / b}(x)\right\|}{2 r / b}
$$

Set $t:=2 r / b$. We have $\left\|x-S^{t}(x)\right\|=2 r$ and

$$
t \leq \frac{2 r_{0}}{b} \leq \frac{2 a}{4 n} \cdot \frac{4}{3 a}<\frac{1}{n}
$$

From (3.4) it follows that

$$
\begin{equation*}
\hat{r}=r(1-\eta)^{2} \leq r e^{-8 r_{0} \beta / a} \leq r e^{-6 r \beta / b}=r e^{-2 \beta t} \tag{3.7}
\end{equation*}
$$

Choose $x_{0} \in S^{-t}(x)$ and define $x_{1}=S^{t}(x)$. From (3.1) it follows that

$$
S^{t}(y) \in B\left(x, r e^{-2 \beta t}\right) \Rightarrow y \in B\left(x_{0}, r e^{-\beta t}\right) \quad \text { for } y \in X
$$

Using Lemma 2.2 and inequality (3.7) we obtain

$$
\begin{aligned}
1-\mu_{*}(B(x, \hat{r})) & \geq e^{-\lambda t}-e^{-\lambda t} \int_{X} \mathbb{1}_{B\left(x, r e^{-2 \beta t}\right)} S^{t}(y) \mu_{*}(d y) \\
& \geq e^{-\lambda t}-e^{-\lambda t} \mu_{*}\left(B\left(x_{0}, r e^{-\beta t}\right)\right)
\end{aligned}
$$

Since $1-e^{-\lambda t} \leq \lambda t$ we have

$$
\begin{equation*}
\mu_{*}(B(x, \hat{r})) \leq \mu_{*}\left(B\left(x_{0}, r e^{-\beta t}\right)\right)+\lambda t \tag{3.8}
\end{equation*}
$$

We will show that

$$
\begin{equation*}
\mu_{*}\left(B\left(x_{0}, r e^{-\beta t}\right)\right) \geq(1-\eta) \mu_{*}(B(x, \hat{r})) \tag{3.9}
\end{equation*}
$$

Indeed, suppose towards a contradiction that

$$
\mu_{*}\left(B\left(x_{0}, r e^{-\beta t}\right)\right)<(1-\eta) \mu_{*}(B(x, \hat{r}))
$$

Then by (3.8) we have

$$
\mu_{*}(B(x, \hat{r})) \leq(1-\eta) \mu_{*}(B(x, \hat{r}))+\lambda t
$$

and consequently

$$
\mu_{*}(B(x, \hat{r})) \leq \frac{\lambda t}{\eta} \leq K \cdot \frac{(1-\eta)^{2} a t}{4} \leq K \cdot(1-\eta)^{2} r=K \hat{r}<K \hat{r}^{1-\gamma}
$$

which contradicts (3.6).
By (3.1) we have

$$
e^{-\beta t}\left\|x_{0}-x\right\| \leq\left\|x-x_{1}\right\| \leq e^{\beta t}\left\|x_{0}-x\right\|
$$

Moreover, since $2 t \leq 8 r_{0} / a$, from (3.5) it follows that

$$
\left\|x_{0}-x_{1}\right\| \geq e^{-\beta t}\left\|x-S^{2 t}(x)\right\| \geq \frac{3}{2} a t e^{-\beta t}=3 \frac{a}{b} r e^{-\beta t} \geq 2 r e^{-\beta t}
$$

Therefore the sets $B\left(x_{0}, r e^{-\beta t}\right), B\left(x, r e^{-\beta t}\right)$ and $B\left(x_{1}, r e^{-\beta t}\right)$ are mutually disjoint and all contained in $B\left(x, 3 r e^{\beta t}\right)$. Thus

$$
\begin{gather*}
\mu_{*}\left(B\left(x, 3 r e^{\beta t}\right)\right) \geq \mu_{*}\left(B\left(x_{0}, r e^{-\beta t}\right)\right)+\mu_{*}\left(B\left(x, r e^{-\beta t}\right)\right) \tag{3.10}\\
+\mu_{*}\left(B\left(x_{1}, r e^{-\beta t}\right)\right)
\end{gather*}
$$

From (3.1) it follows that

$$
y \in B\left(x, r e^{-2 \beta t}\right) \Rightarrow S^{t}(y) \in B\left(x_{1}, r e^{-\beta t}\right)
$$

From this and Lemma 2.2 we have

$$
\begin{aligned}
\mu_{*}\left(B\left(x_{1}, r e^{-\beta t}\right)\right) & \geq e^{-\lambda t} \int_{X} \mathbb{1}_{B\left(x_{1}, r e^{-\beta t}\right)} S^{t}(y) \mu_{*}(d y) \\
& \geq e^{-\lambda t} \mu_{*}\left(B\left(x, r e^{-2 \beta t}\right)\right)
\end{aligned}
$$

By (3.4) we have

$$
\begin{equation*}
1-\eta \leq e^{-4 r_{0} \lambda / a} \leq e^{-\lambda t} \tag{3.11}
\end{equation*}
$$

Using (3.7) we obtain

$$
\mu_{*}\left(B\left(x_{1}, r e^{-\beta t}\right)\right) \geq(1-\eta) \mu_{*}(B(x, \hat{r}))
$$

By (3.9) and (3.10) we obtain

$$
\mu_{*}\left(B\left(x, 3 r e^{\beta t}\right)\right) \geq(3-2 \eta) \mu_{*}(B(x, \hat{r}))
$$

Consequently, using (3.4) and (3.2),

$$
\begin{aligned}
\mu_{*}(B(x, \hat{r})) & \leq \frac{\mu_{*}\left(B\left(x, 3 r e^{\beta t}\right)\right)}{3-2 \eta} \leq \frac{K \cdot 3^{1-\gamma}(1+\eta)^{1-\gamma} r^{1-\gamma}}{3-2 \eta} \\
& \leq K \cdot(1-\eta)^{2} r^{1-\gamma} \leq K \hat{r}^{1-\gamma}
\end{aligned}
$$

which contradicts (3.6).
We showed that

$$
\forall_{x \in \bigcup_{n \in \mathbb{N}} D_{n}} \forall_{\gamma \in(0,1)} \exists_{K>0} \forall_{r \in(0, \infty)} \quad \mu_{*}(B(x, r)) \leq K r^{1-\gamma}
$$

Thus for every $x \in \bigcup_{n \in \mathbb{N}} D_{n}$ and $\gamma \in(0,1)$ we have

$$
\underline{\mathrm{d}}_{x} \mu_{*}=\liminf _{r \rightarrow 0} \frac{\log \mu(B(x, r))}{\log r} \geq \liminf _{r \rightarrow 0} \frac{\log K r^{1-\gamma}}{\log r}=1-\gamma
$$

Hence by Lemma 2.1 we obtain

$$
\forall_{A \subseteq \cup_{n \in \mathbb{N}} D_{n}, \mu(A)=1 \quad \operatorname{dim}_{\mathrm{H}} A \geq 1 ~}^{\text {. }}
$$

Consequently, $\operatorname{dim}_{H} \mu_{*} \geq 1$.
Corollary 3.3. Let $X=\mathbb{R}$. If $a(x) \neq 0$ for every $x \in X$ and there exists $\beta>0$ such that condition (3.1) holds, then $\operatorname{dim}_{H} \mu_{*}=1$.

Proof. From Theorem 3.2 it follows that $\operatorname{dim}_{H} \mu_{*} \geq 1$. On the other hand it is well known that in the case when $X=\mathbb{R}, \operatorname{dim}_{\mathrm{H}} \mu_{*} \leq 1$.

Lemma 3.4. Assume that there exists $\beta>0$ such that

$$
\left\|S^{t}(x)-S^{t}(y)\right\| \leq e^{\beta t}\|x-y\| \quad \text { for } x, y \in X, t \geq 0
$$

and

$$
\begin{equation*}
\|q(x, \cdot)-q(y, \cdot)\|_{L^{1}(\kappa)} \leq l\|x-y\| \quad \text { for } x, y \in X \tag{3.12}
\end{equation*}
$$

where $q(x, \theta)=x+\sigma(x, \theta)$ and $l<\exp (-\beta / \lambda)$. Then the semigroup $\left(P^{t}\right)_{t \geq 0}$ given by (2.4) is asymptotically stable.

For the proof see [S, Theorem 3.4].
Corollary 3.5. Assume that $a(x) \neq 0$ for every $x \in X$ and there exists $\beta>0$ such that (3.1) is satisfied. If (3.12) holds then $\operatorname{dim}_{H} \mu_{*} \geq 1$, where $\mu_{*} \in \mathcal{M}_{1}$ is invariant with respect to $\left(P^{t}\right)_{t \geq 0}$.

Proof. By Lemma 3.4 the semigroup $\left(P^{t}\right)_{t \geq 0}$ has an invariant distribution μ_{*}. From Theorem 3.2 it follows that $\operatorname{dim}_{H} \mu_{*} \geq 1$.

References

[GS] I. I. Gihman and A. V. Skorohod, Stochastic Differential Equations, Naukova Dumka, Kiev, 1968; English transl.: Springer, Berlin and New York, 1972.
[H] K. Horbacz, Invariant measures for random dynamical systems, Dissertationes Math. 451 (2008), 66 pp.
[LT] A. Lasota and J. Traple, Invariant measures related with Poisson driven stochastic differential equation, Stoch. Process. Appl. 106 (2003), 81-93.
[MS] J. Myjak and T. Szarek, Capacity of invariant measures related to Poisson-driven stochastic differential equations, Nonlinearity 16 (2003), 441-455.
[S] T. Szarek, The pointwise dimension for invariant measures related with Poisson driven stochastic differential equations, Bull. Polish Acad. Sci. Math. 50 (2002), 241-250.
[T] J. Traple, Markov semigroups generated by Poisson driven stochastic differential equations, ibid. 44 (1996), 161-182.
[Y] L. S. Young, Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynam. Systems 2 (1982), 109-124.

Tomasz Bielaczyc
Institute of Mathematics
Silesian University
40-007 Katowice, Poland
E-mail: bielaczyc@ux2.math.us.edu.pl

Received 22.4.2010
and in final form 28.6.2010

[^0]: 2010 Mathematics Subject Classification: Primary 37A50; Secondary 60J75, 37A05. Key words and phrases: invariant measure, Hausdorff dimension.

