On sectional curvature of a Riemannian manifold with semi-symmetric metric connection

by Füsun Özen Zengin, S. Aynur Uysal and Sezgin Altay Demirbag (Istanbul)

Abstract. We prove that if the sectional curvature of an *n*-dimensional pseudosymmetric manifold with semi-symmetric metric connection is independent of the orientation chosen then the generator of such a manifold is gradient and also such a manifold is subprojective in the sense of Kagan.

1. Introduction. Let (M_n, g) be an *n*-dimensional differentiable manifold of class C^{∞} with the metric tensor g, the Riemannian connection ∇ and a smooth linear connection ∇^* on M_n . A smooth linear connection ∇^* on M_n is said to be *semi-symmetric* if its torsion tensor T satisfies the relation

(1)
$$T(X,Y) = w(Y)X - w(X)Y$$

where w is a smooth linear differential form and X and Y are any smooth vector fields on M_n , [Y1]. The concept of a semi-symmetric connection has been studied on Kenmotsu manifolds [PD1], almost contact manifolds [DS], Sasakian manifolds [PD2] and Riemannian manifolds [D]. It is known [Y1] that if ∇^* is a semi-symmetric metric connection then

(2)
$$\nabla_X^* Y = \nabla_X Y + w(Y)X - g(X,Y)\rho,$$

(3)
$$g(X,\rho) = w(X),$$

for any vector fields X and Y. Further, it is also known [Y1] that if R^* and R denote of the curvature tensors of the smooth linear connection ∇^* and the Levi-Civita connection ∇ , respectively, then

(4)
$$R^*(X,Y)Z = R(X,Y)Z - \alpha(Y,Z)X + \alpha(X,Z)Y - g(Y,Z)AX + g(X,Z)AY$$

²⁰¹⁰ Mathematics Subject Classification: 53B15, 53B20.

Key words and phrases: semi-symmetric metric connection, sectional curvature, conformally flat manifold, pseudo-symmetric manifold, concircular vector field.

where α is a tensor field of type (0, 2) defined by

(5)
$$\alpha(X,Y) = (\nabla_X w)(Y) - w(X)w(Y) + \frac{1}{2}w(\rho)g(X,Y)$$

and A is a tensor field of type (1, 1) defined by

(6)
$$g(AX,Y) = \alpha(X,Y)$$

for any vector fields X and Y.

We shall use the following results in the next section:

In a local coordinate system, equations (4), (5) and (6) can be written as follows:

(7)
$$R_{ijkh}^* = R_{ijkh} - P_{jk}g_{ih} + P_{ik}g_{jh} - P_{ih}g_{jk} + P_{jh}g_{ik}$$

where

(8)
$$P_{jk} = \nabla_j w_k - w_j w_k + \frac{1}{2} g_{jk} w_h w^h, \quad P_k^h = P_{km} g^{mh}.$$

From (7), we have (see [Y1])

(9)
$$R_{ih}^* = R_{ih} - (n-2)P_{ih} - \alpha g_{ih},$$

(10)
$$R^* = R - 2(n-1)\alpha,$$

where

(11)
$$\alpha = g^{ih} P_{ih}$$

M. C. Chaki [CH] introduced a type of non-flat Riemannian manifold (M_n, g) $(n \ge 2)$ whose curvature tensor R_{hijk} satisfies the condition

(12)
$$\nabla_l R_{hijk} = 2\lambda_l R_{hijk} + \lambda_h R_{lijk} + \lambda_i R_{hljk} + \lambda_j R_{hilk} + \lambda_k R_{hijl}$$

where λ_l is a non-zero vector which is called the *generator* of the manifold. Such a manifold is called *pseudo-symmetric* and is denoted by $(PS)_n$.

A Riemannian manifold is called an *Einstein manifold* if its Ricci tensor is proportional to its metric.

Moreover, an *n*-dimensional manifold with a semi-symmetric metric connection is called an *Einstein manifold with a semi-symmetric metric connection* if the symmetric part of the Ricci tensor is proportional to the metric, i.e.,

(13)
$$R^*_{(ij)} = \lambda g_{ij}$$

where λ is a scalar function.

Now, we can state the following lemma which will be used in our subsequent work:

LEMMA. Suppose that S is a (0,2) covariant tensor. If for all linearly independent vectors X and Y,

(14)
$$S_{\alpha\beta\lambda\mu}X^{\alpha}Y^{\beta}X^{\lambda}Y^{\mu} = 0,$$

132

then

(15)
$$S_{\alpha\beta\lambda\mu} + S_{\lambda\mu\alpha\beta} + S_{\alpha\mu\lambda\beta} + S_{\lambda\beta\alpha\mu} = 0$$

Here X^{α} and Y^{β} are the contravariant components of X and Y, respectively, [LR].

2. Sectional curvatures of a Riemannian manifold having a semisymmetric metric connection. Let $P(x^k)$ be any point of $M_n(\nabla^*, g)$ and denote by X^{α} , Y^{α} the components of two linearly independent vectors $X, Y \in T_P(M_n)$. These vectors determine a two-dimensional subspace (plane) π in $T_P(M_n)$.

The scalar

(16)
$$K^*(\pi) = \frac{R^*_{\alpha\beta\lambda\mu} X^{\alpha} Y^{\beta} X^{\lambda} Y^{\mu}}{(g_{\beta\lambda} g_{\alpha\mu} - g_{\alpha\lambda} g_{\beta\mu}) X^{\alpha} Y^{\beta} X^{\lambda} Y^{\mu}}$$

is called the *sectional curvature* of $M_n(\nabla^*, g)$ at P with respect to the plane π .

From (16), it follows that

(17)
$$S_{\alpha\beta\lambda\mu}X^{\alpha}Y^{\beta}X^{\lambda}Y^{\mu} = 0$$

where we have put

(18)
$$S_{\alpha\beta\lambda\mu} = R^*_{\alpha\beta\lambda\mu} - K^*(\pi)(g_{\beta\lambda}g_{\alpha\mu} - g_{\alpha\lambda}g_{\beta\mu}).$$

Assume that at any point $P \in M_n(\nabla^*, g)$, the sectional curvatures for all planes in $T_P(M_n)$ are the same. A two-dimensional Riemannian manifold having semi-symmetric metric connection need not be considered, since it has only one plane at each point. Then, according to the Lemma, the condition (15) gives

-

-

(19)
$$R^*_{\alpha\beta\lambda\mu} + R^*_{\lambda\mu\alpha\beta} + R^*_{\alpha\mu\lambda\beta} + R^*_{\lambda\beta\alpha\mu} = 2K^*(\pi)(g_{\mu\alpha}g_{\lambda\beta} + g_{\alpha\beta}g_{\mu\lambda}) - 4K^*(\pi)g_{\alpha\lambda}g_{\beta\mu}.$$

Multiply the equation (19) by $g^{\alpha\mu}$ to find

(20)
$$\frac{R_{\lambda\beta}^* + R_{\beta\lambda}^*}{2} = (n-1)K^*(\pi)g_{\lambda\beta}.$$

This can be rewritten in the form

(21)
$$R^*_{(\lambda\beta)} = (n-1)K^*(\pi)g_{\lambda\beta}$$

where

(22)
$$R^*_{(\lambda\beta)} = \frac{R^*_{\lambda\beta} + R^*_{\beta\lambda}}{2}.$$

Transvecting (21) by $g^{\lambda\beta}$, we get

(23)
$$R^* = n(n-1)K^*(\pi).$$

From (9), we have

(24)
$$R^*_{[\lambda\beta]} = (2-n)P_{[\lambda\beta]}.$$

Since the sectional curvatures at $P \in M_n(\nabla^*, g)$ are the same for all planes in $T_P(M_n)$, by using (16), we have

(25)
$$R^*_{\alpha\beta\lambda\mu} = K^*(\pi)(g_{\beta\lambda}g_{\alpha\mu} - g_{\alpha\lambda}g_{\beta\mu}).$$

Multiplying (25) by $g^{\alpha\mu}$ and summing over α and μ , we get

(26)
$$R_{\lambda\beta}^* = K^*(\pi)(n-1)g_{\lambda\beta}.$$

From (8), (21), (25) and (26), it follows that

(27)
$$R^*_{[\lambda\beta]} = 0,$$

(28)
$$\nabla_{[\lambda} w_{\beta]} = 0$$

(21) means that $M_n(\nabla^*, g)$ is an Einstein manifold with a semi-symmetric metric connection. (28) implies that the 1-form w is closed.

With the help of (7), (8) and (28), we find that

(29)
$$R^*_{\alpha\beta\lambda\mu} + R^*_{\beta\lambda\alpha\mu} + R^*_{\lambda\alpha\beta\mu} = 0,$$

i.e., the first Bianchi identity holds for the linear connection.

From (9) and (10) we have

(30)
$$P_{ij} = -\lambda_{ij} - \frac{R_{ih}^*}{n-2} - \frac{R^*g_{ih}}{2(n-1)(n-2)}$$

where

(31)
$$\lambda_{ij} = -\frac{1}{n-2}R_{ij} + \frac{1}{2(n-1)(n-2)}Rg_{ij}$$

From (21), (23) and (27), we have $R_{ih}^* = R^* g_{ih}/n$. Then, by using (30), we find

(32)
$$P_{ij} = -\lambda_{ij} - \frac{R^* g_{ij}}{2n(n-1)}.$$

By the aid of the equations (7), (23) and (32), we get

(33)
$$R_{ijkh}^* = C_{ijkh} + K^*(\pi)(g_{ih}g_{jk} - g_{ik}g_{jh}).$$

By using (25) and (33), we can easily see that this space is conformally flat.

In [I], by using a different method, it has been shown that if a Riemannian manifold admits a semi-symmetric metric connection with closed π constant curvature, then the manifold is conformally flat.

Since this manifold is conformally flat, we have

(34)
$$R_{ijkh} = \frac{1}{(n-2)} (g_{jk}R_{ih} - g_{ik}R_{jh} + g_{ih}R_{jk} - g_{jh}R_{ik}) - \frac{1}{(n-1)(n-2)} R(g_{jk}g_{ih} - g_{jh}g_{ik}).$$

By using (31), the equation (34) can be rewritten as

(35)
$$R_{ijkh} = -g_{jk}\lambda_{ih} - g_{ih}\lambda_{jk} + g_{ik}\lambda_{jh} + g_{jh}\lambda_{ik}.$$

If we multiply the equation (12) by g^{hk} , we obtain

(36)
$$2\lambda_l R_{jk} + \lambda_j R_{lk} + \lambda_k R_{jl} + \lambda_h g^{ih} (R_{ljki} + R_{ijkl}) = \nabla_l R_{jk}.$$

Multiplying (36) by g^{jk} , we find

(37)
$$2\lambda_l R + 4\lambda_i g^{ih} R_{lh} = \nabla_l R$$

By cyclic permutation of the indices l, j and k and by using the last two equations and (36), we have the relation

(38)
$$\lambda_l R_{jk} + \lambda_j R_{kl} + \lambda_k R_{lj} = \frac{1}{4} (\nabla_l R_{jk} + \nabla_j R_{kl} + \nabla_k R_{lj}).$$

It is known [CH] that a conformally flat $(PS)_n$ $(n \ge 3)$ cannot be of zero scalar curvature and in a conformally flat $(PS)_n$, it is also known [T] that

(39)
$$R_{ij} = \frac{R-t}{n-1}g_{ij} + \frac{nt-R}{(n-1)\lambda_p\lambda^p}\lambda_i\lambda_j$$

where R denotes the scalar curvature and t is a scalar.

The expression (39) can be written as

(40)
$$R_{ij} = \theta g_{ij} + \beta v_i v_j$$

where

(41)
$$\theta = \frac{R-t}{n-1}, \quad \beta = \frac{nt-R}{n-1}, \quad \lambda^h R_{hk} = t\lambda_k, \quad v_i = \frac{\lambda_i}{\sqrt{\lambda_m \lambda^m}}$$

and v_i is a unit vector.

Thus, from (34) and (40), we have

(42)
$$R_{ijkl} = b(-g_{jl}v_iv_k + g_{jk}v_iv_l - g_{ik}v_jv_l + g_{il}v_jv_h) + a(g_{il}g_{jk} - g_{jl}g_{ik})$$

where $a = \frac{R-2t}{(n-1)(n-2)}$ and $b = \frac{nt-R}{(n-1)(n-2)}$.

D. Smaranda [S] calls a Riemannian manifold whose curvature tensor satisfies (42) a manifold of almost constant curvature. Hence, we have the following theorem:

THEOREM 2.1. If a $(PS)_n$ admits a semi-symmetric metric connection with constant sectional curvature then this manifold is of almost constant curvature. For a conformally flat $(PS)_n$, the following condition holds [T]:

(43)
$$\lambda^{j} \nabla_{l} R_{jk} = \lambda^{j} \lambda_{j} R_{lk} + \frac{3n-2}{n-1} t \lambda_{l} \lambda_{k} - \frac{t}{n-1} g_{lk} \lambda^{j} \lambda_{j}.$$

Taking the covariant derivative of $(41)_3$ with respect to x^m and using equation (43), we find

(44)
$$\lambda^{h}\lambda_{h}R_{km} + \frac{3n-2}{n-1}t\lambda_{m}\lambda_{k} - \frac{t}{n-1}g_{km}\lambda^{h}\lambda_{h} = \lambda_{k}\nabla_{m}t + t\nabla_{m}\lambda_{k} - R_{hk}\nabla_{m}\lambda^{h}.$$

From (40), (41) and (44), we get

(45)
$$\frac{R-t}{n-1}g_{km}\lambda^{h}\lambda_{h} + \frac{nt-R}{n-1}\lambda_{k}\lambda_{m} + \frac{(3n-2)t}{n-1}\lambda_{k}\lambda_{m} - \frac{t}{n-1}g_{km}\lambda^{h}\lambda_{h}$$
$$= \lambda_{k}\nabla_{m}t + t\nabla_{m}\lambda_{k} - \frac{R-t}{n-1}g_{kh}\nabla_{m}\lambda^{h} - \frac{nt-R}{(n-1)\lambda_{i}\lambda^{i}}\lambda_{h}\lambda_{k}\nabla_{m}\lambda^{h}.$$

If we multiply (45) by λ^k then we find

(46)
$$\nabla_m t = 4t\lambda_m.$$

With the help of (37) and (40), we get

(47)
$$\nabla_l R = 2((n+2)\theta + 3\beta)\lambda_l.$$

From equation (47), it is clear that the covariant vector λ_l is a gradient. Thus, we have the following theorem:

THEOREM 2.2. If a $(PS)_n$ admits a semi-symmetric metric connection with constant sectional curvature then the covariant vector λ_l of this manifold is a gradient.

Now, for a conformally flat manifold $(PS)_n$, we have (see [DG])

(48)
$$v_l \nabla_k \beta - v_k \nabla_l \beta + \beta (\nabla_k v_l - \nabla_l v_k) = 0.$$

By using $(41)_2$ and (46), we obtain

(49)
$$v_l \nabla_k \beta - v_k \nabla_l \beta = 0.$$

By using (48) and (49), we get

(50) $\beta = 0 \text{ or } \nabla_k v_l - \nabla_l v_k = 0.$

If $\beta = 0$ then the manifold is flat. This contradicts the hypotheses. Thus, from (50),

(51)
$$\nabla_k v_l - \nabla_l v_k = 0.$$

It is known [DG] that the covariant vector v_i of a conformally flat $(PS)_n$ is a proper concircular vector field. Hence, we have the following theorem:

THEOREM 2.3. A $(PS)_n$ admitting a semi-symmetric metric connection with a constant sectional curvature has a proper concircular vector field. It is known [A] that if a conformally flat manifold admits a proper concircular vector field then the manifold is a subprojective manifold in the sense of Kagan. Thus, we can state the following theorem:

THEOREM 2.4. If a $(PS)_n$ admits a semi-symmetric metric connection with a constant sectional curvature then this manifold is subprojective.

In [Y3], K. Yano proved that for a Riemannian manifold to admit a concircular vector field, it is necessary and sufficient that there exists a coordinate system with respect to which the fundamental quadratic differential form may be written in the form

(52)
$$ds^2 = (dx^1)^2 + c^q g^*_{\alpha\beta} dx^\alpha dx^\beta$$

where

(53)
$$g^*_{\alpha\beta} = g^*_{\alpha\beta}(x^{\nu})$$

are functions of x^{ν} $(\alpha, \beta, \nu = 2, 3, ..., n)$ and $q = q(x^1) \neq \text{const}$ is a function of x^1 only. Since a conformally flat $(PS)_n$ admits a proper concircular vector field v_i , the manifold under consideration is the warped product $1 \times_{e^q} M^*$ where (M^*, g^*) is an (n-1)-dimensional Riemannian manifold.

Since this manifold is conformally flat, from (34), the following equation is satisfied:

(54)
$$\nabla_k R_{jl} - \nabla_l R_{jk} = \frac{1}{2(n-1)} (g_{jl} \nabla_k R - g_{jk} \nabla_l R).$$

Gębarowski [G] proved that the warped product $1 \times_{e^q} M^*$ satisfies (52) if and only if M^* is an Einstein manifold.

Thus, we can state the following theorem:

THEOREM 2.5. If a $(PS)_n$ admits a semi-symmetric metric connection with a constant sectional curvature then this manifold is the warped product $1 \times_{e^q} M^*$ where M^* is an Einstein manifold.

Acknowledgements. The authors wish to express their sincere thanks to the referee for his valuable suggestions towards the improvement of the paper.

References

- [A] T. Adati, On subprojective spaces—III, Tôhoku Math. J. 3 (1951), 343–358.
- [CH] M. C. Chaki, On pseudo symmetric manifolds, An. Ştiinţ. Univ. Al. I. Cuza Iaşi 33 (1987), 53–58.
- [D] U. C. De, On a type of semi-symmetric metric connection on a Riemannian manifold, Indian J. Pure Appl. Math. 21 (1990), 334–338.
- [DG] U. C. De and S. K. Ghosh, On conformally flat pseudosymmetric spaces, Balkan J. Geom. Appl. 5 (2000), 61–64.

138	F. Özen Zengin et al.
[DS]	U. C. De and J. Sengupta, On a type of semi-symmetric metric connection of an almost contact metric manifold, Filomat 14 (2000), 33–42.
[G]	A. Gębarowski, Nearly conformally symmetric warped product manifolds, Bull. Inst. Math. Acad. Sinica 20 (1992), 359–371.
[I] [LR]	 T. Imai, Notes on semi-symmetric metric connections, Tensor 24 (1972), 293–296. D. Lovelock and H. Rund, Tensor, Differential Forms and Variational Principles, Dover Publ., New York, 1989.
[PD1]	G. Pathak and U. C. De, On a semi-symmetric metric connection in a Kenmotsu manifold, Bull. Calcutta Math. Soc. 94 (2002), 319–324.
[PD2]	S. S. Pujar and U. C. De, Sasakian manifold admitting a contact metric semi- summetric π connection. Ultra Sci. Phys. Sci. 12 (2000), 7–11.
[S]	D. Smaranda, <i>Pseudo-Riemannian recurrent manifolds with almost constant cur-</i> <i>vature</i> , in: The XVIIIth Nat. Conf. on Geometry and Topology (Oradea, 1987), preprint 88-2, Univ. "Babes-Bolyai", Cluj-Napoca, 1988, 175–180.
[T]	M. Tarafdar, On conformally flat pseudo-symmetric manifolds, An. Ştiinţ. Univ. Al. I. Cuza Iaşi 41 (1995), 237–241.
[Y1]	K. Yano, On semi-symmetric metric connection, Rev. Roumaine Math. Pures Appl. 15 (1990), 1579–1581.
[Y2]	-, Differential Geometry on Complex and Almost Complex Spaces, Pergamon Press, New York, 1965.
[Y3]	—, The Theory of Lie Derivatives and its Applications, North-Holland and Noordhoff, 1955.

Füsun Özen Zengin, Sezgin Altay Demirbag	S. Aynur Uysal
Department of Mathematics	Department of Mathematics
Istanbul Technical University	Dogus University
34469 Istanbul, Turkey	Kadıköy, Istanbul, Turkey
E-mail: fozen@itu.edu.tr	E-mail: auysal@dogus.edu.tr
saltay@itu.edu.tr	

Received 24.5.2010 and in final form 9.8.2010

(2222)