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Meromorphic solutions of q-shift difference equations

by Kai Liu (Nanchang) and Xiao-Guang Qi (Jinan)

Abstract. We establish a q-shift difference analogue of the logarithmic derivative
lemma. We also investigate the value distributions of q-shift difference polynomials and
the growth of solutions of complex q-shift difference equations.

1. Introduction. A function f(z) is called meromorphic if it is analytic
in the complex plane except at isolated poles. The order σ(f) and hyper-
order σ2(f) are defined by

σ(f) := lim sup
r→∞

log+ T (r, f)
log r

, σ2(f) := lim sup
r→∞

log+ log+ T (r, f)
log r

.

The logarithmic density of a set Fn is defined as follows:

lim sup
r→∞

1
log r

�

[1,r]∩Fn

1
t
dt.

In what follows, we assume that the reader is familiar with the basic
notation and results of Nevanlinna theory [12, 15].

The well-known logarithmic derivative lemma [7] states that

(1.1) m

(
r,
f ′(z)
f(z)

)
= o(T (r, f)) = S(r, f)

outside a possible set of finite linear measure. It is a very useful tool in
dealing with uniqueness problems for meromorphic functions. Recently, two
important results have been established which are similar to the logarithmic
derivative lemma. They can be used to investigate the properties of solutions
of difference equations. We state them as follows:

Theorem A ([9, Theorem 2.1]). Let f be a meromorphic function of
finite order, and let c ∈ C. Then

(1.2) m

(
r,
f(z + c)
f(z)

)
= S(r, f)

outside of a possible exceptional set with finite logarithmic measure.
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We also know that Theorem A has been improved by Halburd, Korhonen
and Tohge [10]. They proved (1.2) is also true when f is a meromorphic
function of hyper-order σ2(f) < 1.

Theorem B ([1, Theorem 1.1]). Let f(z) be a nonconstant zero-order
meromorphic function and q ∈ C \ {0}. Then

m

(
r,
f(qz)
f(z)

)
= S(r, f)

on a set of logarithmic density 1.

In this paper, a q-shift of f(z) is defined by f(qz+η), and q-shift difference
polynomials are defined by

(1.3) G(z) :=
∑
λ∈J

bλ(z)
τλ∏
j=1

f(qλ,jz + δλ,j)µλ,j ,

where δλ,j ∈ C, at least one qλ,j is nonzero, bλ(z) are small functions with
respect to f(z), and J is a subset of {1, . . . , n}. The degree of G is defined

d(G) := max
λ∈J

τλ∑
j=1

µλ,j .

It is natural to ask the following question when considering generalizations
of Theorems A and B.

Question 1.1. Let q, η be fixed complex constants. Under what assump-
tions on f(z), do we have the following q-shift difference analogue of (1.1):

(1.4) m

(
r,
f(qz + η)
f(z)

)
= S(r, f)?

In this paper, we will answer the above question and give some applications
of the result. First, we consider the proximity function of f(qz + η)/f(z).
Then, using the above result, we consider the value distributions of q-shift
difference polynomials, which can be seen as q-shift difference analogues of
results given by Hayman [11]. Finally, we investigate the growth of mero-
morphic solutions of q-shift difference equations.

2. q-shift difference analogue of the logarithmic derivative lemma

Theorem 2.1. Let f(z) be a nonconstant zero-order meromorphic func-
tion and q ∈ C \ {0}. Then

m

(
r,
f(qz + η)
f(z)

)
= S(r, f)

on a set of logarithmic density 1.

For the proof of Theorem 2.1, we need the following lemma.
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Lemma 2.2 ([13]). If T : R+ → R+ is an increasing function such that

(2.1) lim sup
r→∞

log T (r)
log r

= 0,

then the set E := {r : T (C1r) ≥ C2T (r)} has logarithmic density 0 for all
C1, C2 > 1.

Proof of Theorem 2.1. From the definitions of T (r, f), we have

(2.2) T (r, f(qz)) = T (|q|r, f) +O(1).

If |q| ≤ 1, then
T (|q|r, f) ≤ T (r, f) +O(1).

If |q| > 1, from Lemma 2.2 we have

T (|q|r, f) < C0T (r, f) +O(1),

where C0 > 1 on a set of logarithmic density 1. Thus, we get

S(r, f(qz)) = o(T (r, f)) = S(r, f)

on a set of logarithmic density 1. From Theorems A and B,

m

(
r,
f(qz + η)
f(z)

)
= m

(
r,
f(qz)
f(z)

f(qz + η)
f(qz)

)
≤ m

(
r,
f(qz)
f(z)

)
+m

(
r,
f(qz + η)
f(qz)

)
= S(r, f)

on a set of logarithmic density 1. We have completed the proof.

For finite nonzero-order meromorphic functions, the conclusion of The-
orem 2.1 is not true, as can be seen from the following example.

Example 2.3. Let f(z) = ez. Then

m

(
r,
f(2z + 1)
f(z)

)
= em(r, f) = eT (r, f).

Similar to the proof of [8, Theorem 3.1] or [1, Theorem 2.1], we can also
get the following theorem analogous to the Clunie Lemma [3]. It can be used
to investigate the value distribution of zero-order meromorphic solutions of
nonlinear q-shift difference equations.

Theorem 2.4. Let f be a nonconstant zero-order meromorphic solution
of

f(z)nP (z, f) = Q(z, f),

where P (z, f) and Q(z, f) are q-shift difference polynomials in f . If the
degree of Q(z, f) as a polynomial in f(z) and its q-shifts is at most n, then

m(r, P (z, f)) = S(r, f)

on a set of logarithmic density 1.
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We also get the following result, which is a difference counterpart to the
standard result due to Mohon’ko and Mohon’ko [19]. We omit the proof,
which is similar to that of [8, Theorem 3.2].

Theorem 2.5. Let f be a nonconstant zero-order meromorphic solution
of

P (z, f) = 0,

where P (z, f) is a q-shift difference polynomial in f(z). If P (z, a) 6≡ 0 for a
small function a(z) of f(z), then

m

(
r,

1
f − a

)
= S(r, f)

on a set of logarithmic density 1.

3. Value distributions of q-shift difference polynomials. Using
the above theorems, we can investigate the value distributions of q-shift
difference polynomials, and we obtain the following results, which can be
seen as difference versions of classical results given by Hayman in [11].

Theorem 3.1. Let f be a zero-order transcendental meromorphic func-
tion with finitely many poles, n ∈ N, q ∈ C \ {0}, η ∈ C, and R(z) be a
rational function. Then the difference polynomial f(z)nf(qz+ η)−R(z) has
infinitely many zeros in the complex plane.

Remark 3.2. The condition of zero order cannot be replaced with finite
order: if f(z) = e−z, q = −n and η = 0, then f(z)nf(qz+η)−R(z) = 1−R(z)
has only finitely many zeros.

Theorem 3.3. Let f be a zero-order transcendental meromorphic func-
tion with finitely many poles, n ≥ 2, q ∈ C \ {0}, η ∈ C, and R(z) be a
rational function. Then f(z)n + f(qz+ η)− f(z)−R(z) has infinitely many
zeros.

Remark 3.4. The conclusion of Theorem 3.3 is not true for finite-order
meromorphic functions: if f(z) = 1 − ez, q = n = 2 and η = 0, then
f(z)n + f(qz + η)− f(z)− 1 = −ez has no zeros. The condition n ≥ 2 also
cannot be replaced by n ≥ 1: if f(z) = ez + z, q, η are any constants, and
R(z) = qz + η, then f(qz + η)−R(z) = eqz+η has no zeros.

Remark 3.5. We have recently studied the case q = 1 of the above
theorems in [18].

Proof of Theorems 3.1 and 3.3. Assume that f(z)nf(qz+ η)−R(z) has
finitely many zeros. Since f(z) has zero order and finitely many poles, from
the Hadamard factorization theorem we have

(3.1) f(z)nf(qz + η)−R(z) = R1(z),
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where R1(z) is a rational function. Thus, from the Valiron–Mohon’ko theo-
rem, we obtain

(3.2) T (r, f(qz + η)) = nT (r, f) +O(log r).

From Theorem 2.4 and (3.1), we get

m(r, f(qz + η)) = S(r, f) = S(r, f(qz + η))

on a set of logarithmic density 1, which contradicts the fact that f has
finitely many poles and is a transcendental meromorphic function. Thus, we
have completed the proof of Theorem 3.1. Similarly, we can get the proof of
Theorem 3.3.

If we remove the condition that f has finitely many poles, then we can
get the following results.

Theorem 3.6. Let f be a zero-order transcendental meromorphic func-
tion, n ≥ 6, q ∈ C\{0}, η ∈ C. Then the difference polynomial f(z)nf(qz+η)
−R(z), where R(z) is a nonzero rational function, has infinitely many zeros
in the complex plane.

Remark 3.7. The condition that R(z) is nonzero cannot be removed.
Let p ∈ C\{0} and f(z) =

∏∞
j=0(1−pjz)−1. Then f(pz) = (1−z)f(z). Since

f has infinitely many poles and no zeros, f(z)nf(pz) has only one zero. We
should remark that

m

(
r,

1
f

)
=

1
−2 log |p|

(log r)2(1 + o(1)),

and 1/f is a transcendental entire function. Thus, the order of f is 0.

Theorem 3.8. Let f be a zero-order transcendental meromorphic func-
tion, n ≥ 8, q ∈ C \ {0}, and η ∈ C. Then the difference polynomial
f(z)n + a(z)f(qz + η) − a(z)f(z) − R(z), where a(z), R(z) are nonzero
rational functions, has infinitely many zeros.

The proofs of Theorems 3.6 and 3.8 are similar. Here, we just give the
proof of Theorem 3.8.

Proof of Theorem 3.8. Since f is a zero-order transcendental meromor-
phic function, by Lemma 2.2 and [2, Theorem 2.1], we obtain

T (r, f(qz + η)) = T (r, f(q(z + η/q))) = T (|q|r, f(z + η/q)) +O(1)(3.3)
≤ (1 + ε)T (r, f(z + η/q)) +O(1)
= (1 + ε)T (r, f(z)) + S(r, f)

on a set of logarithmic density 1, where 0 < ε < 1/3. If |q| ≤ 1, ε can be
removed.
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Let us denote

ψ :=
a(z)f(z)− a(z)f(qz + η) +R(z)

f(z)n
.

If ψ−1 has infinitely many zeros, then f(z)n+a(z)f(qz+η)−a(z)f(z)−R(z)
has infinitely many zeros. We will show that

(3.4) T (r, ψ) ≥ (n− 2− ε)T (r, f) + S(r, f).

Using the first main theorem and (3.3), we observe that

(3.5) T (r, f(z)n)

= T

(
r, ψ · 1

a(z)f(z)− a(z)f(qz + η) +R(z)

)
+O(1)

≤ T (r, ψ) + T (r, a(z)f(z)− a(z)f(qz + η) +R(z)) +O(1).
≤ T (r, ψ) + (2 + ε)T (r, f) + S(r, f).

From (3.5), we easily obtain the inequality (3.4). We will estimate the zeros
and poles of ψ:

N(r, ψ) ≤ N(r, f(qz + η)) +N(r, 1/f) + S(r, f),(3.6)

and

N(r, 1/ψ) ≤ N(r, f) +N

(
r,

1
a(z)f(z)− a(z)f(qz + η) +R(z)

)
.(3.7)

Using the second main theorem, (3.6) and (3.7), we get

(3.8) (n− 2− ε)T (r, f) ≤ T (r, ψ) + S(r, f)

≤ N(r, ψ) +N(r, 1/ψ) +N

(
r,

1
ψ − 1

)
+ S(r, f)

≤ N(r, f(qz + η)) +N(r, 1/f) +N(r, f) +N

(
r,

1
ψ − 1

)
+N

(
r,

1
a(z)f(z)− a(z)f(qz + η) +R(z)

)
+ S(r, f)

≤ (5 + 2ε)T (r, f) +N

(
r,

1
ψ − 1

)
+ S(r, f).

Since n ≥ 8, (3.8) implies that ψ − 1 has infinitely many zeros, completing
the proof.

Remark 3.9. It seems that the number n in Theorems 3.6 and 3.8 can
be reduced, but we have not succeeded in doing that. Some further results
on the value distribution of q-difference operators f(qz + η) − f(z) can be
found in [4].
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4. Solutions of q-shift difference equations. There exist some fruit-
ful results in complex differential equations theory [15]. Recently, meromor-
phic solutions of complex difference equations have become a subject of great
interest, due to the apparent role of the existence of such solutions of finite
order for the integrability of difference equations. The following result can
be found in [14].

Theorem C. Let η1, . . . , ηn be nonzero complex numbers. If the differ-
ence equation

(4.1)
n∑
i=1

f(z + ηi) = R(z, f(z)) =
a0(z) +

∑p
i=1 ai(z)f

i(z)
b0(z) +

∑q
j=1 bj(z)f j(z)

with rational coefficients ai(z), bj(z) admits a finite-order meromorphic so-
lution f(z), then max{p, q} ≤ n.

The same conclusion holds with
∑n

i=1 f(z+ηi) replaced by
∏n
i=1 f(z + ηi).

Question 4.1. Can we get a similar result when f(z + ηi) is replaced
by f(qiz + ηi), where qi 6= 1?

The following example shows that the answer is negative.

Example 4.2. f(z) = eπiz is a finite order solution of the q-shift differ-
ence equation f(2z + 2) + f(3z + 4) = f(z)3 + f(z)2. It is also a solution of
f(2z + 2) · f(3z + 4) = f(z)5. In both equations, the degree of the left hand
side is less than that of the right hand side.

In this part, we investigate the growth of meromorphic solutions of linear
q-shift difference equations. Similar results can be found in [2, 17].

Theorem 4.3. Let η0, . . . , ηn be nonzero complex constants, and A0(z),
. . . , An(z) be entire functions of finite order such that σ = max0≤i≤n σ(Ai),
and exactly one has finite type strictly greater than the others. Then every
meromorphic solution f of

(4.2) An(z)f(qnz + ηn) + · · ·+A1(z)f(q1z + η1) +A0(z)f(q0z + η0) = 0

satisfies σ(f) ≥ σ.

Proof. If f is an entire function of order σ(f) and type τf <∞, then for
any ε > 0,

M(r, f) = O(e(τf+ε)rσ(f)
).

From the conditions of Theorem 4.3, without loss of generality, we may
assume that

σ(A0) = · · · = σ(Ak) = σ

and
max

k+1≤l≤n
σ(Al) = µ < σ, τ = max

1≤j≤k
{τ(Aj)} < τ(A0).
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Suppose that f(z) is a meromorphic solution of (4.2) and σ(f) < σ. Choose
ε > 0 small enough to satisfy µ+ ε < σ, σ(f) + ε < σ and pick ς satisfying
τ < ς < ς + 3ε < τ(A0). Dividing (4.2) by f(q0z + η0), we get

M(r,A0) ≤ erσ(f)+ε
(O(e(τ+ε)r

σ
) +O(er

µ+ε
)) = O(e(ς+2ε)rσ)

outside of a possible exceptional set of finite logarithmic measure. Hence
τ(A0) ≤ ς + 2ε, a contradiction. Thus, we have completed the proof.

For the nonhomogeneous q-shift difference equation

(4.3) An(z)f(qnz+ηn)+· · ·+A1(z)f(q1z+η1)+A0(z)f(q0z+η0) = H(z),

it is easy to see that if σ(H(z)) > maxσ(Ai), then σ(f) ≥ σ(H(z)) > σ(Ai).
The following examples show that there is no exact relation between σ(f)
and σ(Ai) when σ(H(z)) ≤ maxσ(Ai), i = 1, . . . , n.

Example 4.4. Consider the nonhomogeneous difference equation

(4.4) (ez+1 + 1)f(z + 1)− ef(z + 2) = 1.

It is easy to see that f(z) = e−z solves (4.4) and σ(f) = 1 = σ(ez+1 + 1).

Example 4.5. Consider the nonhomogeneous difference equation

(4.5) e−zf(z) + ez
2
f(2z + 1) = ez

2+2z+1 + 1.

Then f(z) = ez solves (4.5) and σ(f) = 1 < σ(ez
2
).

Example 4.6. Consider the nonhomogeneous difference equation

(4.6) e−2z−1f(z + 1)− e−4z−4f(z + 2) = e−2z−1(z + 1)− e−4z−4(z + 2).

It is easy to see that f(z) = ez
2

+ z solves (4.6) and σ(f) = 2 > σ(e−2z−1).

We now continue to investigate the growth of solutions of nonlinear q-
shift difference equations of certain forms, using an idea from [16]. We need
the following lemmas.

Lemma 4.7 ([5]). Let p(z) = akz
k + ak−1z

k−1 + · · · + a1z + a0, ak 6= 0,
be a nonconstant polynomial of degree k and let f be a transcendental mero-
morphic function. Given 0 < % < |ak|, denote ζ = |ak|+ % and η = |ak| − %.
Then, given ε > 0, we have

(1− ε)T (ηrk, f) ≤ T (r, f ◦ p) ≤ (1 + ε)T (ζrk, f)

for all r large enough.

Lemma 4.8 ([6]). Let ψ : [r0,∞) → (0,∞) be positive and bounded in
every finite interval, and suppose that ψ(µrm) ≤ Aψ(r) + B for all r large
enough, where µ > 0, m > 1, A > 1 and B are real constants. Then

ψ(r) = O((log r)α),

where α = logA/logm.
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Theorem 4.9. Let c 6= 0 be a complex constant, and f be a transcen-
dental meromorphic solution of the equation

(4.7) R(cz + η, f(cz + η)) = f(p(z)),

where p(z) is a polynomial of degree k ≥ 2, and R(z, y) is a rational func-
tion in z, y with rational coefficients such that R(z, y) is irreducible in y. If
degf R = n ≥ k, then

T (r, f) = O((log r)α+ε),

where α = log n/log k.

Proof. Firstly, we replace z by (z − η)/c in (4.7); then applying the
Valiron–Mohon’ko theorem to the left hand side of (4.7), and Lemma 4.7,
we obtain

nT (r, f) + S(r, f) = T (r,R) = T

(
r, f

(
p

(
z − η
c

)))
= T (r, f(q(z)))(4.8)

≥ (1− ε)T (µrk, f),

where q(z) is a polynomial such that deg p(z) = deg q(z) = k. Since we may
assume that r is large enough to satisfy

n(1 + ε)T (r, f) ≥ (1− ε)T (µrk, f)

outside of a possible exceptional set of finite linear measure, we conclude
that for every λ > 1 there exists an r0 > 0 such that

(4.9) n(1 + ε)T (λr, f) ≥ (1− ε)T (µrk, f)

for all r ≥ r0. Denoting t = λr, (4.9) can be written as

T

(
µ

λk
tk, f

)
≤ n(1 + ε)

1− ε
T (t, f).

Then we apply Lemma 4.8 to conclude that T (r, f) = O((log r)α+ε), and

α+ ε =
log[n(1 + ε)/(1− ε)]

log k
=

log n
log k

+ o(1).

Theorem 4.10. Suppose that f is a transcendental meromorphic solu-
tion of

(4.10) f(cz + η) = R(z, f(z)) =
∑p

i=0 ai(z)f(z)i∑q
j=0 bj(z)f(z)j

,

where the coefficients ai(z), bj(z) are rational, and |c| > 1. Assume that
R(z, f) is irreducible in f , and ap(z)bq(z) 6≡ 0. If p > q+1, then λ(r, 1/f) ≥
log |m|/log |c|, provided that f has infinitely many poles.

Proof. Set m = p−q ≥ 2. Choose a pole z0 of f of multiplicity ν ≥ 1 such
that z0 is neither a zero nor a pole of any coefficient of R(z, f). Then the
right hand side of (4.10) has a pole of multiplicity mν at z0. Therefore, there
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exists a pole of f(z) of multiplicity mν at cz0 + η. Then, we may continue
inductively to construct a pole ckz0+ck−1η+· · ·+cη+η of f with multiplicity
mkν →∞ as k →∞, unless the process terminates because a zero or a pole
of a coefficient of R(z, f) appears for some ckz0 + ck−1η+ · · ·+ cη+ η. Since
the coefficients of R(z, f) are rational, they have just finitely many zeros
and poles. Therefore, we may avoid this situation happening by a suitable
choice of z0. Let r0 = |ck| |z0|+ |ck−1η|+ · · ·+ |cη|+ |η| and let k → ∞. It
is clear that, for k large enough, n(r0, f) ≥ mkν. Thus, for each sufficiently
large r, there exists k ∈ N such that r ∈ [|ck| |z0|+ |ck−1η|+ · · ·+ |cη|+ |η|,
|ck+1| |z0|+ k|ck−1η|]. We deduce that

n(r, f) ≥ νm
log r−log |cz0|−log 2

log |c| or n(r, f) ≥ νm
log r−log |η|−log 2+log |c|

log |c|

for all r ≥ r0, and we immediately obtain the conclusion.
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