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A differential equation related to the lp-norms

by Jacek Bojarski (Zielona Góra), Tomasz Ma lolepszy (Zielona Góra)
and Janusz Matkowski (Zielona Góra and Katowice)

Abstract. Let p ∈ (1,∞). The question of existence of a curve in R2
+ starting at

(0, 0) and such that at every point (x, y) of this curve, the lp-distance of the points (x, y)
and (0, 0) is equal to the Euclidean length of the arc of this curve between these points is
considered. This problem reduces to a nonlinear differential equation. The existence and
uniqueness of solutions is proved and nonelementary explicit solutions are given.

1. Introduction. We consider the following problem. Let p ∈ (1,∞) be
fixed. Does there exist a (regular) curve R+ 3 t 7→ (x(t), y(t)) ∈ R2

+ starting
at (0, 0) and such, for any t ∈ R+, the lp-distance of the points (x(t), y(t))
and (0, 0) is equal to the Euclidean length of the arc of this curve between
these points?

Of course, since the functional [1,∞) 3 p 7→ ‖ · ‖p is decreasing, such
a curve may exist only if 1 < p ≤ 2. In Section 2 we show that in this
case the problem leads to a nontrivial differential equation of the first order
and we give its geometrical interpretation involving the scalar product of
the tangent and radius vectors. In Section 3, considering this equation, we
prove that for any point (x0, y0) with x0, y0 > 0, there are exactly two curves
of class C1

R+ 3 t 7→ (x(t), y(t))

issuing from (0, 0), passing through (x0, y0), contained in [0,∞)2 and such
that the lp-norm of any point (x(t), y(t)) of this curve coincides with the
Euclidean length of the arc of the curve between (0, 0) and (x(t), y(t)). One
of them is the graph of a function of the form

y =

{
0 for x ∈ [0, c],
y(x) for x > c,
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where
c = c(x0, y0) > 0 and y(x) > 0 for x > c,

that is tangent at (0, 0) to the x-axis. The other is symmetric with respect
to the diagonal to the above curve with c = c(y0, x0); so it is tangent at
(0, 0) to the y-axis (Theorem 4.8).

Surprisingly enough there is no curve of this type such that, apart from
the origin (0, 0), all its points belong to the interior of R2

+ (Theorem 4.5).
In other words, to attain a point with both positive coordinates along such
a curve, it is necessary to go for some positive time along one of the axes.
It follows, in particular, that this curve is not analytic.

In Section 5, by means a numerical approach, the nonelementary explicit
solutions are given and their graphs are presented.

At the end of the paper we consider the case p = 1.
The basic question considered here appeared in a discussion concern-

ing some measurement problems between Peter Kahlig and the third name
author about ten years ago.

2. Preliminaries. For p ∈ [1,∞], lp denotes the plane R2 with the
norm ‖ · ‖p : R2 → [0,∞), defined by

‖(x, y)‖p :=

{
(|x|p + |y|p)1/p for p ∈ [1,∞),
max(|x|, |y|) for p =∞.

Recall that all these norms are equivalent and, for each fixed (x, y) ∈ R2,
the function

[1,∞] 3 p 7→ ‖(x, y)‖p is decreasing;

in particular, for all (x, y) ∈ R2,

‖(x, y)‖1 ≤ ‖(x, y)‖p ≤ ‖(x, y)‖∞,

where ‖ · ‖1 is the so called taxi-driver norm and ‖ · ‖∞, the corridor norm.
The extremal norms ‖ · ‖1 and ‖ · ‖∞ are easy to calculate. However, the

lack of uniqueness of segments joining points for these norms is sometimes
disadvantageous.

Recall the following

Remark 2.1. Let p ∈ (1,∞) be fixed. Then, for all x1, x2, y1, y2 ∈ R2,

‖(x1 + x2, y1 + y2)‖p = ‖(x1, y2)‖p + ‖(x2, y2)‖p ,

if, and only if, the vectors (x1, y1) and (x2, y2) are positively proportional,
i.e., there is α > 0 such that (x2, y2) = α(x1, y1).

The taxi-driver and corridor norms do not have this property.



A differential equation related to lp-norms 253

3. Curves and equations related to lp-norms. According to what
we have mentioned in the Introduction, we look for a regular (say con-
tinuously differentiable curve) [0,∞) 3 t 7→ (x(t), y(t)) ∈ R2

+, x(0) = 0,
y(0) = 0, x′(t)2 + y′(t)2 > 0 for all t > 0, and such that, at every time t,
the Euclidean length of the arc of the curve between the points (0, 0) and
(x(t), y(t)) is equal to the lp-norm of the vector (x(t), y(t)), which means
that

(3.1)
t�

0

√
x′(s)2 + y′(s)2 ds = (x(t)p + y(t)p)1/p, t > 0.

We shall show the following

Claim. If a curve [0,∞) 3 t 7→ (x(t), y(t)) satisfies the above conditions,
then:

(i) for all t > 0,

x′(t) ≥ 0 and y′(t) ≥ 0,
x′(t) = 0⇒ x(t) = 0 and y′(t) = 0⇒ y (t) = 0;

(ii) if y(t) = 0 (resp. x(t) = 0) for some t > 0, then y(s) = 0 (resp.
x(s) = 0) for all s ∈ [0, t].

Indeed, differentiating both sides of (3.1) we get

(3.2)
√
x′(t)2 + y′(t)2 =

x(t)p−1x′(t) + y(t)p−1y′(t)
(x(t)p + y(t)p)1−1/p

, t > 0.

As the left-hand side is positive, there is no t > 0 such that, simultaneously,
both x′(t) and y′(t) are negative. Assume that x′(t) > 0 and y′(t) < 0 for
some t > 0. Then, applying (3.2), we would get

0 < x′(t) <
√
x′(t)2 + y′(t)2 <

x(t)p−1x′(t)
(x(t)p + y(t)p)1−1/p

,

whence

1 <
x(t)p−1

(x(t)p + y(t)p)1−1/p
≤ x(t)p−1

(x(t)p)1−1/p
= 1,

a contradiction. In the same way we can show that the case x′(t) < 0 and
y′(t) > 0 for some t > 0 cannot occur. The remaining statement of part (i)
is an immediate consequence of (3.2).

To show (ii) assume that y (t) = 0 for some t > 0. If the function
[0, t] 3 s 7→ y(s) were not constant we would have y′ (s) > 0 for some s > 0,
whence

x(t) = (x(t)p + y(t)p)1/p =
t�

0

√
x′(s)2 + y′(s)2 ds >

t�

0

√
x′(s)2 ds = x(t).

This contradiction completes the proof.
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This claim implies that, without any loss of generality, we may assume
that either x′(t) > 0 for all t > 0 or y′(t) > 0 for all t > 0. If, for instance,
x′(t) > 0 for all t > 0, from the equation x = x(t) (t ≥ 0) we can determine
uniquely t = t(x). Then the graph of the curve coincides with the graph of
the function y = y(t(x)), x ≥ 0, the curve can be written in the form

x = t, y = y(t), t ≥ 0,

where y = y(x), x > 0, is continuously differentiable, and (3.1) reduces to
the equation

(3.3)
x�

0

√
1 + y′(t)2 dt = (xp + y(x)p)1/p, x > 0.

For obvious reasons, we have to admit functions y = y(t), t ≥ 0, such that
y′(0) = ∞. In this case, by symmetry, if y′(t) > 0 for all t > 0, we could
consider the curves in the form

x = x(t), y = t, t ≥ 0.

In this connection let us make the following

Remark 3.1. By the definition of lp-norm, the curves y = 0 and x = 0,
i.e. the curves coinciding with each of the axes, have the required property.
Thus, if starting at (0, 0) we go along the first axis up to the point (c, 0),
for some c > 0, then equation (3.2) takes the form

(3.4) c+
x�

c

√
1 + y′(x)2 dx = (xp + y(x)p)1/p, x ≥ 0.

Differentiating both sides of the integro-differential equation (3.3) (or
(3.4)) with respect to x we get the differential equation

(3.5)
√

1 + y′(x)2 =
xp−1 + y(x)p−1y′(x)

(xp + y(x)p)1−1/p
.

Geometrical interpretation of equation (3.5). Let p∗ be the conjugate
to p, that is, 1/p + 1/p∗ = 1. Note that this differential equation can be
written in the form

(1, y′(x)) ◦ (xp−1, [y(x)]p−1) = ‖(1, y′(x))‖2‖(xp−1, [y(x)]p−1)‖p∗ ,

where “◦” stands for the scalar product. Thus, a function y = y(x) satisfies
equation (3.5) if, and only if, the scalar product of the vector (1, y′(x)), which
is tangent to the graph of the function y = y(x) at the point (x, y(x)), and
the vector (xp−1, [y(x)]p−1), is equal to the product of the Euclidean norm
of the tangent vector and the lp

∗
-norm (conjugate to the lp-norm) of the

vector (xp−1, [y(x)]p−1).
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4. Main results

Remark 4.1. For p = 2 equation (3.5) reduces to

(xy′(x)− y(x))2 = 0, x ≥ 0,

and its solution for x ≥ 0 is y(x) = ax. Indeed, we have
x�

0

[1 + y′(t)2]1/2 dt =
x�

0

√
1 + a2 dt =

√
x2 + (ax)2 =

√
x2 + [y(x)]2, x ≥ 0.

Therefore, in what follows we deal with the case p ∈ (1, 2).

Lemma 4.2. Let 1 < p < 2. If a function y = y(x) ≥ 0 for x ≥ 0 satisfies
equation (3.5) and

a := y′(0)

then either a = 0 or a = +∞.
Proof. Note that (3.5) can be written in the form

(4.1)
√

1 + y′(x)2

=
(

x

(xp + y(x)p)1/p

)p−1

+
(

y(x)
(xp + y(x)p)1/p

)p−1

y′(x), x > 0.

Since

A := lim
x→0+

x

(xp + y(x)p)1/p
= lim

x→0+

1
(1 + (y(x)/x)p)1/p

=
1

(1 + ap)1/p
,

B := lim
x→0+

y(x)
(xp + y(x)p)1/p

= lim
x→0+

y(x)/x
(1 + (y(x)/x)p)1/p

=
a

(1 + ap)1/p
,

we have
B = aA.

Of course
0 ≤ A ≤ 1.

Assume, on the contrary, that 0 < a <∞. Letting x→ 0 from the right in
(4.1), we get√

1 + a2 = Ap−1 +Bp−1a = Ap−1 + (aA)p−1a = Ap−1(1 + ap)

=
(

1
(1 + ap)1/p

)p−1

(1 + ap) = (1 + ap)1/p,

whence p = 2. This contradiction completes the proof.

Squaring (3.5) we obtain, for y = y(x), the differential equation

(4.2) [(xp+yp)2−2/p−y2p−2](y′)2−2xp−1yp−1y′+[(xp+yp)2−2/p−x2p−2] = 0.

Now we prove the following
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Lemma 4.3. If p ∈ (1, 2) then, for all x, y > 0,

x2p−2 + y2p−2 > (xp + yp)2−2/p > 0

and

(xy)p−1 > (xp + yp)1−1/p
√

[x2p−2 + y2p−2 − (xp + yp)2−2/p].

Proof. Since 0 < 2 − 2/p < 1, the function ϕ(t) = t2−2/p is subadditive
in (0,∞). Thus, for all x, y > 0,

(xp + yp)2−2/p < (xp)2−2/p + (yp)2−2/p = x2p−2 + y2p−2,

which proves the first inequality. From this inequality, for all x, y > 0,

(xy)2(p−1) = (xy)2(p−1) − ((xp + yp)2−2/p)2 + ((xp + yp)2−2/p)2

> (xy)2(p−1) − (xp + yp)2−2/p(x2p−2 + y2p−2) + ((xp + yp)2−2/p)2

= ((xy)p−1)2

−
(

(xp + yp)1−1/p
√

[x2p−2 + y2p−2 − (xp + yp)2−2/p]
)2

> 0,

that is, the second inequality holds true.

This lemma implies that a function y = y(x) satisfies equation (4.2) iff
either

(4.3) y′ = f1(x, y),

where

f1(x, y) :=
(xy)p−1 + (xp + yp)1−1/p

√
x2p−2 + y2p−2 − (xp + yp)2−2/p

(xp + yp)2−2/p − y2p−2
;

or

(4.4) y′ = f2(x, y),

where

f2(x, y) :=
(xy)p−1 − (xp + yp)1−1/p

√
x2p−2 + y2p−2 − (xp + yp)2−2/p

(xp + yp)2−2/p − y2p−2
.

Applying Lemma 4.3 and making some easy calculations, we obtain

Lemma 4.4. Let p ∈ (1, 2). The functions fi : R2
+ \ (0, 0)→ R, i = 1, 2,

defined above are:

1. continuous, positive in (0,∞)2, and

fi(x, 0) = 0 for all x > 0

(so fi are non-negative in R2
+ \ (0, 0));

2. of class C∞ in (0,∞)2;
3. homogeneous of order 0, that is,

fi(x, y) = gi(y/x), x, y ≥ 0,
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where gi : R+ → R+ given by

g1(u) := f1(1, u) =
up−1 + (1 + up)1−1/p

√
1 + u2p−2 − (1 + up)2−2/p

(1 + up)2−2/p − u2p−2
,

g2(u) := f2(1, u) =
up−1 − (1 + up)1−1/p

√
1 + u2p−2 − (1 + up)2−2/p

(1 + up)2−2/p − u2p−2
,

is onto, strictly increasing,

0 < g2(u) < u < g1(u) for u > 0, g1(0) = g2(0) = 0,

and for all u > 0,
g1(u)g2(u) = 1.

Theorem 4.5. Let p ∈ (1, 2). There is no solution y = y(x), x ≥ 0, of
equation (3.5) such that y(0) = 0 and y(x) > 0 for all x > 0.

Proof. Assume that R+ 3 x 7→ y(x) is such a solution. Then, for any
point (x, y(x)) of its graph we would have

x�

0

√
1 + y′(t)2 dt = (xp + y(x)p)1/p = ‖(x, y(x)‖p, x > 0.

Hence for all c > 0 and x > 0,

c+
x�

0

√
1 + y′(t)2 dt = c+

x+c�

c

√
1 + y′(t− c)2 dt = ‖(x+ c, y(x+ c))‖p,

which means that, for any c > 0, the function

yc(x) :=

{
0 for x ∈ [0, c),
y(x− c) for x ≥ c

would also be a solution of (4.3). Thus the field of linear elements determined

y

x

b

b

b

b

b

y1

y0
p0,1 p0,2

p0,3

p1,2p1,1

l1 l2

Fig. 1
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by (4.3) would be such that on half-lines starting at (x, y(x)) and parallel
to the x-axis the linear elements would have the same slope. This is impos-
sible because, being homogeneous (part 3 of Lemma 4.4), equation (4.3) has
parallel linear elements on each ray starting at (0, 0) (see Figure 1).

Lemma 4.6. Let p ∈ (1, 2). For the function g2(u) := f2(1, u), u > 0, we
have

lim
u→∞

u

g2(u)
=∞.

Proof. Note that, for all p ∈ (1, 2) and u > 0,

(1 + up)1−1/p > up−1,

whence
u

g2(u)
=

u((1 + up)2−2/p − u2−2/p)

up−1 − (1 + up)1−1/p
√

1 + u2p−2 − (1 + up)2−2/p

>
u((1 + up)2−2/p − u2−2/p)

up−1 − up−1
√

1 + u2p−2 − (1 + up)2−2/p

=
u((1 + up)2−2/p − u2−2/p)(1 +

√
1 + u2p−2 − (1 + up)2−2/p)

up−1((1 + up)2−2/p − u2p−2)

= u2−p
(

1 +
√

1 + u2p−2 − (1 + up)2−2/p
)

=: h(u).

Since, obviously,

lim
u→∞

(
1 +

√
1 + u2p−2 − (1 + up)2−2/p

)
= 2,

we have
lim
u→∞

h(u) =∞,

which yields the conclusion.

To extend any local solution of equations (4.3) and (4.4) onto the whole
interval (0,∞) we need the following

Lemma 4.7. Let p ∈ (1, 2). Equations (4.3) and (4.4) do not have blow-up
solutions.

Proof. By Lemma 4.6, there exists u0 such that u > g2(u) for all u > u0.
Hence, putting

Ω := {(x, y) ∈ (0,∞)2 : y/x > u0},
we have y/x > g2(y/x) for all (x, y) ∈ Ω.

Now, assume, on the contrary, that there exists a solution y∗ of (4.4)
(which, by Lemma 4.4, is increasing) that explodes at some xb ∈ (0,∞), i.e.

lim
x→xb−

y∗(x) =∞.
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It follows that there exists an x0 ∈ (0, xb) such that (x, y(x)) ∈ Ω for all
x ∈ (x0, xb). Take an x1 ∈ (x0, xb) and put y1 := y∗|[x1,xb). The function y1

is, on the interval [x1, xb), a solution of the following Cauchy problem:

y′ = g2(y/x), y(x1) = y∗(x1).

Note that another Cauchy problem,

y′ = y/x, y(x1) = y∗(x1) + 1,

has a unique solution y2 on [x1, xb) and

y2(x) =
y∗(x1) + 1

x1
x for x ∈ [x1, xb).

Since (y∗(x1) + 1)/x1 > u0, we have (x, y2(x)) ∈ Ω for all x ∈ [x1, xb). The
continuity of y1 and y2, the inequality y1(x1) < y2(x1) and the assumed
blowing-up of y1 imply that there is an x∗ ∈ (x1, xb) such that y1(x∗) =
y2(x∗) and y1(x) < y2(x) for all x ∈ (x1, x

∗). In this case, by the respective
differential equations, we obtain

y′1(x∗) = g2(y1(x∗)/x∗) and y′2(x∗) = y1(x∗)/x∗.

By the relation between y1 and y2 we have y′1(x∗) ≥ y′2(x∗). Hence

g2(y1(x∗)/x∗) ≥ y1(x∗)/x∗.

On the other hand, as (x∗, y1(x∗)) ∈ Ω, we deduce that

g2(y1(x∗)/x∗) < y1(x∗)/x∗.

This contradiction proves that equation (4.4) has no blow-up solutions.
From Lemma 4.4 we have g1(u)g2(u) = 1 for u > 0. It follows that (4.3)

does not have blow-up solutions either.

In the following, we confine our considerations to equation (4.3).
From the theory of differential equations (cf. for instance [2]) we deduce

Theorem 4.8. Assume that 1 < p < 2. Let x0, y0 > 0 be fixed. Then
there exists exactly one solution y : [0,∞) → R+ of equation (4.3) such
that y(x0) = y0. Moreover there is a unique c = c(x0, y0) > 0 such that
y(x) = yc(x) for all x ≥ 0, where

yc(x) :=

{
0 for x ∈ [0, c],
y(x) for x > c,

y′(c) = 0, y(x) > 0 for x > c;

yc is strictly increasing in [c,∞), and, for every x ≥ c,
x�

0

√
1 + y′c(t)2 dt = c+

x�

c

√
1 + y′(t)2 dt = (xp + yc(x)p)1/p.

Proof. Take arbitrary x0, y0 > 0. According to the theory of differential
equations ([1], [2]) there exists a unique local solution y = y(x) of (4.3) such
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that y(x0) = y0. The regularity of f1 in (0,∞)2 (see Lemma 4.4) ensures
the existence of its unique maximal extension with the graph contained in
(0,∞)2. We denote it by y = y(x) and its domain by I. By the first part
of Lemma 4.4 we have f1 > 0 in (0,∞)2, so y is strictly increasing in I.
Since, by Lemma 4.7, equation (4.3) has no blow-up solutions, there is a
c = c(x0, y0) ≥ 0 such that I = (c,∞). Then either c > 0 or c = 0.

Assume first that c > 0. Then y(c+) = 0, as in the opposite case we would
have y(c) > 0, and the solution y = y(x) could be extended to an interval
(c − ε,∞) for some ε > 0, contradicting the definition of c. Moreover, by
part 1 of Lemma 4.4 we have y′(c+) = 0. Now the function yc : (0,∞)→ R+

given by

yc(x) :=

{
0 for x ∈ [0, c],
y(x) for x > c,

is the required solution.
Assume now that c = 0. Then either y(0+) = 0 or y(0+) > 0. In view of

Theorem 4.5 the first case cannot happen. Hence y(0+) > 0. Then y(x) > 0
for all x > 0 and

y′(x) = g1(y(x)/x), x > 0.

Differentiating both sides of this equality (by Lemma 4.4 we can do it), and
then making use of this equality again, we get, for all x > 0,

y′′(x) = g′1

(
y(x)
x

)
xy′(x)− y(x)

x2
=

1
x
g′1

(
y(x)
x

)[
g1

(
y(x)
x

)
− y(x)

x

]
.

Since, by part 3 of Lemma 4.4, g1 (u) − u > 0 for all u > 0, we hence get
y′′(x) > 0 for all x > 0, which proves that y = y(x) is convex in (0,∞).
Since it is strictly increasing, it follows that y′(0+) is finite. Hence, applying
Lemma 4.2, we get y′(0+) = 0. Making use of the equality√

1 + y′(x)2 =
(

x

(xp + y(x)p)1/p

)p−1

+
(

y(x)
(xp + y(x)p)1/p

)p−1

y′(x), x > 0,

applied in the proof of Lemma 4.2, and letting x→ 0, we get a contradictory
relation 1 = 0. This completes the proof.

Remark 4.9. Clearly, y(x) ≡ 0 is a singular solution of (4.3), and for
any c > 0, the solution yc coincides with y on [0, c].

5. Finding the solutions and a numerical approach. To find the
desired curve issuing from (0, 0), or from any point (r0, 0) for r0 > 0 (in the
latter case the curve should go immediately into the open first quarter), is
difficult even numerically. The reason is that each point (r0, 0), r0 ≥ 0, is
singular for equation (3.1). In this section we discuss this problem.



A differential equation related to lp-norms 261

Take p ∈ (1, 2) and fix r0 ≥ 0. It will be convenient to look for the curve
(trajectory) starting from (r0, 0) in the form

(5.1)

{
x(t) = (r0 + t)I[−r0,0](t) + r0r(t)[cosα(t)]2/pI(0,∞)(t),
y(t) = r0r(t)[sinα(t)]2/pI(0,∞)(t),

t ≥ −r0,

where r(t) > 1, 0 < α(t) < π/2, the unknown functions t 7→ α(t), t 7→ r(t)
are of class C1, and IA denotes the indicator function of a set A. We assume
that both α and r (which, of course, depend on the parameter p) are strictly
increasing.

Remark 5.1. It is easy to see that the trajectory (5.1) is continuous at
the point r0 iff

lim
t→0+

r(t) = 1 and lim
t→0+

α(t) = 0.

Since (5.1) satisfies the relevant equation for t ∈ (−r0, 0] (cf. Remark
5.1), without any loss of generality we can confine our considerations to the
trajectory

(5.2)

{
x(t) = r0r(t)[cosα(t)]2/p,
y(t) = r0r(t)[sinα(t)]2/p,

t > 0.

Note that the lp-distance of points of the curve (5.2) from (0, 0) depends
only on r0r(t) and

[x(t)p + y(t)p]1/p = r0r(t), t > 0.

It follows that equation (3.1) takes the form
t�

0

√
x′(s)2 + y′(s)2 ds = r0r(t), t > 0.

Differentiating both sides with respect to t we obtain

(5.3) x′(t)2 + y′(t)2 = (r0r(t))2, t > 0.

Remark 5.2. If the trajectory (5.2) satisfies (5.3), then the functions α
and r satisfy the differential equation

(5.4) r′(t) = g(α(t))α′(t)r(t), t > 0,

with

g(z) = g1(z) =

√
c(z)2 − 4b(z)d(z)− c(z)

2b(z)
or

g(z) = g2(z) =
−
√
c(z)2 − 4b(z)d(z)− c(z)

2b(z)
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where

b(z) = (sin z)2/p + (cos z)2/p − 1,

c(z) =
4
p

(cot z (sin z)4/p − tan z (cos z)4/p),

d(z) =
4
p2

(cot2 z (sin z)4/p + tan2 z (cos z)4/p).

Proof. Differentiating both sides of (5.3), after simplification, we get

((sinα(t))2/p + (cosα(t))2/p + 1)r′(t)2

+
4
p

(cotα(t) (sinα(t))4/p − tanα(t) (cosα(t))4/p)r(t)r′(t)α′(t)

+
4
p2

(cot2 α(t) (sinα(t))4/p + tan2 α(t) (cosα(t))4/p)(r(t)α′(t))2 = 0,

which is quadratic with respect to r′(t). Hence, as r′(t) > 0 for t > 0, we
obtain (5.4).

Remark 5.3. The functions g1 and g2 defined in Remark 5.2 are related
by the equality

g1(z) = −g2(π/2− z), z ∈ (0, π/2).

Let us note that equation (5.4), and hence (5.3), has two solutions though
(5.1) is the unique solution of (3.1). This follows from the fact that the curve
symmetric to (5.1) with respect to the diagonal generates the same equation
(5.3). One of these curves is related to g1 and the other to g2. Therefore, in
the following, we confine our considerations to g = g1.

Note also that the function g in equation (5.4) depends on an unknown
function α which, to a large extent, can be arbitrarily chosen.

Figure 2 presents the graph of g1 depending on α(t) for several values
of p.
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Note that the functions α and r in (5.4) are closely related. For a par-
ticular α, equation (5.4) becomes a differential equation for the function r,
and vice versa, for a chosen r, equation (5.4) is a differential equation for α.
Thus, for an arbitrary α satisfying the above mentioned conditions there
exists a function r such that equation (5.4) is satisfied; and vice versa.

The mutual dependence between r(t) and α(t) for t > 0 is shown by the
following

Remark 5.4. Let G : (0, π/2)→ R+ be given by

(5.5) G(z) := lim
ε→0+

z�

ε

g1(τ) dτ.

Then G is strictly increasing and onto, that is, G((0, π/2)) = R+ (of course,
G is a primitive of g1). Moreover, the functions α and r satisfy equation
(5.2) iff

G ◦ α = log ◦ r
that is, iff

(5.6) G(α(t)) = log(r(t)), t > 0,

or, equivalently,

(5.7) r(t) = expG(α(t)), t > 0.

Since the function G has no effective elementary representation, we have
to use some numerical methods to find the trajectory in question.

Applying the above remark we obtain

Theorem 5.5. For p ∈ (1, 2) and r0 > 0, the graph of the curve

(5.8)

{
x(t) = (r0 + t)I[−r0,0](t) + r0 exp(G(t))[cos t]2/pI(0,π/2)(t),
y(t) = r0 exp(G(t))[sin t]2/pI(0,∞)(t),

for −r0 ≤ t < π/2, where G is given by (5.5), is the graph of a solution of
equation (4.3).

Proof. Let α(t) := t for t ∈ (0, π/2). Then, from (5.7), r(t) = exp(G(t))
for t ∈ (0, π/2), whence, taking into account (5.1), we get (5.8).

Note that the function G is of universal character as it depends only
on p. This fact has here an essential practical meaning: once fixed, G can
be used to get the trajectories emanating from any chosen point (r0, 0).

Figure 3 shows the shape of the curves in question starting from (1, 0)
for different values of p.

With this background the following natural question arises. From which
point of the nonnegative part of the x-axis should one start (into the open
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first quarter) to get to a given point (x0, y0) ∈ (0,∞)2 along the trajectory
in question?

An answer is given by the following

Theorem 5.6. If (x0, y0) ∈ (0,∞)2 then the curve starting from (r0, 0)
such that

r0 =

√
x

2/p
0 + y

2/p
0

G((arctan(y0/x0))p/2)
passes through (x0, y0).

Proof. Applying (5.8) with the above r0 and t = (arctan(y0/x0))p/2 we
obtain x(t) = x0 and y(t) = y0.

6. Case p = 1. Take arbitrary nonnegative strictly increasing sequences
xi, yi ∈ R+, i = 0, 1, . . . , such that x0 = y0 = 0 and

0 = x0 < · · · < xk < · · · , 0 = y0 < y1 < · · · < yk < · · · .
Denote by Ri the line segment joining (xi, yi) and (xi+1, yi), and by Ui the
segment joining (xi+1, yi) and (xi+1, yi+1) for i = 0, 1, . . . . Let (x, y) be an
arbitrary point on the piecewise linear curve consisting of the consecutive
segments

R0, U0, R1, U1, . . . .

Then, obviously, the Euclidean length of this curve joining (0, 0) and (x, y)
is equal to ‖(x, y)‖1. Thus, in this case, there are a lot of curves having the
property under study. These curves are not differentiable at any of their
vertices. However we have the following obvious

Remark 6.1. Let p = 1 and fix (x0, y0) ∈ (0,∞)2. There exist exactly
two curves

(0,∞) 3 t 7→ (x(t), y(t))
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in R2 with the property considered, passing through (x0, y0) with only one
non-differentiability point: either

x(t) =

{
t for t ∈ (0, x0],
x0 for t ∈ (x0,∞),

y(t) =

{
0 for t ∈ (0, x0],
t− x0 for t ∈ (x0,∞),

or

x(t) =

{
0 for t ∈ (0, y0],
t− y0 for t ∈ (y0,∞),

y(t) =

{
t for t ∈ (0, y0],
y0 for t ∈ (y0,∞).

7. Final remarks. The problem being considered has a kinematical
interpretation. If a material point located at (0, 0), moving only along the
trajectories described above, is going to meet a point (x0, y0) (say, a rocket),
then it has to go along the x-axis and into the open first quarter at the point
(0, c(y0, x0)).
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