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Positive solutions and eigenvalue intervals of a singular
third-order boundary value problem

by Qingliu Yao (Nanjing)

Abstract. This paper studies positive solutions and eigenvalue intervals of a non-
linear third-order two-point boundary value problem. The nonlinear term is allowed to
be singular with respect to both the time and space variables. By constructing a proper
cone and applying the Guo–Krasnosel’skĭı fixed point theorem, the eigenvalue intervals
for which there exist one, two, three or infinitely many positive solutions are obtained.

1. Introduction. Because of extensive applications to elastic mechanics
and fluid mechanics (see [2, 8, 14]), nonlinear three-order ordinary differen-
tial equations have attracted wide attention in the recent years; for example,
see [1, 3–7, 9–13, 15–18] and the references therein.

Let λ be a positive parameter. We consider the following nonlinear third-
order two-point boundary value problem:

(P )
{
u′′′(t) + λ[h(t)f(t, u(t)) + g(t, u(t))] = 0, 0 < t < 1,
u(0) = u′(0) = u′′(1) = 0.

In this paper, f(t, u) is a continuous function and is called the continuous
part of the nonlinear term h(t)f(t, u) + g(t, u); g(t, u) may be singular at
t = 0, t = 1, u = 0 and is called the singular part of the nonlinear term.

Let 0 < σ < 1 be a constant. In real problems, we can choose σ depending
on the properties of the functions h(t) and f(t, u). Let C[0, 1] be the Banach
space with the norm ‖u‖ = max0≤t≤1 |u(t)|. Throughout this paper, we
assume that h : (0, 1)→ [0,∞) is continuous and

0 <
1�

σ

h(t) dt ≤
1�

0

h(t) dt <∞.

So h(t) may be singular at t = 0 and t = 1.
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The solvability of the problem (P ) has been studied by several authors;
for example, see [5, 11–13, 15]. As is well known, only positive solutions are
significant in many real problems. In this paper, we study the eigenvalue
intervals in which every eigenvalue guarantees the existence of at least one
positive solution. Here, the solution u∗(t) of (P ) is called positive if u∗(t) > 0
for 0 < t ≤ 1.

More recently, Li [12] proved the following theorems on positive solutions
and eigenvalue intervals.

Theorem 1.1 ([12, Theorem 3.1]) Assume that

(a1) f(t, u) = f(u), f : [0,∞)→ [0,∞) is continuous and g(t, u) ≡ 0.
(a2) There exist positive numbers a < b such that one of the following

conditions is satisfied :

(i) λ ∈
[

b

Bmin{f(u) : 1
2σ

2b ≤ u ≤ b}
,

a

Amax{f(u) : 0 ≤ u ≤ a}

]
.

(ii) λ ∈
[

a

Bmin{f(u) : 1
2σ

2a ≤ u ≤ a}
,

b

Amax{f(u) : 0 ≤ u ≤ b}

]
.

Then the problem (P ) has at least one positive solution u∗ ∈ C[0, 1] such
that minσ≤t≤1 u

∗(t) ≥ 1
2σ

2‖u∗‖ and a ≤ ‖u∗‖ ≤ b.
Theorem 1.2 ([12, Theorems 4.1 and 4.2]). Assume that

(b1) f(t, u) = f(u), f : [0,∞)→ [0,∞) is continuous and g(t, u) ≡ 0.
(b2) One of the following conditions is satisfied :

(i) limu→+0 f(u)/u = limu→∞ f(u)/u =∞ and

λ ∈
(

0, sup
r>0

r

Amax{f(u) : 0 ≤ u ≤ r}

)
.

(ii) limu→+0 f(u)/u = limu→∞ f(u)/u = 0 and

λ ∈
(

inf
r>0

r

Bmin{f(u) : 1
2σ

2r ≤ u ≤ r}
,∞
)
.

Then the problem (P ) has at least two positive solutions.

For the constants A,B in Theorems 1.1 and 1.2, see Section 3.
When h(t) ≡ 1, g(t, u) ≡ 0 and f : [0, 1]× [0,∞)→ [0,∞) is continuous,

we have obtained similar results in [15].
If f(t, u) = f(u) and g(t, u) ≡ 0, Theorems 1.1 and 1.2 are effective tools

for the problem (P ). It is worth mentioning that, in Theorems 1.1 and 1.2,
h(t) may be singular at t = 0 and t = 1, but the singularity of f(u) at u = 0
is not allowed.

In this paper, we study the general singular problem (P ). More precisely,
we study the problem (P ) under the following assumptions.
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(H1) f : [0, 1] × [0,∞) → [0,∞) and g : (0, 1) × (0,∞) → [0,∞) are
continuous.

(H2) For every pair of positive numbers r2 > r1 > 0, there is a nonneg-
ative function jr2r1 ∈ C(0, 1) such that

	1
0 j

r2
r1 (t) dt <∞ and

g(t, u) ≤ jr2r1 (t), 0 < t < 1, 1
2r1t

2 ≤ u ≤ r2.
Under the assumptions (H1) and (H2), g(t, u) may be singular at t = 0,

t = 1 and u = 0. If g(t, u) is continuous with respect to the time variable t
and the space variable u, then it satisfies (H2).

In this paper, we do not require the existence of upper and lower solutions
and do not assume that g(t, u) is nonincreasing. To the best of our knowl-
edge, there is no literature concerned with positive solutions and eigenvalue
intervals of the problem (P ) under the assumptions (H1) and (H2).

This paper is organized as follows. In Section 2, we construct an appropri-
ate cone and prove complete continuity of the associated integral operator.
In Section 3, we introduce three control functions in order to describe the
growth behavior of the nonlinear term on some bounded sets. Further, we
obtain the eigenvalue intervals for which there exist one, two, three or in-
finitely many positive solutions. The main tool is the Guo–Krasnosel’skĭı
fixed point theorem of cone expansion-compression type. In Section 4, we
show that Theorems 1.1 and 1.2 are simple corollaries of our main results
and give two examples to illustrate some applications of the present work.
In addition, we correct an error in [12].

2. Preliminaries. Define a cone K in C[0, 1] as follows:

K = {u ∈ C[0, 1] : u(t) ≥ 1
2‖u‖t

2, 0 ≤ t ≤ 1}.
For r > 0, write Ω(r) = {u ∈ K : ‖u‖ < r}, ∂Ω(r) = {u ∈ K : ‖u‖ = r}.

Let G(t, s) be the Green function of the homogeneous linear problem

−u′′′(t) = 0, 0 ≤ t ≤ 1, u(0) = u′(0) = u′′(1) = 0,

that is,

G(t, s) =

{
1
2 t

2 − 1
2(t− s)2, 0 ≤ s ≤ t ≤ 1,

1
2 t

2, 0 ≤ t ≤ s ≤ 1.

Thus G(t, s) ≥ 0 for 0 ≤ t, s ≤ 1.
For u ∈ K \ {0}, define an operator T as follows:

(Tu)(t) = λ

1�

0

G(t, s)[h(s)f(s, u(s)) + g(s, u(s))] ds, 0 ≤ t ≤ 1.

Lemma 2.1.
(1) max0≤t≤1G(t, s) = G(1, s) = 1

2s(2− s) for 0 ≤ s ≤ 1.
(2) 1

2 t
2G(1, s) ≤ G(t, s) ≤ G(1, s) for 0 ≤ t, s ≤ 1.
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Proof. Simple computations give that

max
0≤t≤1

G(t, s) = G(1, s) = 1
2s(2− s), 0 ≤ s ≤ 1.

Clearly, 1
2s(2− s) ≤ 1 for 0 ≤ s ≤ 1. If 0 ≤ t ≤ s ≤ 1, then

G(t, s) = 1
2 t

2 ≥ 1
4 t

2s(2− s) = 1
2 t

2G(1, s).

It is easy to see that 2t− s ≥ 1
2 t

2(2− s) for 0 ≤ s ≤ t ≤ 1. If 0 ≤ s ≤ t ≤ 1,
then

G(t, s) = 1
2 t

2 − 1
2(t− s)2 = 1

2s(2t− s) ≥
1
4 t

2s(2− s) = 1
2 t

2G(1, s).

Lemma 2.2. Suppose that (H1) and (H2) hold and 0 < r1 < r2. Then
T : Ω(r2) \Ω(r1)→ K.

Proof. Let u ∈ Ω(r2) \Ω(r1). Then r1 ≤ ‖u‖ ≤ r2. So
1
2r1t

2 ≤ 1
2‖u‖t

2 ≤ u(t) ≤ r2, 0 ≤ t ≤ 1.

By the assumption (H2), there exists a nonnegative function jr2r1 ∈ C(0, 1)
such that

	1
0 j

r2
r1 (t) dt <∞ and

g(t, u(t)) ≤ max{g(t, u) : 1
2r1t

2 ≤ u ≤ r2} ≤ jr2r1 (t), 0 < t < 1.

Since
	1
0 h(t) dt <∞, one has

1�

0

[h(s)f(s, u(s)) + g(s, u(s))] ds ≤ max
0≤s≤1

f(s, u(s))
1�

0

h(s) ds+
1�

0

jr2r1 (s) ds <∞.

So, (Tu)(t) is well defined and Tu ∈ C[0, 1].
On the other hand, by Lemma 2.1, for 0 ≤ t ≤ 1,

(Tu)(t) = λ

1�

0

G(t, s)[h(s)f(s, u(s)) + g(s, u(s))] ds

≥ 1
2λt

2
1�

0

G(1, s)[h(s)f(s, u(s)) + g(s, u(s))] ds

≥ 1
2λt

2 max
0≤t≤1

1�

0

G(t, s)[h(s)f(s, u(s)) + g(s, u(s))] ds = 1
2 t

2‖Tu‖.

Consequently, T : Ω(r2) \Ω(r1)→ K.

Lemma 2.3. Suppose that (H1) and (H2) hold, and 0 < r1 < r2. Then
T : Ω(r2) \Ω(r1)→ K is completely continuous.
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Proof. Define operators T̃ and T̄ as follows:

(T̃ u)(t) = λ

1�

0

G(t, s)h(s)f(s, u(s)) ds, 0 ≤ t ≤ 1, u ∈ K,

(T̄ u)(t) = λ

1�

0

G(t, s)g(s, u(s)) ds, 0 ≤ t ≤ 1, u ∈ K \ {0}.

By the continuity of f(t, u) and the Arzelà–Ascoli theorem, T̃ : Ω(r2) \
Ω(r1)→ C[0, 1] is completely continuous.

Let jr2r1 ∈ C(0, 1) be the function given in (H2) and let, for k = 3, 4, . . . ,

[jr2r1 ]k(t) =


min{jr2r1 (t), ktjr2r1 (1/k)}, 0 ≤ t ≤ 1/k,
jr2r1 (t), 1/k ≤ t ≤ (k − 1)/k,
min{jr2r1 (t), k(1− t)jr2r1 ((k − 1)/k)}, (k − 1)/k ≤ t ≤ 1.

Then [jr2r1 ]k ∈ C[0, 1] and [jr2r1 ]k(0) = [jr2r1 ]k(1) = 0. Since
	1
0 j

r2
r1 (t) dt < ∞,

one has

lim
k→∞

1�

0

{jr2r1 (t)− [jr2r1 ]k(t)} dt = 0.

Define

gk(t, u) =

{
min{g(t, u), [jr2r1 ]k(t)}, 1

2r1t
2 ≤ u <∞,

min{g(t, 1
2r1t

2), [jr2r1 ]k(t)}, 0 ≤ u ≤ 1
2r1t

2.

Then gk : [0, 1] × [0,∞) → [0,∞) is continuous. Define an operator T̄k
by

(T̄ku)(t) = λ

1�

0

G(t, s)gk(s, u(s)) ds, 0 ≤ t ≤ 1.

Then T̄k : Ω(r2) \ Ω(r1) → C[0, 1] is completely continuous by the Arzelà–
Ascoli theorem.

Let u ∈ Ω(r2) \ Ω(r1). Then 1
2r1t

2 ≤ u(t) ≤ r2 for 0 ≤ t ≤ 1. By the
definition of jr2r1 (t), one has g(t, u(t)) ≤ jr2r1 (t) for 0 < t < 1. It follows
that

lim
k→∞

sup
u∈Ω(r2)\Ω(r1)

‖T̄ u− T̄ku‖

= λ lim
k→∞

sup
u∈Ω(r2)\Ω(r1)

max
0≤t≤1

1�

0

G(t, s)[g(s, u(s))− gk(s, u(s))] ds
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≤ λ lim
k→∞

max
0≤t≤1

1�

0

G(t, s){jr2r1 (s)− [jr2r1 ]k(s)} ds

≤ λ max
0≤t,s≤1

G(t, s) lim
k→∞

1�

0

{jr2r1 (s)− [jr2r1 ]k(s)} ds = 0.

This shows that the completely continuous operators T̄k, k = 3, 4, . . . , uni-
formly converge to the operator T̄ on the bounded closed set Ω(r2) \Ω(r1).
Therefore, T̄ : Ω(r2) \Ω(r1)→ C[0, 1] is completely continuous.

Since T = T̃ + T̄ , from Lemma 2.2 we infer that T : Ω(r2) \Ω(r1)→ K
is completely continuous.

In order to prove our main results, we need the following Guo–Krasno-
sel’skĭı fixed point theorem of cone expansion-compression type.

Lemma 2.4 (Guo–Krasnosel’skĭı). Let X be a Banach space, K ⊂ X be
a cone, and Ω1, Ω2 be bounded open subsets of K with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2.
Assume that F : Ω2 \Ω1 → K is a completely continuous operator such that
one of the following conditions is satisfied :

(1) ‖Fx‖ ≤ ‖x‖ for x ∈ ∂Ω1 and ‖Fx‖ ≥ ‖x‖ for x ∈ ∂Ω2.
(2) ‖Fx‖ ≥ ‖x‖ for x ∈ ∂Ω1 and ‖Fx‖ ≤ ‖x‖ for x ∈ ∂Ω2.

Then F has a fixed point in Ω2 \Ω1.

3. Main results. We introduce the following control functions which
are basic tools of this paper:

ϕ(r) = max{f(t, u) : 0 ≤ t ≤ 1, 1
2 t

2r ≤ u ≤ r},
ψ(r) = min{f(t, u) : σ ≤ t ≤ 1, 1

2 t
2r ≤ u ≤ r},

µ(r) =
1�

0

max{g(t, u) : 1
2 t

2r ≤ u ≤ r} dt.

If the assumptions (H1) and (H2) hold, then ϕ(r), ψ(r) and µ(r) are non-
negative real numbers for any r > 0.

In addition, define the constants

A = max
0≤t≤1

1�

0

G(t, s)h(s) ds , B = max
0≤t≤1

1�

σ

G(t, s)h(s) ds,

C = max
0≤t,s≤1

G(t, s) = 1/2.

If h(t) ≡ 1, then A = 1/3, B = max
{

1
2σ

2(1− σ), 1
6(2− 3σ2 + σ3)

}
.

Our main results are the following existence theorems on positive solu-
tions and eigenvalue intervals.
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Theorem 3.1. Suppose that (H1) and (H2) hold, and there exist positive
numbers a < b such that one of the following conditions is satisfied :

(c1) λ ∈
[

b
Bψ(b) ,

a
Aϕ(a)+Cµ(a)

]
.

(c2) λ ∈
[

a
Bψ(a) ,

b
Aϕ(b)+Cµ(b)

]
.

Then the problem (P ) has at least one positive solution u∗ ∈ K ∩C2[0, 1] ∩
C3(0, 1) with a ≤ ‖u∗‖ ≤ b.

Proof. Without loss of generality, we only consider the case (c1).
Since λ ∈

[
b

Bψ(b) ,
a

Aϕ(a)+Cµ(a)

]
, one has

λ[Aϕ(a) + Cµ(a)] ≤ a, λBψ(b) ≥ b.

By Lemma 2.3, the operator T : Ω(b) \Ω(a)→ K is completely continuous.
If u ∈ ∂Ω(a), then ‖u‖ = a and 1

2at
2 ≤ 1

2‖u‖t
2 ≤ u(t) ≤ a for 0 ≤ t ≤ 1.

Thus, f(t, u(t)) ≤ ϕ(a) for 0 ≤ t ≤ 1 and
	1
0 g(t, u(t)) dt ≤ µ(a). Applying

these facts, we get

‖Tu‖ = λ max
0≤t≤1

1�

0

G(t, s)[h(s)f(s, u(s)) + g(s, u(s))] ds

≤ λ max
0≤t≤1

1�

0

G(t, s)h(s)f(s, u(s)) ds+ λ max
0≤t≤1

1�

0

G(t, s)g(s, u(s)) ds

≤ λϕ(a) max
0≤t≤1

1�

0

G(t, s)h(s) ds+ λ max
0≤t,s≤1

G(t, s)
1�

0

g(s, u(s)) ds

≤ λAϕ(a) + λCµ(a) ≤ a = ‖u‖.

If u ∈ ∂Ω(b), then ‖u‖ = b and 1
2bt

2 ≤ u(t) ≤ b for 0 ≤ t ≤ 1. So
f(t, u(t)) ≥ ψ(b) for σ ≤ t ≤ 1. It follows that

‖Tu‖ ≥ λ max
0≤t≤1

1�

σ

G(t, s)[h(s)f(s, u(s)) + g(s, u(s))] ds

≥ λ max
0≤t≤1

1�

σ

G(t, s)h(s)f(s, u(s)) ds

≥ λψ(b) max
0≤t≤1

1�

σ

G(t, s)h(s) ds = λBψ(b) ≥ b = ‖u‖.

By Lemma 2.4, the operator T has a fixed point u∗ ∈ K with a ≤
‖u∗‖ ≤ b.

Since u∗ ∈ K\{0}, we see that h(t)f(t, u∗(t))+g(t, u∗(t)) is an integrable
function on [0, 1]. Since Tu∗ = u∗, one has
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u∗(t) = λ

1�

0

G(t, s)[h(s)f(s, u∗(s)) + g(s, u∗(s))] ds, 0 ≤ t ≤ 1.

Successively differentiating both sides of the equality we obtain, for 0 ≤
t ≤ 1,

(u∗)(i)(t) = λ

1�

0

∂i

∂ti
G(t, s)[h(s)f(s, u∗(s)) + g(s, u∗(s))] ds, i = 1, 2.

Here, for 0 ≤ s ≤ t ≤ 1 and 0 ≤ t ≤ s ≤ 1, respectively,
∂

∂t
G(t, s) =

{
s,
t,

∂2

∂t2
G(t, s) =

{
0,
1.

It follows that

(u∗)′′(t) = λ

1�

t

[h(s)f(s, u∗(s)) + g(s, u∗(s))] ds, 0 ≤ t ≤ 1,

and u∗ ∈ C2[0, 1]. Since G(0, s) ≡ 0, ∂
∂tG(0, s) ≡ 0, ∂2

∂t2
G(1, s) ≡ 0, we

obtain u∗(0) = (u∗)′(0) = (u∗)′′(1) = 0. Further,

(u∗)′′′(t) = −λ[h(t)f(t, u∗(t)) + g(t, u∗(t))], 0 < t < 1.

Since u∗(t) ≥ 1
2at

2 > 0 for 0 < t ≤ 1, we find that u∗ ∈ K ∩ C2[0, 1] ∩
C3(0, 1) and u∗(t) is a positive solution of the problem (P ).

Theorem 3.2. Suppose that (H1) and (H2) hold, and there exist positive
numbers a < b < c such that one of the following conditions is satisfied :

(d1) λ ∈
(

b
Bψ(b) ,min

{
a

Aϕ(a)+Cµ(a) ,
c

Aϕ(c)+Cµ(c)

}]
.

(d2) λ ∈
[
max

{
a

Bψ(a) ,
c

Bψ(c)

}
, b
Aϕ(b)+Cµ(b)

)
.

Then the problem (P ) has at least two positive solutions u∗1, u
∗
2 ∈ K ∩

C2[0, 1] ∩ C3(0, 1) with a ≤ ‖u∗1‖ < b < ‖u∗2‖ ≤ c.
Proof. We only consider the case (d1).
Since λ ∈

(
b

Bψ(b) ,min
{

a
Aϕ(a)+Cµ(a) ,

c
Aϕ(c)+Cµ(c)

}]
, one has

λ[Aϕ(a) + Cµ(a)] ≤ a, λBψ(b) > b, λ[Aϕ(c) + Cµ(c)] ≤ c.
Applying the conditions λ[Aϕ(a) + Cµ(a)] ≤ a and λBψ(b) > b and imi-
tating the proof of Theorem 3.1 (c1), we deduce that the problem (P ) has
a positive solution u∗1 ∈ K ∩ C2[0, 1] ∩ C3(0, 1) with a ≤ ‖u∗1‖ < b. Apply-
ing the conditions λBψ(b) > b and λ[Aϕ(c) + Cµ(c)] ≤ c shows that the
problem (P ) has another positive solution u∗2 ∈ K ∩C2[0, 1]∩C3(0, 1) with
b < ‖u∗2‖ ≤ c.

Similarly, we can prove the following theorem.

Theorem 3.3. Suppose that (H1) and (H2) hold, and there exist positive
numbers a < b < c < d such that one of the following conditions is satisfied :
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(e1) λ ∈
(
max

{
b

Bψ(b) ,
d

Bψ(d)

}
,min

{
a

Aϕ(a)+Cµ(a) ,
c

Aϕ(c)+Cµ(c)

})
.

(e2) λ ∈
(
max

{
a

Bψ(a) ,
c

Bψ(c)

}
,min

{
b

Aϕ(b)+Cµ(b) ,
d

Aϕ(d)+Cµ(d)

})
.

Then the problem (P ) has at least three positive solutions u∗1, u
∗
2, u
∗
3 ∈

K ∩ C2[0, 1] ∩ C3(0, 1) with a < ‖u∗1‖ < b < ‖u∗2‖ < c < ‖u∗3‖ ≤ d.

Obviously, a similar result holds for every positive integer n.
Furthermore, we have the following results concerned with the growth

behaviors of the nonlinear term on an infinite interval.

Theorem 3.4. Suppose that (H1) and (H2) hold, and one of the follow-
ing conditions is satisfied :

(f1) λ ∈
(

lim inf
r→0+

r

Bψ(r)
, lim sup

r→∞

r

Aϕ(r) + Cµ(r)

)
.

(f2) λ ∈
(

lim inf
r→∞

r

Bψ(r)
, lim sup

r→0+

r

Aϕ(r) + Cµ(r)

)
.

Then the problem (P ) has at least one positive solution u∗ ∈ K ∩C2[0, 1] ∩
C3(0, 1).

Proof. If the condition (f1) is satisfied, then there exist 0 < b < a such
that λ ∈

[
b

Bψ(b) ,
a

Aϕ(a)+Cµ(a)

]
. By Theorem 3.1 (b1), the proof is complete.

For (f2), the proof is similar.

Theorem 3.5. Suppose that (H1) and (H2) hold, and

λ ∈
(

lim inf
r→∞

r

Bψ(r)
, lim sup

r→∞

r

Aϕ(r) + Cµ(r)

)
.

Then the problem (P ) has infinitely many positive solutions u∗k ∈ K ∩
C2[0, 1] ∩ C3(0, 1), k = 1, 2, . . . , and ‖u∗k‖ → ∞.

Proof. By assumption, there exist sequences r̂k →∞ and řk →∞ such
that

r̂k
Bψ(r̂k)

≤ λ ≤ řk
Aϕ(řk) + Cµ((řk)

, k = 1, 2, . . . .

Without loss of generality, assume that

r̂1 < ř1 < r̂2 < ř2 < · · · < r̂k < řk < r̂k+1 < řk+1 < · · · .
By Theorem 3.1 (c2), for each k = 1, 2, . . . , there exists a positive solution
u∗k ∈ K ∩ C2[0, 1] ∩ C3(0, 1) such that r̂k ≤ ‖u∗k‖ ≤ řk. So ‖u∗k‖ → ∞.

4. Remarks and examples. In this section, we show that our main
results improve Theorems 1.1 and 1.2, and we correct an error in [12].

Remark 4.1. Theorems 1.1 and 1.2 are simple corollaries of Theorems
3.1 and 3.2 respectively.
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In fact, by (a1), f(t, u) = f(u), g(t, u) ≡ 0 and f(u) is continuous on
[0,∞), so the assumptions (H1) and (H2) are satisfied. Moreover

ϕ(r) = max{f(u) : 0 ≤ u ≤ r}, ψ(r) = min{f(u) : 1
2σ

2r ≤ u ≤ r},

and µ(r) = 0 for any r > 0.
It follows that[

b

Bmin{f(u) : 1
2σ

2b ≤ u ≤ b}
,

a

Amax{f(u) : 0 ≤ u ≤ a}

]
=
[

b

Bψ(b)
,

a

Aϕ(a) + Cµ(a)

]
,[

a

Bmin{f(u) : 1
2σ

2a ≤ u ≤ a}
,

b

Amax{f(u) : 0 ≤ u ≤ b}

]
=
[

a

Bψ(a)
,

b

Aϕ(b) + Cµ(b)

]
.

Consequently, Theorem 1.1 follows from Theorem 3.1.
On the other hand, if limu→+0 f(u)/u = limu→∞ f(u)/u =∞, then

lim
r→0

r

min{f(u) : 1
2σ

2r ≤ u ≤ r}
= lim

r→∞

r

min{f(u) : 1
2σ

2r ≤ u ≤ r}
= 0.

So, the assumption (b2)(i) implies that there exist 0 < a < b < c such that

λ ∈
[
max

{
a

Bψ(a)
,

c

Bψ(c)

}
,

b

Aϕ(b) + Cµ(b)

)
.

Similarly, (b2)(ii) implies that there exist 0 < a < b < c such that

λ ∈
(

b

Bψ(b)
,min

{
a

Aϕ(a) + Cµ(a)
,

c

Aϕ(c) + Cµ(c)

}]
.

Hence, Theorem 1.2 follows from Theorem 3.2.

Remark 4.2. In [12], the author assumes that the coefficient h(t) sat-
isfies the following condition:

(LH) h ∈ C(0, 1), h(t) ≥ 0 for 0 < t < 1 and
	1
0G(1, s)h(s) ds <∞.

Unfortunately, this condition is unsuitable for Theorem 1.1.
In fact, under the conditions (a1), (a2) and (LH) a fixed point of the

operator T need not be a solution of problem (P ).
For example, let λ = 1, h(t) = 1

t
√

1−t , f(u) ≡ 1. Then

1�

0

G(1, s)h(s) ds =
1
2

1�

0

2− s√
1− s

ds =
1
2

1�

0

ds√
1− s

+
1
2

1�

0

√
1− s ds =

4
3
<∞.
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This shows that the condition (LH) is satisfied. Let

u∗(t) =
1�

0

G(t, s)h(s) ds =
1
2

t�

0

2t− s√
1− s

ds+
1
2
t2

1�

t

ds

s
√

1− s

=
1
3

(2− 5t)
√

1− t+ 2t− 2
3

+
1
2
t2 ln

1−
√

1− t
1 +
√

1− t
.

Then, for 0 ≤ t ≤ 1,

u∗(t) =
1�

0

G(t, s)h(s) ds =
1�

0

G(t, s)h(s)f(u∗(s)) ds = (Tu∗)(t),

so u∗(t) is a fixed point of the operator T .
However, direct calculations give that

(u∗)′(t) = −5
3
√

1− t+
4t− 1

3
√

1− t
+ 2 + t ln

1−
√

1− t
1 +
√

1− t
, 0 < t < 1.

Thus, limt→1−(u∗)′(t) = ∞ and (u∗)′′(1) 6= 0. Therefore, u∗(t) is not a
solution of the problem (P ). This deficiency of the proof in [12] is corrected
here by replacing the assumption

	1
0G(1, s)h(s) ds <∞ with

	1
0 h(t) dt <∞.

Remark 4.3. According to Theorems 3.1–3.5, we can choose the con-
stant σ according to the following rule.

For fixed r > 0, if r/Bψ(r) is smaller, the result will be better. Therefore,
if Bψ(r) is larger, the result will be better.

We recall the definitions of B and ψ(r):

B = B(σ) = max
0≤t≤1

1�

σ

G(t, s)h(s) ds,

ψ(r) = ψ(r, σ) = max{f(t, u) : σ ≤ t ≤ 1, 1
2rt

2 ≤ u ≤ r}.

This shows that B = B(σ) is decreasing in σ, and ψ(r) = ψ(r, σ) is increas-
ing in σ. Therefore, we should choose σ depending on the specific properties
of the functions h(t) and f(t, u) in real problems. Generally, we can choose
1/4 ≤ σ ≤ 3/4. In particular, σ = 1/2 is an admissible choice.

Example 4.4. Our main results are applicable to the singular problem
(P ) even if f(t, u) = f(u) and g(t, u) = g(u).

Consider the nonlinear boundary value problem

(P1)

u′′′(t) +
λ

3
√
u(t)

= 0, 0 < t < 1,

u(0) = u′(0) = u′′(1) = 0.

In this problem, h(t) ≡ 1. Let
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f(t, u) = f(u) = min
{

1,
1
3
√
u

}
, g(t, u) = g(u) = max

{
0,

1
3
√
u
− 1
}
.

Then λ/ 3
√
u(t) = λ[h(t)f(u) + g(u)]. In addition, let σ = 3/4. Then A =

1/3, B = 9/128, C = 1/2.
It is easy to see that ψ(r) = 1 if 0 < r ≤ 1, ϕ(r) ≤ 1 if r ≥ 1 and

µ(r) ≤ 3 3
√

2/ 3
√
r for any 0 < r <∞. From these facts, we get

lim
r→0+

r

Bψ(r)
= lim

r→0+

128r
9

= 0,

lim
r→∞

r

Aϕ(r) + Cµ(r)
≥ lim

r→∞

6r 3
√
r

2 3
√
r + 9 3

√
2

=∞.

By Theorem 3.4, for any 0 < λ < ∞, the problem (P1) has a positive
solution u∗ ∈ K ∩ C2[0, 1] ∩ C3(0, 1). Because of the singularity of 1/ 3

√
u,

this conclusion cannot be derived from Theorem 1.1.

Example 4.5. Theorem 3.1 extends Theorem 1.1 even if g(t, u) ≡ 0.
Consider the continuous boundary value problem

(P2)

u′′′(t) + λmin
{

4eu(t),
1√

min{t, 1− t}

}
= 0, 0 ≤ t ≤ 1,

u(0) = u′(0) = u′′(1) = 0.

Here, h(t) ≡ 1, the continuous part f(t, u) is min{4eu, 1/
√

min{t, 1− t}}
and the singular part g(t, u) is 0. So µ(r) = 0.

Let σ = 1/2. Then A = 1/3, B = 11/48, C = 1/2. Moreover,

ϕ(r) = max{4eu : 0 ≤ u ≤ r} = 4er,

ψ(r) = min
{

1√
min{t, 1− t}

: 1
2 ≤ t ≤ 1

}
= 4.

It follows that
1

Aϕ(1) + Cµ(1)
=

3
4e
,

0.1
Bψ(0.1)

=
12
110

.

By Theorem 3.1 (c2), for any 12/110 ≤ λ ≤ 3/(4e), the problem (P2)
has a positive solution u∗ ∈ K ∩ C2[0, 1] ∩ C3(0, 1) with 0.1 ≤ ‖u∗‖ ≤ 1.
Because the function min{4eu, 1/

√
min{t, 1− t}} cannot be decomposed as

h(t)f(u), the conclusion cannot be derived from Theorem 1.1.
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