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Biharmonic Riemannian maps

by Bayram S.ahin (Malatya)

Abstract. We give necessary and sufficient conditions for Riemannian maps to be
biharmonic. We also define pseudo-umbilical Riemannian maps as a generalization of
pseudo-umbilical submanifolds and show that such Riemannian maps put some restrictions
on the target manifolds.

1. Introduction. Smooth maps between Riemannian manifolds are
useful for comparing geometric structures between two manifolds. Isomet-
ric immersions (Riemannian submanifolds) are basic such maps between
Riemannian manifolds and they are characterized by the Riemannian met-
rics and Jacobian matrices. More precisely, a smooth map F : (M1, g1) →
(M2, g2) between Riemannian manifolds (M1, g1) and (M2, g2) is called an
isometric immersion if F∗ is injective and

(1.1) g2(F∗X,F∗Y ) = g1(X,Y )

for any vector fields X,Y tangent to M1, where F∗ denotes the derivative
map.

On the other hand, the study of Riemannian submersions between Rie-
mannian manifolds was initiated by B. O’Neill [O] and A. Gray [G] (see also
[FIP] and [YK]). A smooth map F : (M1, g1)→ (M2, g2) is called a Rieman-
nian submersion if F∗ is onto and (1.1) holds for vector fields tangent to the
horizontal space (kerF∗)⊥. For Riemannian submersions between various
manifolds, see [FIP] and [YK].

In 1992, Fischer [F] introduced Riemannian maps between Riemannian
manifolds as a generalization of isometric immersions and Riemannian sub-
mersions. Let F : (M1, g1) → (M2, g2) be a smooth map between Rieman-
nian manifolds such that 0 < rankF < min{m,n}, where dimM1 = m and
dimM2 = n. We denote the kernel space of F∗ by kerF∗ and consider the
orthogonal complementary space H = (kerF∗)⊥ to kerF∗. Then the tangent
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bundle of M1 has the decomposition

TM1 = kerF∗ ⊕H.

We denote the range of F∗ by rangeF∗ and consider its orthogonal com-
plement (rangeF∗)⊥ in the tangent bundle TM2. Since rankF < min{m,n},
we always have (rangeF∗)⊥ 6= {0}. Thus TM2 has the following decomposi-
tion:

TM2 = (rangeF∗)⊕ (rangeF∗)⊥.

Now, a smooth map F : (Mm
1 , g1)→ (Mn

2 , g2) is called a Riemannian map at
p1∈M1 if the horizontal restriction F h

∗p1 : (kerF∗p1)⊥→(rangeF∗p1) is a lin-
ear isometry between the inner product spaces ((kerF∗p1)⊥, g1(p1)|(kerF∗p1 )⊥)
and (rangeF∗p1 , g2(p2)|rangeF∗p1

), p2 = F (p1). Fischer stated in [F] that a
Riemannian map is a map which is as isometric as it can be. In other words,
F∗ satisfies (1.1) for vector fields X,Y tangent to H = (kerF∗)⊥. It fol-
lows that isometric immersions and Riemannian submersions are particular
Riemannian maps with kerF∗ = {0} and (rangeF∗)⊥ = {0}. It is known
that a Riemannian map is a subimmersion. One of the main properties of
Riemannian maps is that they satisfy the eikonal equation which is a link
between geometric optics and physical optics. For Riemannian maps and
their applications, see [GK].

A map between Riemannian manifolds is harmonic if the divergence of
its differential vanishes. Harmonic maps between Riemannian manifolds pro-
vide a rich display of both differential geometric and analytic phenomena,
and they are closely related to the theory of stochastic processes and to the
theory of liquid crystals in material science. On the other hand, biharmonic
maps are critical points of the bienergy functional and, from this point of
view, they generalize harmonic maps. The notion of biharmonic map was
suggested by Eells and Sampson [ES]. The first variation formula, and thus
the Euler–Lagrange equation associated to the bienergy was obtained by
Jiang [J1], [J2]. Biharmonic maps have been extensively studied in the last
decade and there are two main research directions. In differential geometry,
many authors have obtained classification results and constructed many ex-
amples. Biharmonicity of immersions was obtained in [CI], [CM], [OC] and
biharmonic Riemannian submersions were studied in [OC]; for a survey on
biharmonic maps, see [MO]. From the analytic point of view, biharmonic
maps are solutions of fourth order strongly elliptic semilinear partial differ-
ential equations. It is known that plane elastic problems can be expressed in
terms of the biharmonic equation. On the other hand, wave maps are har-
monic maps on Minkowski spaces and biwave maps are biharmonic maps
on Minkowski spaces. Wave maps arise in the analysis of the more difficult
hyperbolic Yang–Mills equations either as special cases or as equations for
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certain families of gauge transformations. Such equations arise in general
relativity for spacetimes with two Killing vector fields. Bi-Yang–Mills fields,
which generalize Yang–Mills fields, have recently been introduced by Bejan
and Urakawa [BU]. For relations between biwave maps and the bi-Yang–
Mills equations, see [IIU] and [Ch]. Moreover, in geometric optics [D], one
can obtain the eikonal equation by using the wave equation.

In this paper, we mainly investigate the biharmonicity of Riemannian
maps from Riemannian manifolds to space forms. In Section 2, we intro-
duce notation and give fundamental formulas for the bitension field. Then
we obtain some preparatory results on Riemannian maps in Section 3. We
also define pseudo-umbilical Riemannian maps as a generalization of pseudo-
umbilical isometric immersions, obtain a necessary and sufficient condition
for a Riemannian map to be pseudo-umbilical and give a method of con-
structing pseudo-umbilical Riemannian maps. In Section 4, we find necessary
and sufficient conditions for Riemannian maps to be harmonic and observe
that pseudo-umbilical Riemannian maps from Riemannian manifolds M1 to
space forms M2(c) with additional conditions are either harmonic or have
c > 0.

2. Preliminaries. In this section we recall some basic material from
[BW] and [MO]. Let (M, gM ) be a Riemannian manifold and V be a q-
dimensional distribution on M. Denote its orthogonal distribution V⊥ by H.
Then we have

(2.1) TM = V ⊕H.

V is called the vertical distribution and H the horizontal distribution. We
use the same letters to denote the orthogonal projections onto these distri-
butions.

By the unsymmetrized second fundamental form of V, we mean the tensor
field AV defined by

(2.2) AVEF = H(∇VEVF ), E, F ∈ Γ (TM),

where ∇ is the Levi-Civita connection on M. The symmetrized second fun-
damental form BV of V is given by

(2.3) BV(E,F ) = 1
2{A

V
EF +AVFE} = 1

2{H(∇VEVF ) +H(∇VFVE)}

for any E,F ∈ Γ (TM). The integrability tensor of V is the tensor field IV

given by

(2.4) IV(E,F ) = AVEF −AVFE −H([VE,VF ]).

Moreover, the mean curvature vector field of V is defined by
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(2.5) µV =
1
q

TraceBV =
1
q

q∑
r=1

H(∇erer),

where {e1, . . . , eq} is a local frame of V. By reversing the roles of V, H, one
can define BH, AH and IH similarly. For instance, BH is defined by

(2.6) BH(E,F ) = 1
2{V(∇HEHF ) + V(∇HFHE)},

and hence we have

(2.7) µH =
1

m− q
TraceBH =

1
m− q

m−q∑
s=1

V(∇EsEs),

where E1, . . . , Em−q is a local frame of H. A distribution D on M is said to
be minimal if, for each x ∈M , the mean curvature vector field vanishes.

Let (M, gM ) and (N, gN ) be Riemannian manifolds and suppose that
ϕ : M → N is a smooth map between them. Then the differential ϕ∗
of ϕ can be viewed as a section of the bundle Hom(TM,ϕ−1TN) → M,
where ϕ−1TN is the pullback bundle which has fibres (ϕ−1TN)p = Tϕ(p)N ,
p ∈M. Hom(TM,ϕ−1TN) has a connection ∇ induced from the Levi-Civita
connection ∇M and the pullback connection. Then the second fundamental
form of ϕ is given by

(2.8) (∇ϕ∗)(X,Y ) = ∇ϕXϕ∗(Y )− ϕ∗(∇MX Y )

for X,Y ∈ Γ (TM). It is known that the second fundamental form is sym-
metric.

Now assume M is compact. Then the energy of the map ϕ is

E(ϕ) =
�

M

e(ϕ)vg =
1
2

�

M

|dϕ|2vg.

The critical points of E are called harmonic maps. Standard arguments yield
the associated Euler–Lagrange equation, the vanishing of the tension field
τ(ϕ) = trace(∇ϕ∗). The bienergy of ϕ is defined by

E2(ϕ) =
1
2

�

M

|τ(ϕ)|2vg.

Critical points of the functional E2 are called biharmonic maps and its
associated Euler–Lagrange equation is the vanishing of the bitension field

(2.9) τ2(ϕ) = −∆ϕτ(ϕ)− tracegM RN (dϕ, τ(ϕ))dϕ,

where ∆ϕτ(ϕ) = − tracegM (∇ϕ∇ϕ − ∇ϕ∇) is the Laplacian on the sections
of ϕ−1(TN) and RN is the Riemann curvature operator on (N, gN ). A map
between two Riemannian manifolds is said to be proper biharmonic if it is
a non-harmonic biharmonic map.
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3. Riemannian maps. In this section, we obtain some new results
which will be used in the next section. First note that in [S2] we showed that
the second fundamental form (∇F∗)(X,Y ), for X,Y ∈ Γ ((kerF∗)⊥), of a
Riemannian map has no components in rangeF∗. Here we give an elementary
proof of that result.

Lemma 3.1. Let F be a Riemannian map from a Riemannian manifold
(M1, g1) to a Riemannian manifold (M2, g2). Then

(3.1) g2((∇F∗)(X,Y ), F∗(Z)) = 0, ∀X,Y, Z ∈ Γ ((kerF∗)⊥).

Proof. Since F is a Riemannian map, from (2.8) we have

(3.2) g2((∇F∗)(X,Y ), F∗(Z)) = g2(∇FXF∗Y, F∗Z)− g1(∇1
XY, Z).

On the other hand, since ∇1 is a Levi-Civita connection, from the Koszul
identity we have

g1(∇1
XY, Z) = 1

2{Xg1(Y, Z) + Y g1(X,Z)− Zg1(X,Y )
+ g1([X,Y ], Z) + g1([Z,X], Y )− g1([Y,Z], X)}.

Since F∗([X,Y ]) = [F∗X,F∗Y ], using g1(X,Y ) = g2(F∗X,F∗Y ), we obtain

g1(∇1
XY,Z) = 1

2{Xg2(F∗Y, F∗Z) + Y g2(F∗X,F∗Z)− Zg2(F∗X,F∗Y )
+ g2([F∗X,F∗Y ], F∗Z) + g2([F∗Z,F∗X], F∗Y )
− g2([F∗Y, F∗Z], F∗X)}.

Since ∇2 is also a Levi-Civita connection, we have

(3.3) g1(∇1
XY, Z) = g2(∇FXF∗Y, F∗Z).

Thus the assertion follows from (3.2) and (3.3).

As a result of Lemma 3.1, we have

(3.4) (∇F∗)(X,Y ) ∈ Γ ((rangeF∗)⊥), ∀X,Y ∈ Γ ((kerF∗)⊥).

Also from [S1], we have the following.

Lemma 3.2. Let F : (M, gM ) → (N, gN ) be a Riemannian map. Then
the tension field τ of F is

(3.5) τ = −m1F∗(µkerF∗) +m2H2,

where m1 = dim(kerF∗), m2 = rankF , µkerF∗ and H2 are the mean curva-
ture vector fields of the distributions of kerF∗ and rangeF∗, respectively.

From now on, for simplicity, we denote by ∇2 both the Levi-Civita con-
nection of (M2, g2) and its pullback along F . Then according to [N], for any
vector field X on M1 and any section V of (rangeF∗)⊥, where (rangeF∗)⊥

is the subbundle of F−1(TM2) with fibre (F∗(TpM))⊥, the orthogonal com-
plement of F∗(TpM) for g2 over p, we have ∇F⊥X V which is the orthogonal
projection of ∇2

XV on (F∗(TM))⊥. In [N], the author also showed that ∇F⊥
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is a linear connection on (F∗(TM))⊥ such that ∇F⊥g2 = 0. We now define
AV as

(3.6) ∇2
F∗XV = −AV F∗X +∇F⊥X V,

where AV F∗X is the tangential component (a vector field along F ) of
∇2
F∗X

V . It is easy to see that AV F∗X is bilinear in V and F∗X, and at
p it depends only on Vp and F∗pXp. By direct computations, we obtain

(3.7) g2(AV F∗X,F∗Y ) = g2(V, (∇F∗)(X,Y ))

for X,Y ∈ Γ ((kerF∗)⊥) and V ∈ Γ ((rangeF∗)⊥). Since ∇F∗ is symmetric,
it follows that AV is a symmetric linear transformation of rangeF∗.

We now define pseudo-umbilical Riemannian maps as a generalization of
pseudo-umbilical isometric immersions. Pseudo-umbilical Riemannian maps
will be useful when we deal with the biharmonicity of Riemannian maps.

Definition 3.3. Let F : (M1, g1) → (M2, g2) be a Riemannian map.
Then we say that F is a pseudo-umbilical Riemannian map if

(3.8) AH2F∗(X) = λF∗(X)

for λ ∈ C∞(M1) and X ∈ Γ ((kerF∗)⊥).

Here we present a useful formula for pseudo-umbilical Riemannian maps
by using (3.7) and (3.8).

Proposition 3.4. Let F : (M1, g1) → (M2, g2) be a Riemannian map.
Then F is pseudo-umbilical if and only if

(3.9) g2((∇F∗)(X,Y ), H2) = g1(X,Y )g2(H2, H2)

for X,Y ∈ Γ ((kerF∗)⊥).

Proof. Let {ẽ1, . . . , ẽm1 , e1, . . . , em2} be an orthonormal basis of Γ (TM1)
such that {ẽ1, . . . , ẽm1} is an orthonormal basis of kerF∗ and {e1, . . . , em2}
is an orthonormal basis of (kerF∗)⊥. Since F is a Riemannian map we have

m2∑
i=1

g2(AH2F∗(ei), F∗(ei)) = m2λ.

Using (3.7), we get
m2∑
i=1

g2

(
1
m2

(∇F∗)(ei, ei), H2

)
= λ.

Thus we obtain

(3.10) λ = g2(H2, H2).

Then, from (3.7), (3.8) and (3.10) we obtain (3.9). The converse is clear.
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It is known that the composition of a Riemannian submersion and an
isometric immersion is a Riemannian map [F]. Using this we have the fol-
lowing.

Theorem 3.5. Let F1 : (M1, g1) → (M2, g2) be a Riemannian submer-
sion and F2 : (M2, g2)→ (M3, g3) a pseudo-umbilical isometric immersion.
Then F2 ◦ F1 is a pseudo-umbilical Riemannian map.

Proof. From the second fundamental form of F2 ◦ F1 [BW], we have

(∇(F2 ◦ F1)∗)(X,Y ) = F2∗((∇F1∗)(X,Y )) + (∇F2∗)(F1∗X,F1∗Y )

for X,Y ∈ Γ ((kerF1∗)⊥). Then the assertion follows from the definition of
pseudo-umbilical submanifolds.

Remark. We note that the above theorem gives a method to find ex-
amples of pseudo-umbilical Riemannian maps. It also tells us that if one
has an example of pseudo-umbilical submanifolds, it is possible to find an
example of pseudo-umbilical Riemannian maps. For examples of pseudo-
umbilical submanifolds, see [C].

4. Biharmonicity of Riemannian maps. In this section we obtain
the biharmonicity of Riemannian maps between Riemannian manifolds. We
also show that pseudo-umbilical biharmonic Riemannian maps put some
restrictions on the target manifold of such maps.

Let F : (M1, g1) → (M2, g2) be a map between Riemannian mani-
folds. Then the adjoint map ∗F∗ of F∗ is characterized by g1(x, ∗F∗p1y) =
g2(F∗p1x, y) for x ∈ Tp1M1, y ∈ TF (p1)M2 and p1 ∈ M1. Considering F h

∗ at
each p1 ∈M1 as a linear transformation

F h
∗p1 : ((kerF∗)⊥(p1), g1p1((kerF∗)⊥(p1)))→ (rangeF∗(p2), g2p2(rangeF∗)(p2))),

we will denote the adjoint of F h
∗p1 by ∗F h

∗p1 . Let ∗F∗p1 be the adjoint of
F∗p1 : (Tp1M1, g1p2)→ (Tp2M2, g2p2). Then the linear transformation

(∗F∗p1)h : rangeF∗(p2)→ (kerF∗)⊥(p1)

defined by (∗F∗p1)hy = ∗F∗p1y, where y ∈ Γ (rangeF∗p1), p2 = F (p1), is an
isomorphism and (F h

∗p1)−1 = (∗F∗p1)h = ∗(F h
∗p1).

We also recall that the curvature tensor R of a space form (M(c), g) is
given by

(4.1) R(X,Y )Z = c{g(Y,Z)X − g(X,Z)Y }.
We are now ready to prove the following theorem which gives necessary and
sufficient conditions for a Riemannian map to be biharmonic.

Theorem 4.1. Let F be a Riemannian map from a Riemannian mani-
fold (Mm1+m2

1 , g1) to a space form (M2(c), g2). Then F is biharmonic if and
only if
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(4.2) m1 traceA(∇F∗)(·,µker F∗ )F∗(·)−m1 traceF∗(∇(·)∇(·)µ
kerF∗)

−m2 traceF∗(∇(·)
∗F∗(AH2F∗(·)))−m2 traceA∇F⊥

F∗(·)
H2
F∗(·)

−m1c(m2 − 1)F∗(µkerF∗) = 0

and

(4.3) m1 trace∇F⊥F∗(·)(∇F∗)(·, µ
kerF∗) +m1 trace(∇F∗)(·,∇(·)µ

kerF∗)

+m2 trace(∇F∗)(·, ∗F∗(AH2F∗(·)))−m2∆
R⊥H2

−m2
2cH2 = 0.

Proof. First of all, from (4.1) and (3.6) we have

(4.4) traceR2(F∗(·), τ(F ))F∗(·) = m1c(m2 − 1)F∗(µkerF∗)−m2
2cH2,

where R2 is the curvature tensor field ofM2. Let {ẽ1, . . . , ẽm1 , e1, . . . , em2} be
a local orthonormal frame on M1, geodesic at p∈M1, such that {ẽ1, . . . , ẽm1}
is an orthonormal basis of kerF∗ and {e1, . . . , em2} is an orthonormal basis
of (kerF∗)⊥. At p we have

∆τ(F ) = −
m2∑
i=1

∇Fei
∇Fei

τ(F ) = −
m2∑
i=1

∇Fei
{∇Fei

(−m1F∗(µkerF∗) +m2H2)}.

Then using (2.8), (3.4) and (3.6) we get

∆τ(F ) = −
m2∑
i=1

∇Fei
{−m1(∇F∗)(ei, µkerF∗)−m1F∗(∇eiµ

kerF∗)

+m2(−AH2F∗(ei) +∇F⊥F∗(ei)
H2)}.

Using again (2.8), (3.4) and (3.6) we obtain

∆τ(F ) = m1

m2∑
i=1

{−A(∇F∗)(ei,µker F∗ )F∗(ei) +∇F⊥F∗(ei)
(∇F∗)(ei, µkerF∗)}

+m1

m2∑
i=1

{(∇F∗)(ei,∇eiµ
kerF∗) + F∗(∇ei∇eiµ

kerF∗)}

+m2

m2∑
i=1

∇Fei
AH2F∗(ei)−m2

m2∑
i=1

−A∇F⊥
F∗(ei)

H2
F∗(ei)

+∇F⊥F∗(ei)
∇F⊥F∗(ei)

H2.

On the other hand, since AH2F∗(ei) ∈ Γ (F∗((kerF∗)⊥)), we can write

F∗(X) = AH2F∗(ei)

for X ∈ Γ ((kerF∗)⊥), where

X = (F∗)−1(AH2F∗(ei)) = ∗F∗(AH2F∗(ei)).
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Then using (2.8) we have

∇Fei
AH2F∗(ei) = (∇F∗)(ei, ∗F∗(AH2F∗(ei))) + F∗(∇ei

∗F∗(AH2F∗(ei))).

Thus we obtain

(4.5) ∆τ(F ) = m1

m2∑
i=1

{−A(∇F∗)(ei,µker F∗ )F∗(ei) +∇F⊥F∗(ei)
(∇F∗)(ei, µkerF∗)}

+m1

m2∑
i=1

{(∇F∗)(ei,∇eiµ
kerF∗) + F∗(∇ei∇eiµ

kerF∗)}

+m2

m2∑
i=1

{(∇F∗)(ei, ∗F∗(AH2F∗(ei))) + F∗(∇ei
∗F∗(AH2F∗(ei)))}

−m2

m2∑
i=1

{−A∇F⊥
F∗(ei)

H2
F∗(ei) +∇F⊥F∗(ei)

∇F⊥F∗(ei)
H2}.

Thus putting (4.4) and (4.5) in (2.9) and then taking the F∗((kerF∗)⊥) =
rangeF∗ and (rangeF∗)⊥ parts we obtain (4.2) and (4.3).

In particular, we have the following.

Corollary 4.2. Let F be a Riemannian map from a Riemannian man-
ifold (M1, g1) to a space form (M2(c), g2). If the mean curvature vector fields
of rangeF∗ and kerF∗ are parallel, then F is biharmonic if and only if

(4.6) m1 traceA(∇F∗)(·,µker F∗ )F∗(·)−m2 traceF∗(∇(·)
∗F∗(AH2F∗(·))

−m1c(m2 − 1)F∗(µkerF∗) = 0
and

(4.7) m1 trace∇F⊥F∗(·)(∇F∗)(·, µ
kerF∗) +m2 trace (∇F∗)(·, ∗F ∗(AH2F∗(·)))

−m2
2cH2 = 0.

We also have the following result for pseudo-umbilical Riemannian maps.

Theorem 4.3. Let F be a pseudo-umbilical biharmonic Riemannian
map from a Riemannian manifold (M1, g1) to a space form (M2(c), g2) such
that the distribution kerF∗ is minimal and the mean curvature vector field
H2 is parallel. Then either F is harmonic or c = ‖H2‖2.

Proof. First note that it is easy to see that ‖H2‖2 is constant. If F is
biharmonic Riemannian map such that µkerF∗ = 0 and H2 is parallel, then
from (4.3) we have

m2

m2∑
i=1

(∇F∗)(ei, ∗F∗(AH2F∗(ei)))−m2
2cH2 = 0.

Since F is pseudo-umbilical, we get
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m2

m2∑
i=1

(∇F∗)(ei, ∗F∗(‖H2‖2F∗(ei)))−m2
2cH2 = 0.

On the other hand, from the linear map ∗F∗ and ∗F∗ ◦F∗ = I (identity map),
we obtain

m2

m2∑
i=1

(∇F∗)(ei, ‖H2‖2ei)−m2
2cH2 = 0.

Since the second fundamental form is also linear in its arguments, it follows
that

m2‖H2‖2
m2∑
i=1

(∇F∗)(ei, ei)−m2
2cH2 = 0.

Hence
m2

2‖H2‖2H2 −m2
2cH2 = 0,

which implies that

(4.8) (‖H2‖2 − c)H2 = 0.

Thus either H2 = 0 or ‖H2‖2 − c = 0. If H2 = 0, then Lemma 3.2 implies
that F is harmonic, thus the proof is complete.

From (4.8), we have the following result which puts some restrictions on
M2(c).

Corollary 4.4. There exists no proper biharmonic pseudo-umbilical
Riemannian map F from a Riemannian manifold to a space form M2(c) with
c ≤ 0 such that the distribution kerF∗ is minimal and the mean curvature
vector field H2 is parallel.

Remark. In this paper, we investigate the biharmonicity of Riemannian
maps between Riemannian manifolds. Our results give some clues to inves-
tigate the biharmonicity of arbitrary maps between Riemannian manifolds.
They also give a method to investigate the geometry of Riemannian maps.
Since Riemannian maps are solutions of the eikonal equations which can be
obtained starting from the wave equation, biharmonic maps are solutions
of fourth order strongly elliptic semilinear partial differential equations and
they are related to the biwave equation and bi-Yang–Mills fields; biharmonic
Riemannian maps have potential for further research in partial differential
equations, geometric optics and mathematical physics.
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