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Abstract. Let F be a family of meromorphic functions defined in a domain D, let
ψ ( 6≡ 0,∞) be a meromorphic function in D, and k be a positive integer. If, for every
f ∈ F and z ∈ D, (1) f 6= 0, f (k) 6= 0; (2) all zeros of f (k) − ψ have multiplicities at least
(k + 2)/k; (3) all poles of ψ have multiplicities at most k, then F is normal in D.

1. Introduction. Let D be a domain in C, and F be a family of mero-
morphic functions defined in D. Then F is said to be normal on D, in the
sense of Montel, if for any sequence {fn} ⊂ F there exists a subsequence
{fnj} such that {fnj} converges spherically locally uniformly on D to a
meromorphic function or ∞ (see [5, 8, 15]).

Yang [14] and Schwick [10] proved

Theorem A. Let F be a family of meromorphic functions defined in
a domain D, let k be a positive integer, and let ϕ(z) ( 6≡ 0) be an analytic
function in D. If, for each f ∈ F , f 6= 0 and f (k)(z) 6= ϕ(z) in D, then F
is normal.

Bergweiler and Langley [2] (cf. [1]) proved

Theorem B. Let F be a family of meromorphic functions defined in D,
and let k ≥ 2 be a positive integer. If, for each f ∈ F , f 6= 0 and f (k) 6= 0
in D, then {f ′/f : f ∈ F} is normal.

The holomorphic case was proved by Schwick [9]. Theorem B can be con-
sidered as the normal families analogue arising according to Bloch’s principle
from the well-known Picard type theorem: Let f be meromorphic in C and
let k ≥ 2. If f and f (k) have no zeros, then f has the form f(z) = eaz+b or
f(z) = (az+ b)−n, where a, b ∈ C, a 6= 0, and n ∈ N, which was conjectured
by Hayman [6] and proved by Frank [4] for k ≥ 3 and by Langley [7] for
k = 2.
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Let D = {z : |z| < 1} and F = {fn(z) = nz}. Noting that f ′n/fn = 1/z
for each n, {f ′n/fn} is obviously normal in D, but F is not normal in D. So
the normality of {f ′/f : f ∈ F} does not imply that of F .

In [12] (cf. [3, 11]), we showed the following result

Theorem C. Let F be a family of meromorphic functions defined in a
domain D, let ψ ( 6≡ 0) be a holomorphic function in D, and k be a positive
integer. If, for each f ∈ F ,

(a) f 6= 0 and f (k) 6= 0 in D;
(b) all zeros of f (k)(z)−ψ(z) have multiplicities at least (k+ 2)/k in D,

then F is normal.

Remark 1. In fact, (k+ 2)/k = 3 for the case k = 1, and 1 < (k+ 2)/k
< 2 for the case k ≥ 2. The number (k+ 2)/k in Theorem C is sharp, which
can be seen from two examples in [3].

It is natural to ask: does Theorem C hold if we only assume that ψ(z) is
meromorphic? In this paper, we prove the following result.

Theorem 1. Let F be a family of meromorphic functions defined in a
domain D ⊂ C, let k be a positive integer, and let ψ (6≡ ∞) be a nonvanishing
meromorphic function in D. If, for each f ∈ F ,

(1) f 6= 0 and f (k) 6= 0 in D,
(2) all zeros of f (k)(z)−ψ(z) have multiplicities at least (k+ 2)/k in D,
(3) all poles of ψ have multiplicities at most k in D,

then F is normal.

Remark 2. The following example shows that condition (3) in Theo-
rem 1 cannot be omitted.

Example 1. Let k ∈ N, D = {z : |z| < 1}, ψ(z) = 1/zk+1, and

F =
{
fn(z) =

1
nz

: z ∈ D
}
.

Clearly, fn(z) 6= 0 and f
(k)
n (z) = (−1)kk!/(nzk+1) 6= 0. We also have

f (k)
n (z)− ψ(z) =

(
(−1)kk!

n
− 1

)
1

zk+1
6= 0.

Thus conditions (1) and (2) in Theorem 1 are satisfied. But F is not normal
in D.

Since normality is a local property, combining Theorems C and 1 we
obtain the following theorem.
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Theorem 2. Let F be a family of meromorphic functions defined in
a domain D ⊂ C, let k be a positive integer, and let ψ ( 6≡ 0,∞) be a
meromorphic function in D. If, for each f ∈ F ,

(1) f 6= 0 and f (k) 6= 0 in D,
(2) all zeros of f (k)(z)−ψ(z) have multiplicities at least (k+ 2)/k in D,
(3) all poles of ψ have multiplicities at most k in D,

then F is normal.

2. Lemmas. The following is a local version of Zalcman’s lemma due
to Xue and Pang [13] (cf. [16]).

Lemma 1. Let F be a family of functions meromorphic in a domain D
such that f 6= 0 for each f ∈ F . If F is not normal at z0 ∈ D, then, for
each α ≥ 0, there exist a sequence of points zn ∈ D, zn → z0, a sequence of
positive numbers ρn → 0, and a sequence of functions fn ∈ F such that

gn(ζ) =
fn(zn + ρnζ)

ραn
→ g(ζ)

locally uniformly with respect to the spherical metric, where g is a noncon-
stant meromorphic function on C.

Lemma 2. Let k, l be two integers with k ≥ l ≥ 0. Then there does not
exist any rational function f such that f 6= 0, f (k) 6= 0, and all zeros of
f (k)(z) − 1/(z − α)l have multiplicity at least (k + 2)/k in C, where α is a
complex number.

Proof. Suppose that such a rational function f exists. Since f 6= 0 and
f (k) 6= 0, we see that f is a nonpolynomial rational function and has the
form

f(z) =
A

(z − z1)m1 · · · (z − zt)mt
,

where A 6= 0 is a constant, and m1, . . . ,mt are positive integers. Using the
results of Frank [4] for k ≥ 3 and Langley [7] for k = 2, we know that f has
the form

(1) f(z) =
A

(z − z1)m
for k ≥ 2. Set m = m1 + · · ·+mt. Then

f ′(z) =
−A(mzt−1 + bt−2z

t−2 + · · ·+ b0)
(z − z1)m1+1 · · · (z − zt)mt+1

,

where bt−2, . . . , b0 are constants. In view of f ′ 6= 0, we get t = 1. It follows
that f also has the form (1) for k = 1. Thus

(2) f (k)(z) =
B

(z − z1)m+k
,

where m is a positive integer.
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For l = 0, we know that

f (k)(z)− 1
(z − α)l

= f (k)(z)− 1 =
B − (z − z1)m+k

(z − z1)m+k

has only simple zeros, a contradiction.
Next we consider the case l ≥ 1. If α = z1, then

f (k)(z)− 1
(z − α)l

=
B − (z − z1)m+k−l

(z − z1)m+k
,

and thus f (k)(z) − 1/(z − α)l has only simple zeros, a contradiction. Thus
α 6= z1.

Since

(3) f (k)(z)− 1
(z − α)l

=
B(z − α)l − (z − z1)m+k

(z − z1)m+k(z − α)l
,

there exists a point z0 such that f (k)(z0) − 1/(z0 − α)l = 0. As all zeros of
f (k)(z)−1/(z−α)l have multiplicity at least (k+2)/k, we see from (3) that

B(z0 − α)l − (z0 − z1)m+k = 0,(4)

lB(z0 − α)l−1 − (m+ k)(z0 − z1)m+k−1 = 0.(5)

Solving (4) and (5) for z0, we obtain

z0 =
(m+ k)α− lz1
m+ k − l

,

which implies that f (k)(z)− 1/(z − α)l has only one zero z0 as above. Thus

(6) (z − z1)m+k −B(z − α)l =
(
z − (m+ k)α− lz1

m+ k − l

)m+k

.

If l < k, then equating the coefficients of zm+k−1 in (6), we get

z1 =
(m+ k)α− lz1
m+ k − l

,

and so α = z1, a contradiction.
Therefore l = k, and (6) can be written as

(7) (z − z1)m+k −B(z − α)k =
(
z − (m+ k)α− kz1

m

)m+k

.

For m ≥ 2, equating the coefficients of zm+k−1 in (7), we also deduce that
α = z1, a contradiction. For m = 1, by (7), we have

(8) (z − z1)k+1 −B(z − α)k = [z − (k + 1)α+ kz1]k+1.
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Equating the coefficients of zk and zk−1 in (8), we get

(k + 1)z1 +B = (k + 1)[(k + 1)α− kz1],(9) (
k + 1

2

)
z2
1 + kαB =

(
k + 1

2

)
[(k + 1)α− kz1]2.(10)

From (9), we have B = (k + 1)2(α− z1). Substituting this in (10) gives

(k2 − 1)(α− z1)2 = 0.

Noting α 6= z1, we obtain k = l = 1. Then we conclude from (3) and (6)
that f ′(z)− 1/(z−α) has one zero with multiplicity 2. But this contradicts
the assumption that all zeros of f ′(z)− 1/(z − α) have multiplicity at least
(k + 2)/k = 3 (here k = l = 1). Lemma 2 is proved.

We shall use the standard notation of value distribution theory (see [5,
15]): T (r, f),m(r, f), N(r, f), N̄(r, f), . . . . We denote by S(r, f) any function
satisfying

S(r, f) = o{T (r, f)}
as r →∞, possibly outside a set of finite measure.

Lemma 3. Let k be a positive integer, let F = {fn} be a family of
meromorphic functions defined in a domain D , and let ϕn(z) be a sequence
of holomorphic functions on D such that ϕn → ϕ locally uniformly on D,
where ϕ(z) ( 6= 0) is holomorphic on D. If fn 6= 0, f (k)

n 6= 0, and all zeros of
f

(k)
n − ϕn have multiplicity at least (k + 2)/k, then F is normal in D.

Proof. Suppose that F is not normal at z0 ∈ D. By Lemma 1, there exist
a sequence of functions fn ∈ F , a sequence of complex numbers zn → z0
and a sequence of positive numbers ρn → 0 such that

gn(ζ) =
fn(zn + ρnζ)

ρkn
→ g(ζ)

spherically uniformly on compact subsets of C, where g(ζ) is a nonconstant
meromorphic function on C. Hurwitz’s theorem implies that g(ζ) 6= 0.

We see that

(11) g(k)
n (ζ) = f (k)

n (zn + ρnζ)→ g(k)(ζ)

spherically uniformly on every compact subset of C which contains no pole
of g(ζ). From (11), we know that either g(k) 6= 0 or g(k) ≡ 0 for any ζ ∈ C
that is not a pole of g(ζ). Clearly, these also hold for all ζ ∈ C. If g(k) ≡ 0, we
deduce that g is a nonzero constant since g 6= 0, a contradiction. Therefore
g(k) 6= 0.

Since

g(k)
n (ζ)− ϕn(zn + ρnζ) = f (k)

n (zn + ρnζ)− ϕn(zn + ρnζ)→ g(k)(ζ)− ϕ(z0),
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Hurwitz’s theorem implies that all zeros of g(k)(ζ)−ϕ(z0) have multiplicities
at least (k + 2)/k. It follows from Lemma 2 (for l = 0) that g must be
transcendental.

By Nevanlinna’s first and second fundamental theorems, we have

T (r, g(k)) ≤ N̄(r, g(k)) + N̄

(
r,

1
g(k)

)
+ N̄

(
r,

1
g(k) − ϕ(z0)

)
+ S(r, g(k))

≤ 1
k + 1

N(r, g(k)) +
k

k + 2
N

(
r,

1
g(k) − ϕ(z0)

)
+ S(r, g(k))

≤ 1
k + 1

T (r, g(k)) +
k

k + 2
T

(
r,

1
g(k) − ϕ(z0)

)
+ S(r, g(k))

≤ k2 + 2k + 2
k2 + 3k + 2

T (r, g(k)) + S(r, g(k)),

a contradiction. Lemma 3 is proved.

3. Proof of Theorem 1. Without loss of generality, we may assume
D = ∆ = {z : |z| < 1}, and

ψ(z) =
ϕ(z)
zl

(z ∈ ∆),

where l is a positive integer with l ≤ k, ϕ(0) = 1, ϕ(z) 6= 0,∞ on ∆′ =
{z : 0 < |z| < 1}. By Theorem C, it is enough to show that F is normal at
z = 0.

Suppose that F is not normal at z = 0. By Lemma 1 (with α = k − l),
there exist a sequence of functions fn ∈ F , a sequence of complex numbers
zn → 0 and a sequence of positive numbers ρn → 0 such that

(12) Fn(ζ) =
fn(zn + ρnζ)

ρk−ln

→ F (ζ)

spherically uniformly on compact subsets of C, where F (ζ) is a nonconstant
meromorphic function on C. By Hurwitz’s theorem, F (ζ) 6= 0.

Obviously, on every compact subsets of C which contains no poles of
F (ζ),

F (k)
n (ζ) = ρlnf

(k)
n (zn + ρnζ)→ F (k)(ζ).

Since f (k)
n (zn + ρnζ) 6= 0, we see that either F (k)(ζ) 6= 0 or F (k)(ζ) ≡ 0 for

any ζ ∈ C that is not a pole of F (ζ). Obviously, these also hold for all ζ ∈ C.
If F (k)(ζ) ≡ 0, then F (ζ) is a polynomial of degree at most k − 1, but this
contradicts the fact that F (ζ) 6= 0 and F (ζ) is nonconstant. So F (k)(ζ) 6= 0.

We distinguish the following two cases.

Case 1: zn/ρn →∞. Set

gn(ζ) = zl−kn fn(zn(1 + ζ)).
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Clearly, gn 6= 0 and g
(k)
n 6= 0. Since

g(k)
n (ζ)− ϕn(zn(1 + ζ))

(1 + ζ)l
= zln

[
f (k)
n (zn(1 + ζ))− ϕ(zn(1 + ζ))

(zn(1 + ζ))l

]
= zln[f (k)

n (zn(1 + ζ))− ψ(zn(1 + ζ))],

by the assumption of theorem, all zeros of g(k)
n (ζ)−ϕ(zn(1+ζ))/(1+ζ)l have

multiplicity at least (k+2)/k in ∆. On the other hand, ϕ(zn(1+ζ))/(1+ζ)l

is holomorphic in ∆ for each n, and

ϕ(zn(1 + ζ))
(1 + ζ)l

→ 1
(1 + ζ)l

( 6= 0)

for ζ ∈ ∆. Then, by Lemma 3, {gn} is normal in ∆.
Hence, we can find a subsequence {gnj} ⊂ {gn} and a function g such

that

(13) gnj (ζ) = zl−knj
fnj (znj (1 + ζ))→ g(ζ)

spherically locally uniformly on ∆.
If g(0) 6=∞, from (12) and (13), and noting zn/ρn →∞, we have

(14) F (k−l)(ζ) = lim
j→∞

f (k−l)
nj

(znj + ρnjζ) = lim
j→∞

f (k−l)
nj

(
znj + znj

(
ρnj

znj

ζ

))
= lim

j→∞
g(k−l)
nj

(
ρnj

znj

ζ

)
= g(k−l)(0).

It follows from (14) that F (k−l)(ζ) must be a finite constant, and then F (ζ) is
a polynomial. But this is impossible since F (ζ) is nonconstant and F (ζ) 6= 0.

If g(0) =∞, then

gnj

(
ρnj

znj

ζ

)
= zl−knj

fnj (znj + ρnjζ)→ g(0) =∞,

and hence

F (ζ) = lim
j→∞

fnj (znj + ρnjζ)

ρk−lnj

= lim
j→∞

(
znj

ρnj

)k−l
zl−knj

fnj (znj + ρnjζ) =∞,

that is, F (ζ) ≡ ∞, a contradiction.

Case 2: zn/ρn 9 ∞. Taking a subsequence and renumbering, we may
assume that zn/ρn → α, a finite complex number.

We have

(15) F (k)
n (ζ)− ρlnϕ(zn + ρnζ)

(zn + ρnζ)l
→ F (k)(ζ)− 1

(α+ ζ)l
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on C \ {−α}. Since

F (k)
n (ζ)− ρlnϕ(zn + ρnζ)

(zn + ρnζ)l
= ρln(f (k)

n (zn + ρnζ)− ψ(zn + ρnζ)),

and f
(k)
n (zn + ρnζ) − ψ(zn + ρnζ) has only zeros with multiplicity at least

(k + 2)/k, Hurwitz’s theorem and (15) imply that all zeros of F (k)(ζ) −
1/(α+ ζ)l have multiplicity at least (k + 2)/k.

Using Nevanlinna’s first and second fundamental theorems (for small
functions), we have

T (r,F (k)) ≤ N̄(r,F (k)) + N̄

(
r,

1
F (k)

)
+ N̄

(
r,

1
F (k) − 1/(α+ ζ)l

)
+ S(r,F (k))

≤ 1
k + 1

N(r,F (k)) +
k

k + 2
N

(
r,

1
F (k) − 1/(α+ ζ)l

)
+ S(r,F (k))

≤ 1
k + 1

T (r,F (k)) +
k

k + 2
T

(
r,

1
F (k) − 1/(α+ ζ)l

)
+ S(r,F (k))

≤ k2 + 2k + 2
k2 + 3k + 2

T (r,F (k)) + S(r,F (k)).

This implies that F is a rational function. However, by Lemma 2, such an
F does not exist, a contradiction. Theorem 1 is thus proved.
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