Representations of non-negative polynomials via KKT ideals

by Dang Tuan Hiep (Da Lat and Bari)

Abstract

This paper studies the representation of a non-negative polynomial f on a non-compact semi-algebraic set K modulo its KKT (Karush-Kuhn-Tucker) ideal. Under the assumption that f satisfies the boundary Hessian conditions (BHC) at each zero of f in K, we show that f can be represented as a sum of squares (SOS) of real polynomials modulo its KKT ideal if $f \geq 0$ on K.

1. Introduction. We know that if a polynomial in one variable $f(X) \in$ $\mathbb{R}[X]$ satisfies $f(X) \geq 0$, for all $X \in \mathbb{R}$, then $f(X)=\sum_{i=1}^{m} g_{i}^{2}(X)$, where $g_{i}(X) \in \mathbb{R}[X]$, i.e., f is a sum of squares in $\mathbb{R}[X]$ (SOS for short). However, in the multi-variable case, this is false. A counterexample was given by Motzkin in 1967. If $f(X, Y)=1+X^{4} Y^{2}+X^{2} Y^{4}-3 X^{2} Y^{2}$, then $f(X, Y) \geq 0$ for all $X, Y \in \mathbb{R}$, but f is not a SOS in $\mathbb{R}[X, Y]$. To remedy that, we will consider the polynomials that are positive on K, where K is a semi-algebraic set in \mathbb{R}^{n}. For example, Schmüdgen's famous theorem [Schm] says that for a compact semi-algebraic set, every strictly positive polynomial belongs to the corresponding finitely generated preordering. Putinar [Pu simplified this representation under an additional assumption by using the quadratic module instead of the preordering. However, these results of Schmüdgen and Putinar have two restrictions. Firstly, the polynomials are positive, not merely non-negative. Secondly, K must be a compact semi-algebraic set. One would like to have results for representations of nonnegative polynomials on non-compact semi-algebraic sets.

The results of this paper are similar to those of James Demmel, Jiawang Nie and Victoria Powers in DNP. But we use another condition of Murray Marshall in [M], that is, the boundary Hessian condition (BHC for short). Our main result is an extension of Theorem 2.1 in M in the same way as Theorems 3.1 and 3.2 are extensions of the corresponding results in [NDS].

[^0]2. Preliminaries. In this section, we present some notions and results from algebraic geometry and real algebra needed for our discussion. The reader may consult $[\mathrm{BCR}], \mathrm{CLO}$, and $[\mathrm{PD}]$ for more details.

Throughout this section, denote by $\mathbb{R}[z]$ the ring of polynomials in $z=$ $\left(z_{1}, \ldots, z_{m}\right)$ with real coefficients. Given an ideal $I \subseteq \mathbb{R}[z]$, define its variety to be the set

$$
V(I)=\left\{z \in \mathbb{C}^{m} \mid p(z)=0, \forall p \in I\right\}
$$

and its real variety to be

$$
V^{\mathbb{R}}(I)=V(I) \cap \mathbb{R}^{m}
$$

A nonempty variety $V=V(I) \subseteq \mathbb{C}^{m}$ is irreducible if there do not exist two proper subvarieties $V_{1}, V_{2} \subset V$ such that $V=V_{1} \cup V_{2}$. The reader should note that in this paper, "irreducible" means that the set of complex zeros cannot be written as a proper union of subvarieties defined by real polynomials.

Given any ideal I of $\mathbb{R}[z]$, its radical \sqrt{I} is defined to be the ideal

$$
\sqrt{I}=\left\{q \in \mathbb{R}[z] \mid q^{l} \in I \text { for some } l \in \mathbb{N}\right\}
$$

Clearly, $I \subseteq \sqrt{I} ; I$ is a radical ideal if $\sqrt{I}=I$. As usual, for a variety $V \subseteq \mathbb{C}^{m}, I(V)$ denotes the ideal in $\mathbb{C}[z]$ of polynomials vanishing on V. We will write $I^{\mathbb{R}}(V)$ for the ideal $\mathbb{R}[z] \cap I(V)$.

We need versions of the Nullstellensatz for varieties defined by polynomials in $\mathbb{R}[z]$. The following two theorems are normally stated for ideals in $\mathbb{C}[z]$; however, keeping in mind that $V(I)$ lies in \mathbb{C}^{m}, they hold as stated for ideals in $\mathbb{R}[z]$.

Theorem $2.1([\mathrm{CLO}])$. If I is an ideal in $\mathbb{R}[z]$ such that $V(I)=\emptyset$, then $1 \in I$.

Theorem 2.2 ($\boxed{\mathrm{CLO}]})$. If I is an ideal in $\mathbb{R}[z]$, then $I^{\mathbb{R}}(V(I))=\sqrt{I}$.
Let $g_{1}, \ldots, g_{s} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ and set

$$
K=\left\{x \in \mathbb{R}^{n} \mid g_{i}(x) \geq 0, i=1, \ldots, s\right\}
$$

and

$$
P=\left\{\sum_{e \in\{0,1\}^{s}} \sigma_{e} g_{1}^{e_{1}} \ldots g_{s}^{e_{s}}\right\}
$$

where $e=\left(e_{1}, \ldots, e_{s}\right) \in\{0,1\}^{s}$ and σ_{e} are sums of squares of polynomials in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.

Finally, we need the following real algebra version of Theorem 2.1; see Remark 4.2.13 in [PD].

Theorem $2.3([\mathrm{PD}])$. Suppose K and P are defined as above. Then $K=\emptyset$ if and only if $-1 \in P$.
3. Sum of squares modulo KKT ideals. Fix $f, g_{1}, \ldots, g_{s} \in$ $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, and set

$$
K=\left\{x \in \mathbb{R}^{n} \mid g_{i}(x) \geq 0, i=1, \ldots, s\right\} .
$$

Let f^{*} denote the minimum value of f on K, i.e., the solution to the optimization problem

$$
\begin{equation*}
f^{*}=\min _{x \in K} f(x) . \tag{3.1}
\end{equation*}
$$

The KKT system associated to this optimization problem is

$$
\begin{gather*}
\nabla f-\sum_{j=1}^{s} \lambda_{j} \nabla g_{j}=0, \tag{3.2}\\
g_{j} \geq 0, \quad \lambda_{j} g_{j}=0, \quad j=1, \ldots, s, \tag{3.3}
\end{gather*}
$$

where the variables $\lambda=\left[\lambda_{1} \cdots \lambda_{s}\right]^{T}$ are called Lagrange multipliers and ∇f denotes the gradient of f, i.e., the vector of first-order partial derivatives of f. A point (x, λ) in $K \times \mathbb{R}^{s}$ is said to be a KKT point if the KKT system holds at that point.

We work in the polynomial rings $\mathbb{C}[x, \lambda]=\mathbb{C}\left[x_{1}, \ldots, x_{n}, \lambda_{1}, \ldots, \lambda_{s}\right]$ and $\mathbb{R}[x, \lambda]$. Let

$$
F_{i}=\frac{\partial f}{\partial x_{i}}-\sum_{j=1}^{s} \lambda_{j} \frac{\partial g_{j}}{\partial x_{i}},
$$

and define the $K K T$ ideal I_{KKT} in $\mathbb{R}[x, \lambda]$ and the varieties associated with the KKT system as follows:

$$
\begin{aligned}
I_{\mathrm{KKT}} & =\left\langle F_{1}, \ldots, F_{n}, \lambda_{1} g_{1}, \ldots, \lambda_{s} g_{s}\right\rangle, \\
V_{\mathrm{KKT}} & =\left\{(x, \lambda) \in \mathbb{C}^{n} \times \mathbb{C}^{s} \mid p(x, \lambda)=0, \forall p \in I_{\mathrm{KKT}}\right\}, \\
V_{\mathrm{KKT}}^{\mathbb{R}} & =\left\{(x, \lambda) \in \mathbb{R}^{n} \times \mathbb{R}^{s} \mid p(x, \lambda)=0, \forall p \in I_{\mathrm{KKT}}\right\} .
\end{aligned}
$$

Keeping in mind that we are now working in the larger polynomial ring, we use P to denote the preordering in $\mathbb{R}[x, \lambda]$ generated by g_{1}, \ldots, g_{s}. The associated KKT preordering P_{KKT} in $\mathbb{R}[x, \lambda]$ is defined as

$$
P_{\mathrm{KKT}}=P+I_{\mathrm{KKT}} .
$$

Finally, set

$$
\mathcal{H}=\left\{(x, \lambda) \in \mathbb{R}^{n} \times \mathbb{R}^{s} \mid g_{j}(x) \geq 0, j=1, \ldots, s\right\} .
$$

Theorem 3.1 (Demmel-Nie-Powers [DNP). Assume $I_{\text {Kkt }}$ is radical. If $f(x)$ is nonnegative on $V_{\mathrm{KKT}}^{\mathbb{R}} \cap \mathcal{H}$, then $f(x)$ belongs to P_{KKT}.

The assumption that I_{KKT} is radical is needed in Theorem 3.1, as shown by an example due to Claus Scheiderer, presented in Example 1 of [NDS]. However, when I_{KKT} is not radical, the conclusion also holds if $f(x)$ is strictly positive on $V_{\mathrm{KKT}}^{\mathbb{R}}$.

Theorem 3.2 (Demmel-Nie-Powers [DNP]). If $f>0$ on $V_{\mathrm{KKT}}^{\mathbb{R}} \cap \mathcal{H}$, then f belongs to P_{KKT}.

The main result of this paper is the following: if f satisfies the BHC at each zero of f in K (see definition in Section 4 below), and $f \geq 0$ on $V_{\mathrm{KKT}}^{\mathbb{R}} \cap \mathcal{H}$, then $f \in P_{\mathrm{KKT}}$. This is an extension of Theorem 2.1 in M in the same way as Theorems 3.1 and 3.2 are extensions of the corresponding results in [NDS].
4. Boundary Hessian conditions. We say f satisfies the BHC (boundary Hessian condition) at the point p in K if there is some $k \in\{1, \ldots, n\}$, and $v_{1}, \ldots, v_{k} \in \mathbb{N}$ with $1 \leq v_{1}<\cdots<v_{k} \leq s$ such that $g_{v_{1}}, \ldots, g_{v_{k}}$ are parts of a system of local parameters at p, and the standard sufficient conditions for a local minimum of $\left.f\right|_{L}$ at p hold, where L is the subset of \mathbb{R}^{n} defined by $g_{v_{1}}(x) \geq 0, \ldots, g_{v_{k}}(x) \geq 0$. This means that if t_{1}, \ldots, t_{n} are local parameters at p chosen so that $t_{i}=g_{v_{i}}$ for $i \leq k$, then in the completion $\mathbb{R}\left[\left[t_{1}, \ldots, t_{n}\right]\right]$ of $\mathbb{R}[x]$ at p, f decomposes as $f=f_{0}+f_{1}+f_{2}+\cdots$ (where f_{i} is homogeneous of degree i in the variables t_{1}, \ldots, t_{n} with coefficients in \mathbb{R}), $f_{1}=a_{1} t_{1}+\cdots+a_{k} t_{k}$ with $a_{i}>0, i=1, \ldots, k$, and the $(n-k)$-dimensional quadratic form $f_{2}\left(0, \ldots, 0, t_{k+1}, \ldots, t_{n}\right)$ is positive definite.

Theorem 4.1 (Marshall [M]). If f satisfies the BHC at each zero of f in K, then $f \in P+\left(f^{2}\right)$, where P denotes the preordering in $\mathbb{R}[x]$ generated by g_{1}, \ldots, g_{s}.

Example 4.2. Let $f, g_{1} \in \mathbb{R}[x, y]$ be given by $f(x, y)=x$ and $g_{1}(x, y)=$ $x-y^{2}$. Then

$$
K=\left\{(x, y) \in \mathbb{R}^{2} \mid x-y^{2} \geq 0\right\}
$$

Clearly, $f \geq 0$ on K, and the unique zero of f in K occurs at (0,0). Furthermore, f satisfies the BHC at $(0,0)$. Indeed, let $t_{1}=g_{1}=x-y^{2}$ and $t_{2}=y$. These form a system of local parameters at $(0,0)$. Then $f=x=\left(x-y^{2}\right)+y^{2}$, so $f=f_{1}+f_{2}$, where $f_{1}\left(t_{1}, t_{2}\right)=t_{1}$, and $f_{2}\left(t_{1}, t_{2}\right)=t_{2}^{2}$. Also, the coefficient of t_{1} in f_{1} is positive (it is 1), t_{2} does not appear in f_{1}, and the quadratic form $f_{2}\left(0, t_{2}\right)=t_{2}^{2}$ is positive definite (when viewed as a quadratic form in the single variable t_{2}). So, according to the definition, f satisfies the BHC at $(0,0)$. Here f has a representation as follows:

$$
f=\sigma_{0}+\sigma_{1} g_{1}+h f^{2}
$$

where $\sigma_{0}=y^{2}, \sigma_{1}=1, h=0$.
5. Representation of nonnegative polynomials. In this section, we present our main result. It is similar to Theorem 3.1, but without the assumption that I_{KKT} is radical. It is replaced by the BHC condition.

Theorem 5.1. Suppose that
(i) $f \geq 0$ on $V_{\mathrm{KKT}}^{\mathbb{R}} \cap \mathcal{H}$,
(ii) f satisfies the BHC at each zero of f in K.

Then $f \in P_{\text {KKT }}$.
REMARK 5.2. The radical condition and the BHC condition are different. The following example exhibits polynomials which satisfy the radical condition, but do not satisfy the BHC condition and conversely.

Example 5.3 (Marshall [M]).

1. Let $n=1$ and $s=0$ (so that $K=\mathbb{R}$). Then the polynomial $f(x)=$ $6 x^{2}+8 x^{3}+3 x^{4}$ satisfies the hypothesis of Theorem 5.1, but its KKT ideal is not radical. Indeed, $\partial f / \partial x=12 x(x+1)^{2}, f(x) \geq 0$ on \mathbb{R}, f has a zero at $x=0$, and $\left(\partial^{2} f / \partial x^{2}\right)(0)=12>0$. However, its KKT ideal $I=\left\langle 12 x(x+1)^{2}\right\rangle$ is not radical, because $g=x(x+1) \in \sqrt{I}$, but $g \notin I$.
2. Let $n=2$ and $s=0$ (so that $K=\mathbb{R}^{2}$). Then the polynomial $f(x, y)=$ x^{2} does not satisfy the hypothesis of Theorem 5.1, but its KKT ideal is radical. Indeed, the Hessian matrix of f is not positive definite at any zero of f in K. However, its KKT ideal $I=\langle 2 x\rangle$ is radical.

To prove Theorem 5.1, we need the following lemma.
LEMMA 5.4. Let W be an irreducible component of V_{KKT} and suppose $W \cap \mathbb{R}^{n+s} \neq \emptyset$. Then $f(x)$ is constant on W.

Proof. This follows from the proof of Lemma 3.3 in DNP.
Proof of Theorem 5.1. Decompose V_{KKT} into its irreducible components and let W_{0} be the union of all the components whose intersection with \mathcal{H} is empty. We note that this includes all components W with $W^{\mathbb{R}}=\emptyset$. Thus, by Lemma 5.4, f is constant on each of the remaining components. We group together all components for which f takes the same value. Then we have pairwise disjoint subsets W_{1}, \ldots, W_{r} of W such that for each i, f takes a constant value a_{i} on W_{i}, with the a_{i} being distinct. Further, since each contains a real point and f is non-negative on $V_{\mathrm{KKT}}^{\mathbb{R}} \cap \mathcal{H}$, the value of f on each W_{i} is real and non-negative. We assume $a_{1}>\cdots>a_{r} \geq 0$. If $a_{r}>0$ then $f \in P_{\mathrm{KKT}}$ (see Theorem 3.2). In case $a_{r}=0$, fix a primary decomposition of I_{KKT}. For each $i \in\{0,1, \ldots, r\}$, let J_{i} be the intersection of those primary components corresponding to the irreducible components occurring in W_{i}. Thus, $V\left(J_{i}\right)=W_{i}$.

Since $W_{i} \cap W_{j}=\emptyset$, we have $J_{i}+J_{j}=\mathbb{R}[x, \lambda]$ by Theorem 2.1. Therefore the Chinese Remainder Theorem (see, e.g., $[\mathrm{E}]$) implies that there is an
isomorphism

$$
\varphi: \mathbb{R}[x, \lambda] / I_{\mathrm{KKT}} \rightarrow \mathbb{R}[x, \lambda] / J_{0} \times \mathbb{R}[x, \lambda] / J_{1} \times \cdots \times \mathbb{R}[x, \lambda] / J_{r}
$$

Lemma 5.5. There is $q_{0} \in P$ such that $f \equiv q_{0} \bmod J_{0}$.
Proof. By assumption, $V\left(J_{0}\right) \cap \mathcal{H}=\emptyset$, hence there exists $u_{0} \in P$ such that $-1 \equiv u_{0} \bmod J_{0}$. This result is a special case of Theorem 8.6 in Lam.

We write $f=f_{1}-f_{2}$ for SOS polynomials $f_{1}=(f+1 / 2)^{2}$ and $f_{2}=$ $f^{2}+1 / 4$. Hence $f \equiv f_{1}+u_{0} f_{2} \bmod J_{0}$. Let $q_{0}=f_{1}+u_{0} f_{2} \in P$. Then $f \equiv q_{0} \bmod J_{0}$.

Lemma 5.6. f is a sum of squares modulo J_{i} for all $i=1, \ldots, r-1$.
Proof. By assumption, on each $W_{i}, 1 \leq i \leq r-1, f=a_{i}>0$, and hence the polynomial $u=f / a_{i}-1$ vanishes on W_{i}. Then by Theorem 2.2 there exists some integer $k \geq 1$ such that $u^{k} \in J_{i}$. From the binomial identity, it follows that

$$
1+u=\left(\sum_{j=0}^{k-1}\binom{1 / 2}{j} u^{j}\right)^{2}+q u^{k}
$$

This is explained in Lemma 7.24 in Lau. Thus $f=a_{i}(u+1)$ is a sum of squares modulo J_{i}.

Lemma 5.7. There is $q_{r} \in P$ such that $f \equiv q_{r} \bmod J_{r}$.
Proof. By the assumption that f satisfies the BHC at each zero of f on K and by Theorem 4.1, there exist $g \in P$ and $h \in \mathbb{R}[x]$ such that $f=g+h f^{2}$, i.e., $f(1-h f)=g$. Since f vanishes on $W_{r}, f^{m} \in J_{r}$ for some positive integer m. Let $t=h f$ and $v=\sum_{i=0}^{m-1} t^{i}$. Then $t, v \in \mathbb{R}[x]$, $t^{m} \in J_{r}$, and $(1-t) v \equiv 1 \bmod J_{r}$. By the binomial theorem, there exist $c_{i} \in \mathbb{Q}, i=0,1, \ldots, m-1$, such that

$$
v \equiv\left(\sum_{i=0}^{m-1} c_{i} t^{i}\right)^{2} \bmod J_{r}
$$

This yields $q_{r} \in P$ satisfying

$$
f \equiv f(1-h f) v=g v \equiv q_{r} \bmod J_{r}
$$

To finish the proof of Theorem 5.1, we need the following lemma.
Lemma 5.8. Given $q_{0}, q_{1}, \ldots, q_{r} \in \mathbb{R}[x, \lambda]$, there exists $q \in P$ such that $q-q_{i} \in J_{i}$ for all $i=0,1, \ldots, r$.

Proof. By the Chinese Remainder Theorem there exist $e_{0}, e_{1}, \ldots, e_{r} \in$ $\mathbb{R}[x, \lambda]$ such that $e_{i} \equiv 1 \bmod J_{i}$ and $e_{i} \equiv 0 \bmod J_{j}$ for $j \neq i$. Set $q=$ $\sum e_{i}^{2} q_{i}$.

Lemmas 5.55 .8 imply that there is $q \in P$ such that $f \equiv q \bmod I_{\mathrm{KKT}}$, i.e., $f \in P_{\mathrm{KKT}}$.

Remark 5.9. The assumption that f satisfies the BHC at each zero of f in K is needed in Theorem 5.1 and cannot be removed, as the following example shows.

Example 5.10. Let $K=\mathbb{R}^{3}, P_{\mathrm{KKT}}=\sum \mathbb{R}[x]^{2}+\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle$ and consider the polynomial

$$
f(x, y, z)=x^{8}+y^{8}+z^{8}+M(x, y, z),
$$

where $M(x, y, z)=x^{4} y^{2}+x^{2} y^{4}+z^{6}-3 x^{2} y^{2} z^{2}$ is the Motzkin polynomial, which is non-negative but not a sum of squares.

It is easy to see that f does not satisfy the BHC at $(0,0,0)$, which is a zero of f in \mathbb{R}^{3}. Furthermore, $f \notin P_{\mathrm{KKT}}$. Indeed, this is shown in Example 1 of [NDS].
6. Applications in optimization. In this section, we present a result that is similar to Theorem 4.1 in DNP. But instead of the assumption that I_{KKT} is radical, we assume that f satisfies the BHC at each zero of $f-f^{*}$ in K. Throughout this section, we always assume that the minimum value f^{*} of f on K is attained at some KKT point.

Recall the KKT system corresponding to (3.1):

$$
\begin{gather*}
\nabla f(x)-\sum_{j=1}^{s} \lambda_{j} \nabla g_{j}(x)=0, \tag{6.1}\\
g_{j}(x) \geq 0, \quad \lambda_{j} g_{j}=0, \quad j=1, \ldots, s . \tag{6.2}
\end{gather*}
$$

Let f_{KKT}^{*} be the global minimum value of $f(x)$ over the KKT system defined by (6.1) and (6.2). Assume the KKT system holds at at least one global optimizer. Then we claim that $f^{*}=f_{\mathrm{KKT}}^{*}$. First, $f^{*} \leq f_{\mathrm{KKT}}^{*}$ follows immediately from the fact that all solutions to the KKT system are feasible. By assumption, there exists $\left(x^{*}, \lambda^{*}\right)$ satisfying the above KKT system such that $f\left(x^{*}\right)=f^{*}$. Thus $f^{*} \geq f_{\mathrm{KKT}}^{*}$ and hence they are equal.

In order to implement membership in P_{KKT} as an SDP, we need a bound on the degrees of the sums of squares involved. Thus, for $d \in \mathbb{N}$, we define the truncated KKT ideal

$$
I_{d, \mathrm{KKT}}=\left\{\sum_{k=1}^{n} \phi_{k} F_{k}+\sum_{j=1}^{s} \psi_{j} \lambda_{j} g_{j} \mid \operatorname{deg}\left(\phi_{k} F_{k}\right), \operatorname{deg}\left(\psi_{j} \lambda_{j} g_{j}\right) \leq 2 d\right\},
$$

and the truncated preorder

$$
P_{d, \mathrm{KKT}}=\left\{\sum_{e \in\{0,1\}^{s}} \sigma_{e} g^{e} \mid \operatorname{deg}\left(\sigma_{e} g^{e}\right) \leq 2 d\right\}+I_{d, \mathrm{KKT}} .
$$

Then we define a sequence $\left\{f_{d}^{*}\right\}$ of SOS relaxations of the optimization
problem (3.1) as follows:

$$
\begin{gather*}
f_{d}^{*}=\max _{\gamma \in \mathbb{R}} \gamma \quad \text { such that } \tag{6.3}\\
f(x)-\gamma \in P_{d, \mathrm{KKT}} . \tag{6.4}
\end{gather*}
$$

Obviously each γ feasible in (6.4) is a lower bound of f^{*}. So $f_{d}^{*} \leq f^{*}$. When we increase d, the feasible region defined by 6.4 is increasing, and hence the sequence $\left\{f_{d}^{*}\right\}$ of lower bounds is also increasing. Thus

$$
f_{1}^{*} \leq f_{2}^{*} \leq \cdots \leq f^{*}
$$

It can be shown that the sequence $\left\{f_{d}^{*}\right\}$ of lower bounds obtained from (6.3) and (6.4) converges to f^{*} in (3.1), provided that f^{*} is attained at one KKT point. We have the following theorem.

THEOREM 6.1. Assume $f(x)$ has a minimum $f^{*}:=f\left(x^{*}\right)$ at one KKT point x^{*} of (3.1). Then $\lim _{d \rightarrow \infty} f_{d}^{*}=f^{*}$. Furthermore, if f satisfies the BHC at each zero of $f-f^{*}$ in K, then there exists some $d \in \mathbb{N}$ such that $f_{d}^{*}=f^{*}$, i.e., the SOS relaxations (6.3) and (6.4) converge in finitely many steps.

Proof. The sequence $\left\{f_{d}^{*}\right\}$ is increasing, and $f_{d}^{*} \leq f^{*}$ for all $d \in \mathbb{N}$, since f^{*} is attained by $f\left(x^{*}\right)$ in the KKT system (3.2) and (3.3) by assumption and the constraint 6.4 implies that $\gamma \leq f^{*}$. Now for arbitrary $\epsilon>0$, let $\gamma_{\epsilon}=f^{*}-\epsilon$ and replace $f(x)$ by $f(x)-\gamma_{\epsilon}$ in (3.1). The KKT system remains unchanged, and $f(x)-\gamma_{\epsilon}$ is strictly positive on $V_{\mathrm{KKT}}^{\mathbb{R}} \cap \mathcal{H}$. By Theorem 3.2, $f(x)-\gamma_{\epsilon} \in P_{\mathrm{KKT}}$. Since $f(x)-\gamma_{\epsilon}$ is fixed, there must exist some integer d_{1} such that $f(x)-\gamma_{\epsilon} \in P_{d_{1}, \mathrm{KKT}}$. Hence $f^{*}-\epsilon \leq f_{d_{1}}^{*} \leq f^{*}$. Therefore $\lim _{d \rightarrow \infty} f_{d}^{*}=f^{*}$.

Now assume that f satisfies the BHC at each zero of $f-f^{*}$ in K. Replace $f(x)$ by $f(x)-f^{*}$ in (3.1). The KKT system still remains the same, and $f(x)-f^{*}$ is now nonnegative on $V_{\mathrm{KKT}}^{\mathbb{R}} \cap \mathcal{H}$. Moreover, $f-f^{*}$ also satisfies the BHC at each zero of $f-f^{*}$ in K. By Theorem 5.1, $f(x)-f^{*} \in P_{\mathrm{KKT}}$. So there exists some integer d_{2} such that $f(x)-f^{*} \in P_{d_{2}, \mathrm{KKT}}$, and hence $f_{d_{2}}^{*} \geq f^{*}$. Then $f_{d}^{*} \leq f^{*}$ for all d implies that $f_{d_{2}}^{*}=f^{*}$.

Acknowledgements. The author would like to thank Prof. Murray Marshall, Prof. Ha Huy Vui and Assoc. Prof. Pham Tien Son for many interesting and helpful discussions on this work. The author would also like to thank Prof. Charles N. Delzell for his comments.

References

[BCR] J. Bochnak, M. Coste and M. F. Roy, Real Algebraic Geometry, Springer, Berlin, 1998.
[CLO] D. A. Cox, J. B. Little, and D. O'Shea, Ideals, Varieties and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 2nd ed., Undergrad. Texts in Math., Springer, New York, 1997.
[DNP] J. Demmel, J. Nie, and V. Powers, Representations of positive polynomials on non-compact semi-algebraic sets via KKT ideals, J. Pure Appl. Algebra 209 (2007), 189-200.
[E] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Grad. Texts in Math. 150, Springer, New York, 1995.
[HP] H. V. Ha and T. S. Pham, Global optimization of polynomials using the truncated tangency variety and sums of squares, SIAM J. Optim. 19 (2008), 941-951.
[Lam] T. Y. Lam, Introduction to real algebra, Rocky Mountain J. Math. 14 (1984), 767-814.
[Las] J. B. Lasserre, Global optimization with polynomials and the problem of moments, SIAM J. Optim. 11 (2001), 796-817.
[Lau] M. Laurent, Sums of squares, moment matrices and optimization over polynomials, in: Emerging Applications of Algebraic Geometry, IMA Vol. Math. Appl. 149, M. Putinar and S. Sullivant (eds.), Springer, 2009, 157-270.
[M] M. Marshall, Representations of non-negative polynomials, degree bounds and applications to optimization, Canad. J. Math. 61 (2009), 205-221.
[NDS] J. Nie, J. Demmel, and B. Sturmfels, Minimizing polynomials via sum of squares over the gradient ideal, Math. Program. 106 (2006), 587-606.
[PD] A. Prestel and C. Delzell, Positive Polynomials: From Hilbert's 17th Problem to Real Algebra, Monogr. Math., Springer, Berlin, 2004.
[Pu] M. Putinar, Positive polynomials on compact semi-algebraic sets, Indiana Univ. Math. J. 42 (1993), 203-206.
[Schm] K. Schmüdgen, The K-moment problem for compact semi-algebraic sets, Math. Ann. 289 (1991), 203-206.
[Schw] M. Schweighofer, Global optimization of polynomials using gradient tentacles and sums of squares, SIAM J. Optim. 17 (2006), 920-942.

Dang Tuan Hiep
Department of Mathematics
University of Dalat
01 Phu Dong Thien Vuong
Da Lat, Vietnam
E-mail: dangtuanhiep210@yahoo.com
Current address:
Dipartimento di Matematica
Università degli Studi di Bari Aldo Moro
Via E. Orabona, 4
70125 Bari, Italy
E-mail: dang@dm.uniba.it

[^0]: 2010 Mathematics Subject Classification: 11E25, 13P25, 14P10, 90C22.
 Key words and phrases: non-negative polynomials; sum of squares (SOS); optimization of polynomials; semidefinite programming (SDP).

