Analytic solutions of a nonlinear two variables difference system whose eigenvalues are both 1

by Mami Suzuki (Tokyo)

Abstract

For nonlinear difference equations, it is difficult to obtain analytic solutions, especially when all the eigenvalues of the equation are of absolute value 1 .

We consider a second order nonlinear difference equation which can be transformed into the following simultaneous system of nonlinear difference equations: $$
\left\{\begin{array}{l} x(t+1)=X(x(t), y(t)), \\ y(t+1)=Y(x(t), y(t)), \end{array}\right.
$$ where $X(x, y)=\lambda_{1} x+\mu y+\sum_{i+j \geq 2} c_{i j} x^{i} y^{j}, Y(x, y)=\lambda_{2} y+\sum_{i+j \geq 2} d_{i j} x^{i} y^{j}$ satisfy some conditions. For these equations, we have obtained analytic solutions in the cases " $\left|\lambda_{1}\right| \neq 1$ or $\left|\lambda_{2}\right| \neq 1$ " or " $\mu=0$ " in earlier studies. In the present paper, we will prove the existence of an analytic solution for the case $\lambda_{1}=\lambda_{2}=1$ and $\mu=1$.

1. Introduction. We start by considering the following second order nonlinear difference equation:

$$
\left\{\begin{array}{l}
u(t+1)=U(u(t), v(t)) \tag{1.1}\\
v(t+1)=V(u(t), v(t))
\end{array}\right.
$$

where $U(u, v)$ and $V(u, v)$ are holomorphic functions of t. We suppose that the equation (1.1) admits an equilibrium point $\left(u^{*}, v^{*}\right)$:

$$
\binom{u^{*}}{v^{*}}=\binom{U\left(u^{*}, v^{*}\right)}{V\left(u^{*}, v^{*}\right)} .
$$

We can assume, without loss of generality, that $\left(u^{*}, v^{*}\right)=(0,0)$. Furthermore we suppose that U and V can be written in the form

$$
\binom{u(t+1)}{v(t+1)}=M\binom{u(t)}{v(t)}+\binom{U_{1}(u(t), v(t))}{V_{1}(u(t), v(t))}
$$

[^0]where $U_{1}(u, v)$ and $V_{1}(u, v)$ have degree greater than one with respect to u and v, and M is a constant matrix. Let λ_{1}, λ_{2} be the characteristic values of the matrix M. For some regular matrix P determined by M, put $\binom{u}{v}=P\binom{x}{y}$. Then we can transform the system 1.1 into the following simultaneous system of first order difference equations:
\[

\left\{$$
\begin{array}{l}
x(t+1)=X(x(t), y(t)) \tag{1.2}\\
y(t+1)=Y(x(t), y(t))
\end{array}
$$\right.
\]

where $X(x, y)$ and $Y(x, y)$ are supposed to be holomorphic and expanded in a neighborhood of $(0,0)$ as

$$
\left\{\begin{array}{l}
X(x, y)=\lambda_{1} x+\sum_{i+j \geq 2} c_{i j} x^{i} y^{j}=\lambda_{1} x+X_{1}(x, y) \tag{1.3}\\
Y(x, y)=\lambda_{2} y+\sum_{i+j \geq 2} d_{i j} x^{i} y^{j}=\lambda_{2} y+Y_{1}(x, y)
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
X(x, y)=\lambda x+y+\sum_{i+j \geq 2} c_{i j}^{\prime} x^{i} y^{j}=\lambda x+X_{1}^{\prime}(x, y) \tag{1.4}\\
Y(x, y)=\lambda y+\sum_{i+j \geq 2} d_{i j}^{\prime} x^{i} y^{j}=\lambda y+Y_{1}^{\prime}(x, y)
\end{array}\right.
$$

where $\lambda=\lambda_{1}=\lambda_{2}$.
In this paper we consider analytic solutions of difference system 1.2). In [S5] and [S6], we have obtained general analytic solutions of (1.2) in the case $\left|\lambda_{1}\right| \neq 1$ or $\left|\lambda_{2}\right| \neq 1$. However, when $\left|\lambda_{1}\right|=\left|\lambda_{2}\right|=1$, it is even difficult to prove the existence of an analytic solution.

Kimura [K studied the cases in which one eigenvalue is equal to 1 , and Yanagihara [Y] investigated the cases in which the absolute value of one eigenvalue is 1 . Here we will look for analytic solutions of nonlinear second order difference equations in which the absolute values of the eigenvalues of the matrix M are both equal to 1 .

In [S7], we have proved the existence of an analytic solution and found a solution of (1.2) in which X and Y are defined by (1.3) under the condition $\lambda_{1}=\lambda_{2}=1$. In this paper, we will consider the equation 1.2 in which X and Y are defined by (1.4) under the condition $\lambda=1$, i.e., we assume that

$$
\left\{\begin{array}{l}
X(x, y)=x+y+\sum_{i+j \geq 2} c_{i j} x^{i} y^{j}=x+X_{1}(x, y) \tag{1.5}\\
Y(x, y)=y+\sum_{i+j \geq 2} d_{i j} x^{i} y^{j}=y+Y_{1}(x, y)
\end{array}\right.
$$

Here we suppose that $X_{1}(x, y) \not \equiv 0$ or $Y_{1}(x, y) \not \equiv 0$, and we need some other conditions. In this case, we need Theorem C (see Section 2.1) which we have proved in [S8].

As examples of (1.2), we earlier studied some economic models and a population model (see [S1], [S4]). However we had to exclude the case $\left|\lambda_{1}\right|=$ $\left|\lambda_{2}\right|=1$. In Section 3, making use of Theorem 1.1 below, we will prove the
existence of an analytic solution of the population model considered in [S4] in the case of $\lambda_{1}=\lambda_{2}=1$. Further we will obtain an expansion of the solution in this case.

Next we consider a functional equation

$$
\begin{equation*}
\Psi(X(x, \Psi(x)))=Y(x, \Psi(x)) \tag{1.6}
\end{equation*}
$$

where $X(x, y)$ and $Y(x, y)$ are holomorphic functions in $|x|<\delta_{1},|y|<\delta_{1}$. We assume that $X(x, y)$ and $Y(x, y)$ are expanded there as in 1.5).

Now we discuss the meaning of the equation (1.6).
First we consider the simultaneous system of difference equations (1.2). Suppose (1.2) admits a solution $(x(t), y(t))$. If $d x / d t \neq 0$ for some t_{0}, then we can write $t=\psi(x)$ with a function ψ in a neighborhood of $x_{0}=x\left(t_{0}\right)$, and we can write

$$
\begin{equation*}
y=y(t)=y(\psi(x))=\Psi(x) \tag{1.7}
\end{equation*}
$$

there. Then the function Ψ satisfies the equation (1.6).
Conversely, assume that a function Ψ is a solution of the functional equation (1.6). If the first order difference equation

$$
\begin{equation*}
x(t+1)=X(x(t), \Psi(x(t))) \tag{1.8}
\end{equation*}
$$

has a solution $x(t)$, we put $y(t)=\Psi(x(t))$. Then $(x(t), y(t))$ is a solution of (1.2). Hence if there is a solution Ψ of (1.6), then we can reduce the system (1.2) to a single equation 1.8 .

This relation is important in order to derive analytic solutions of 1.2). In the earlier studies [S2] [S3] and [S5], we proved the existence of solutions Ψ of (1.6) whenever X and Y are defined by (1.3) or $\lambda \neq 1$ in (1.4). Further in [S8], we proved existence of solutions Ψ of (1.6) for X and Y defined by (1.5). On the other hand, in [K], Kimura considered the first order difference equation (1.8) under the condition $\lambda=1$. We will prove the existence of an analytic solution and obtain an analytic solution of (1.2) in which X and Y are defined by 1.5 .

Hereafter we consider t to be a complex variable, and concentrate on the difference system (1.2). We define

$$
\begin{equation*}
D_{1}\left(\kappa_{0}, R_{0}\right)=\left\{t:|t|>R_{0},|\arg [t]|<\kappa_{0}\right\} \tag{1.9}
\end{equation*}
$$

where κ_{0} is any constant such that $0<\kappa_{0} \leq \pi / 4$, and R_{0} is a sufficiently large number which may depend on X and Y. Further we define

$$
\begin{equation*}
D^{*}(\kappa, \delta)=\{x:|\arg [x]|<\kappa, 0<|x|<\delta\} \tag{1.10}
\end{equation*}
$$

where δ is a small constant, and κ is a constant such that $\kappa=2 \kappa_{0}$, i.e., $0<\kappa \leq \pi / 2$.

We define $g_{0}^{ \pm}$as follows by the coefficients of $X(x, y)$ and $Y(x, y)$:

$$
\begin{align*}
& g_{0}^{+}\left(c_{20}, d_{11}, d_{30}\right)=\frac{-\left(2 c_{20}-d_{11}\right)+\sqrt{\left(2 c_{20}-d_{11}\right)^{2}+8 d_{30}}}{4}, \tag{1.11}\\
& g_{0}^{-}\left(c_{20}, d_{11}, d_{30}\right)=\frac{-\left(2 c_{20}-d_{11}\right)-\sqrt{\left(2 c_{20}-d_{11}\right)^{2}+8 d_{30}}}{4} . \tag{1.12}
\end{align*}
$$

Our aim in this paper is to prove the following theorem.
Theorem 1.1. Suppose $X(x, y)$ and $Y(x, y)$ are expanded in the forms (1.5) such that $X_{1}(x, y) \not \equiv 0$ or $Y_{1}(x, y) \not \equiv 0$. Define $A_{2}=g_{0}^{+}\left(c_{20}, d_{11}, d_{30}\right)$ $+c_{20}$ and $A_{1}=g_{0}^{-}\left(c_{20}, d_{11}, d_{30}\right)+c_{20}$.
(1) Suppose

$$
\begin{equation*}
d_{20}=0 \tag{1.13}
\end{equation*}
$$

and

$$
\begin{align*}
& \left(g_{0}^{+}\left(c_{20}, d_{11}, d_{30}\right)+c_{20}\right) n \neq c_{20}-d_{11}-g_{0}^{+}\left(c_{20}, d_{11}, d_{30}\right) \tag{1.14}\\
& \left(g_{0}^{-}\left(c_{20}, d_{11}, d_{30}\right)+c_{20}\right) n \neq c_{20}-d_{11}-g_{0}^{-}\left(c_{20}, d_{11}, d_{30}\right) \tag{1.15}
\end{align*}
$$

for all $n \in \mathbb{N}(n \geq 4)$. Then we have formal solutions $x(t)$ of 1.2$)$ of the form

$$
\begin{align*}
& -\frac{1}{A_{2} t}\left(1+\sum_{j+k \geq 1} \hat{q}_{j k} t^{-j}\left(\frac{\log t}{t}\right)^{k}\right)^{-1} \tag{1.16}\\
& -\frac{1}{A_{1} t}\left(1+\sum_{j+k \geq 1} \hat{q}_{j k} t^{-j}\left(\frac{\log t}{t}\right)^{k}\right)^{-1}
\end{align*}
$$

where $\hat{q}_{j k}$ are constants which are determined by X and Y.
(2) Further suppose $R_{1}=\max \left(R_{0}, 2 /\left(\left|A_{2}\right| \delta\right)\right)$ and

$$
\begin{equation*}
A_{2}<0 \tag{1.17}
\end{equation*}
$$

There are two solutions $x_{1}(t)$ and $x_{2}(t)$ of (1.2) such that
(i) $x_{s}(t)$ are holomorphic and $x_{s}(t) \in D^{*}(\kappa, \delta)$ for $t \in D_{1}\left(\kappa_{0}, R_{1}\right), s=$ 1,2 ,
(ii) $x_{s}(t)(s=1,2)$ are expressible in the form

$$
\begin{equation*}
x_{s}(t)=-\frac{1}{A_{s} t}\left(1+b_{s}\left(t, \frac{\log t}{t}\right)\right)^{-1} \tag{1.18}
\end{equation*}
$$

where $b_{s}(t,(\log t) / t)$ has an asymptotic expansion

$$
b_{s}\left(t, \frac{\log t}{t}\right) \sim \sum_{j+k \geq 1} \hat{q}_{j k(s)} t^{-j}\left(\frac{\log t}{t}\right)^{k}
$$

as $t \rightarrow \infty$ through $D_{1}\left(\kappa_{0}, R_{1}\right)$, and $\hat{q}_{j k(s)}$ are constants which are determined by X, Y and s.

2. Proof of Theorem 1.1

2.1. Preparation. In [K], Kimura considered the first order difference equation

$$
\begin{equation*}
w(t+\lambda)=F(w(t)) \tag{D1}
\end{equation*}
$$

where F is represented in a neighborhood of ∞ by a Laurent series

$$
\begin{equation*}
F(z)=z\left(1+\sum_{j=m}^{\infty} b_{j} z^{-j}\right), \quad b_{m}=\lambda \neq 0 \tag{2.1}
\end{equation*}
$$

He defined the following domains:

$$
\begin{align*}
D(\epsilon, R)= & \{t: "|t|>R \text { and }|\arg [t]-\theta|<\pi / 2-\epsilon " \tag{2.2}\\
& \text { or } \left." \operatorname{Im}\left(e^{i(\theta-\epsilon)} t\right)>R ", \text { or " } \operatorname{Im}\left(e^{i(\theta+\epsilon)} t\right)<-R "\right\}, \\
\hat{D}(\epsilon, R)= & \{t: "|t|>R \text { and }|\arg [t]-\theta-\pi|<\pi / 2-\epsilon ", \tag{2.3}\\
& \text { or " } \left.\operatorname{Im}\left(e^{-i(\theta+\pi-\epsilon)} t\right)>R ", \text { or " } \operatorname{Im}\left(e^{-i(\theta+\pi+\epsilon)} t\right)<-R "\right\},
\end{align*}
$$

where ϵ is an arbitrarily small positive number, R is a sufficiently large number which may depend on ϵ and F, and θ is defined by $\theta=\arg \lambda$. In this present paper, we consider the case $\lambda=1$ in (D1). Kimura proved the following theorems.

Theorem A. Equation (D1) admits a formal solution of the form

$$
\begin{equation*}
t\left(1+\sum_{j+k \geq 1} \hat{q}_{j k} t^{-j}\left(\frac{\log t}{t}\right)^{k}\right) \tag{2.4}
\end{equation*}
$$

containing an arbitrary constant $\hat{q}_{m 0}$, where $\hat{q}_{j k}$ are constants determined by F.

Theorem B. Given a formal solution of (D1) of the form (2.4), there exists a unique solution $w(t)$ satisfying the following conditions:
(i) $w(t)$ is holomorphic in $D(\epsilon, R)$,
(ii) $w(t)$ is expressible in the form

$$
\begin{equation*}
w(t)=t\left(1+b\left(t, \frac{\log t}{t}\right)\right) \tag{2.5}
\end{equation*}
$$

where the domain $D(\epsilon, R)$ is defined by (2.2) and $b(t, \eta)$ is holomorphic for $t \in D(\epsilon, R),|\eta|<1 / R$, and has an expansion

$$
b(t, \eta) \sim \sum_{k=1}^{\infty} b_{k}(t) \eta^{k}
$$

Here

$$
b_{k}(t) \sim \sum_{j+k \geq 1}^{\infty} \hat{q}_{j k} t^{-j}
$$

as $t \rightarrow \infty$ through $D(\epsilon, R)$, where $\hat{q}_{j k}$ are constants determined by F.

Also there exists a unique solution \hat{w} which is holomorphic in $\hat{D}(\epsilon, R)$ and satisfies a condition analogous to (ii), where the domain $\hat{D}(\epsilon, R)$ is defined by (2.3).

In Theorems A and B, Kimura defined the function F as in (2.1). In our method, we do not have a Laurent series for F.

In the following, A_{2} and A_{1} will be the constants defined in Theorem 1.1. We assume that $A_{2}<0$ and $A_{1}<0$.

Proposition 2.1. Suppose $\tilde{F}(t)$ is a formal power series

$$
\begin{equation*}
\tilde{F}(t)=t\left(1+\sum_{j=1}^{\infty} b_{j} t^{-j}\right), \quad b_{1}=\lambda \neq 0 . \tag{2.6}
\end{equation*}
$$

Then the equation

$$
\begin{equation*}
\psi(\tilde{F}(t))=\psi(t)+\lambda \tag{2.7}
\end{equation*}
$$

has a formal solution

$$
\begin{equation*}
\psi(t)=t\left(1+\sum_{j=1}^{\infty} q_{j} t^{-j}+q \frac{\log t}{t}\right), \tag{2.8}
\end{equation*}
$$

where q_{1} can be arbitrarily prescribed while the other coefficients $q_{j}(j \geq 2)$ and q are uniquely determined by $b_{j}(j=1,2, \ldots)$, independently of q_{1}.

Proposition 2.2. Suppose $A_{2}<0$ and $\tilde{F}(t)$ is holomorphic and has an asymptotic expansion

$$
\tilde{F}(t) \sim t\left(1+\sum_{j=1}^{\infty} b_{j} t^{-j}\right), \quad b_{1}=\lambda \neq 0
$$

in $\left\{t:-1 /\left(A_{2} t\right) \in D^{*}(\kappa, \delta)\right\}$, where $D^{*}(\kappa, \delta)$ is defined in 1.10. Then the equation (2.7) has a solution $w=\psi(t)$, which is holomorphic in $\{t$: $\left.-1 /\left(A_{2} t\right) \in D^{*}(\kappa / 2, \delta / 2)\right\}$ and has an asymptotic expansion

$$
\psi(t) \sim t\left(1+\sum_{j=1}^{\infty} q_{j} t^{-j}+q \frac{\log t}{t}\right)
$$

there.
These propositions are proved as in [K, pp. 212-222].
Since $A_{1} \leq A_{2}<0$ and $\kappa_{0}=\kappa / 2$, we see that $x=-1 /\left(A_{2} t\right) \in$ $D^{*}(\kappa / 2, \delta / 2)$ is equivalent to $t \in D_{1}\left(\kappa / 2,2 /\left(\left|A_{2}\right| \delta\right)\right)=D_{1}\left(\kappa_{0}, 2 /\left(\left|A_{2}\right| \delta\right)\right)$. Further we see that $x=-1 /\left(A_{1} t\right) \in D^{*}(\kappa / 2, \delta / 2)$ is equivalent to $t \in$ $D_{1}\left(\kappa / 2,2 /\left(\left|A_{1}\right| \delta\right)\right)=D_{1}\left(\kappa_{0}, 2 /\left(\left|A_{1}\right| \delta\right)\right)$, where $D_{1}\left(\kappa_{0}, R_{0}\right)$ is defined in (1.9). Since $A_{1} \leq A_{2}<0$ and $D_{1}\left(\kappa_{0}, 2 /\left(\left|A_{2}\right| \delta\right)\right) \subset D_{1}\left(\kappa_{0}, 2 /\left(\left|A_{1}\right| \delta\right)\right)$, we have $x=-1 /\left(A_{1} t\right) \in D^{*}\left(\kappa_{0}, \delta / 2\right)$ for $t \in D_{1}\left(\kappa_{0}, 2 /\left(\left|A_{2}\right| \delta\right)\right)$.

We define a function ϕ to be the inverse of ψ, so that $w=\psi^{-1}(t)=\phi(t)$. Then $\phi \circ \psi(w)=w, \psi \circ \phi(t)=t$, and ϕ is a solution of the difference equation (D)

$$
w(t+\lambda)=\tilde{F}(w(t))
$$

where \tilde{F} is defined as in Proposition 2.1 (see p. 236 in [K]). Hereafter, we put $\lambda=1$. Since $\theta=0$, we then have the following Propositions 2.3 and 2.4, analogous to Theorems A and B.

Proposition 2.3. Suppose $\tilde{F}(t)$ is a formal power series as in 2.6. Then the equation (D) has a formal solution

$$
\begin{equation*}
w=\phi(t)=t\left(1+\sum_{j+k \geq 1} \hat{q}_{j k} t^{-j}\left(\frac{\log t}{t}\right)^{k}\right) \tag{2.9}
\end{equation*}
$$

where $\hat{q}_{j k}$ are constants determined by \tilde{F} as in Theorem A.
Proposition 2.4. Suppose ϕ is the inverse of ψ, so $w=\psi^{-1}(t)=\phi(t)$. Given a formal solution of (D) of the form (2.9), there exists a unique solution $w(t)=\phi(t)$ which is holomorphic and admits an asymptotic expansion for $t \in D_{1}\left(\kappa_{0}, 2 /\left(\left|A_{2}\right| \delta\right)\right)$ such that

$$
\begin{equation*}
w=\phi(t)=t\left(1+b\left(t, \frac{\log t}{t}\right)\right) \tag{2.10}
\end{equation*}
$$

where

$$
b\left(t, \frac{\log t}{t}\right) \sim \sum_{j+k \geq 1} \hat{q}_{j k} t^{-j}\left(\frac{\log t}{t}\right)^{k}
$$

This function $\phi(t)$ is a solution of the difference equation (D).
In [S8], we have proved the following theorem.
Theorem C. Suppose $X(x, y)$ and $Y(x, y)$ are defined in 1.5. Assume $d_{20}=0$ and

$$
\begin{align*}
& \left(g_{0}^{+}\left(c_{20}, d_{11}, d_{30}\right)+c_{20}\right) n \neq c_{20}-d_{11}-g_{0}^{+}\left(c_{20}, d_{11}, d_{30}\right) \tag{2.11}\\
& \left(g_{0}^{-}\left(c_{20}, d_{11}, d_{30}\right)+c_{20}\right) n \neq c_{20}-d_{11}-g_{0}^{-}\left(c_{20}, d_{11}, d_{30}\right) \tag{2.12}
\end{align*}
$$

for all $n \in \mathbb{N}(n \geq 4)$, where

$$
\begin{aligned}
& g_{0}^{+}\left(c_{20}, d_{11}, d_{30}\right)=\frac{-\left(2 c_{20}-d_{11}\right)+\sqrt{\left(2 c_{20}-d_{11}\right)^{2}+8 d_{30}}}{4}, \\
& g_{0}^{-}\left(c_{20}, d_{11}, d_{30}\right)=\frac{-\left(2 c_{20}-d_{11}\right)-\sqrt{\left(2 c_{20}-d_{11}\right)^{2}+8 d_{30}}}{4}
\end{aligned}
$$

respectively. Then we have two formal solutions $\Psi^{+}(x)=\sum_{n \geq 2}^{\infty} a_{n}^{+} x^{n}$, $\Psi^{-}(x)=\sum_{n \geq 2}^{\infty} a_{n}^{-} x^{n}$ of (1.6), where a_{n}^{+}, a_{n}^{-}are given by X an $\bar{d} Y$. For any κ with $0<\kappa \leq \pi / 2$ and small $\delta>0$, define

$$
\begin{equation*}
D^{*}(\kappa, \delta)=\{x:|\arg x|<\kappa, 0<|x|<\delta\} . \tag{1.10}
\end{equation*}
$$

Further assume $\frac{2 c_{20}+d_{11} \pm \sqrt{\left(2 c_{20}-d_{11}\right)^{2}+8 d_{30}}}{4} \in \mathbb{R}$ and

$$
\begin{equation*}
\frac{2 c_{20}+d_{11}+\sqrt{\left(2 c_{20}-d_{11}\right)^{2}+8 d_{30}}}{4}<0 \tag{2.13}
\end{equation*}
$$

Then there is a constant δ and two solutions $\Psi^{+}(x)$ and $\Psi^{-}(x)$ of (1.6), which are holomorphic and have asymptotic expansions

$$
\begin{equation*}
\Psi^{+}(x) \sim \sum_{n=2}^{\infty} a_{n}^{+} x^{n} \quad \text { and } \quad \Psi^{-}(x) \sim \sum_{n=2}^{\infty} a_{n}^{-} x^{n} \tag{2.14}
\end{equation*}
$$

as $x \rightarrow 0$ through $D^{*}(\kappa, \delta)$.
If $d_{20} \neq 0$, then (1.6) has no analytic solution.
Note that $a_{2}^{+}=g_{0}^{+}, a_{2}^{-}=g_{0}^{-}$. We have the following proposition, analogous to Theorem C.

Proposition 2.5. Suppose $X(x, y)$ and $Y(x, y)$ are defined in 1.5). Assume $d_{20}=0$ and

$$
\begin{equation*}
\left(g_{0}^{-}\left(c_{20}, d_{11}, d_{30}\right)+c_{20}\right) n \neq c_{20}-d_{11}-g_{0}^{-}\left(c_{20}, d_{11}, d_{30}\right) \tag{2.12}
\end{equation*}
$$

for all $n \in \mathbb{N}(n \geq 4)$. Then 1.6 has a formal solution $\Psi^{-}(x)=\sum_{n \geq 2}^{\infty} a_{n}^{-} x^{n}$, where a_{n}^{-}are given by X and Y. Further, assume $\frac{2 c_{20}+d_{11} \pm \sqrt{\left(2 c_{20}-d_{11}\right)^{2}+8 d_{30}}}{4}$ $\in \mathbb{R}$ and

$$
\begin{equation*}
\frac{2 c_{20}+d_{11}-\sqrt{\left(2 c_{20}-d_{11}\right)^{2}+8 d_{30}}}{4}<0 \tag{2.13}
\end{equation*}
$$

Then for any κ with $0<\kappa \leq \pi / 2$, there is a $\delta>0$ and a solution $\Psi^{-}(x)$ of (1.6) which is holomorphic and has an asymptotic expansion

$$
\Psi^{-}(x) \sim \sum_{n=2}^{\infty} a_{n}^{-} x^{n}
$$

as $x \rightarrow 0$ through $D^{*}(\kappa, \delta)$ defined in 1.10$)$.
If $d_{20} \neq 0$, then there is no analytic solution of 1.6 .
2.2. Proof of Theorem 1.1. We first prove (1). From Theorem C, we have formal solutions

$$
\begin{equation*}
\Psi(x)=\sum_{n=2}^{\infty} a_{n} x^{j} \tag{2.15}
\end{equation*}
$$

of (1.6), where $a_{2}=g_{0}^{ \pm}\left(c_{20}, d_{11}, d_{30}\right)$. We write the formal solutions as

$$
\begin{equation*}
\Psi_{s}(x)=\sum_{n=2}^{\infty} a_{n(s)} x^{n} \quad(s=1,2) \tag{2.16}
\end{equation*}
$$

where $a_{2(1)}=g_{0}^{+}\left(c_{20}, d_{11}, d_{30}\right), a_{2(2)}=g_{0}^{-}\left(c_{20}, d_{11}, d_{30}\right)$.

On the other hand putting $w_{1}(t)=-\frac{1}{A_{1} x(t)}$ and $w_{2}(t)=-\frac{1}{A_{2} x(t)}$ in 1.8 , we have

$$
\begin{align*}
w_{s}(t+1) & =-\frac{1}{A_{s} x(t+1)} \tag{2.17}\\
& =-\frac{1}{A_{s} X\left(x(t), \Psi_{s}(x(t))\right)}=-\frac{1}{A_{s} X\left(-\frac{1}{A_{s} w(t)}, \Psi_{s}\left(-\frac{1}{A_{s} w(t)}\right)\right)}
\end{align*}
$$

for $s=1,2$. From (1.5), we have

$$
\begin{aligned}
X\left(x(t), \Psi_{s}(x(t))\right) & =x(t)+\Psi_{s}(x(t))+\sum_{i+j \geq 2, i \geq 1} c_{i j} x(t)^{i}\left(\Psi_{s}(x(t))\right)^{j} \\
& =x(t)\left\{1+\sum_{\substack{(i+j \geq 2, i \geq 1) \\
\text { or }(i=0, j=1)}} c_{i j} x(t)^{i-1}\left(\Psi_{s}(x(t))\right)^{j}\right\} .
\end{aligned}
$$

where $c_{01}=1$. Thus

$$
\begin{aligned}
\frac{1}{X\left(x(t), \Psi_{s}(x(t))\right)} & =\frac{1}{x(t)\left\{1-\sum_{\substack{(i+j \geq 2, i \geq 1) \\
\text { or }(i=0, j=1)}}-c_{i j} x(t)^{i-1}\left(\Psi_{s}(x(t))\right)^{j}\right\}} \\
& =\frac{1}{x(t)}\left[1+\sum_{k=1}^{\infty}\left(\sum_{\substack{(i+j \geq 2, i \geq 1) \\
\text { or }(i=0, j=1)}}-c_{i j} x(t)^{i-1}\left(\Psi_{s}(x(t))\right)^{j}\right)^{k}\right] .
\end{aligned}
$$

Since $w_{s}(t)=-\frac{1}{A_{s} x(t)}(s=1,2)$, we have

$$
\begin{aligned}
& \frac{1}{X\left(x(t), \Psi_{s}(x(t))\right)} \\
& =-A_{s} w_{s}(t)\left[1+\sum_{\substack{k=1}}^{\infty}\left(\sum_{\substack{(i+j \geq 2, i \geq 1) \\
\text { or }(i=0, j=1)}}-c_{i j}\left(-\frac{1}{A_{s} w_{s}(t)}\right)^{i-1}\left(\Psi_{s}\left(-\frac{1}{A_{s} w_{s}(t)}\right)\right)^{j}\right)^{k}\right] .
\end{aligned}
$$

Since $\Psi_{s}(x)$ are formal solutions of 1.6 such that

$$
\Psi_{s}(x)=\Psi_{s}\left(-\frac{1}{A_{s} w_{s}}\right)=\sum_{n=2}^{\infty} a_{n(s)}\left(-\frac{1}{A_{s} w_{s}}\right)^{n} \quad(s=1,2)
$$

we have

$$
\begin{equation*}
-\frac{1}{A_{s} X\left(x, \Psi_{s}(x)\right)}=w_{s}\left[1+\frac{a_{2(s)}+c_{20}}{A_{s}} w_{s}^{-1}+\sum_{k \geq 2} \tilde{c}_{k(s)}\left(w_{s}\right)^{-k}\right] \tag{2.18}
\end{equation*}
$$

where $\tilde{c}_{k(s)}$ are determined by $c_{i j}$ and $a_{k}(s)(i+j \geq 2, i \geq 1, k \geq 2, s=1,2)$. From (2.18) and the definition of A_{s}, we have $a_{2(s)}+c_{20}=A_{s}$. Therefore
we can write 2.17 in the form

$$
\begin{equation*}
w_{s}(t+1)=\tilde{F}_{s}\left(w_{s}(t)\right)=w_{s}(t)\left\{1+w_{s}(t)^{-1}+\sum_{k \geq 2} \tilde{c}_{k(s)}\left(w_{s}(t)\right)^{-k}\right\} \tag{2.19}
\end{equation*}
$$

On the other hand, putting $\lambda=1$ and $m=1$ in 2.1), i.e. $\theta=\arg [\lambda]=$ $\arg [1]=0$, then making use of Proposition 2.3, we have the following formal solutions of the first order difference equation 2.19 :

$$
\begin{equation*}
w_{s}(t)=t\left(1+\sum_{j+k \geq 1} \hat{q}_{j k(s)} t^{-j}\left(\frac{\log t}{t}\right)^{k}\right) \quad(s=1,2) \tag{2.20}
\end{equation*}
$$

where $\hat{q}_{j k(s)}$ are determined by \tilde{F}_{s} in 2.19. From 2.18, 2.19 and 1.6, \tilde{F}_{s} is defined by X and Y. Hence $\hat{q}_{j k(s)}$ are determined by X and Y.

Since $x(t)=-\frac{1}{A_{s} w_{s}(t)}$, we have formal solutions $x(t)$ of 1.2 such that

$$
\begin{equation*}
x(t)=-\frac{1}{A_{s} t}\left(1+\sum_{j+k \geq 1} \hat{q}_{j k(s)} t^{-j}\left(\frac{\log t}{t}\right)^{k}\right)^{-1} \quad(s=1,2) \tag{2.21}
\end{equation*}
$$

From the relation of (1.2) and (1.8) to (1.6), we have proved (1) of Theorem 1.1.

Next we will prove (2) of Theorem 1.1, that is, the existence of solutions $x^{+}(t)$ and $x^{-}(t)$ of 1.2 . We suppose that $R_{0}>R$ and $\kappa_{0}<\pi / 4-\epsilon$. Since $\theta=0$, we have

$$
\begin{equation*}
D_{1}\left(\kappa_{0}, R_{0}\right) \subset D(\epsilon, R) . \tag{2.22}
\end{equation*}
$$

For $x \in D^{*}(\kappa, \delta)$, making use of Theorem C, we have solutions $\Psi_{(s)}(x)$ $(s=1,2)$ of 1.6 which are holomorphic and can be expanded asymptotically in $D^{*}(\kappa, \delta)$ such that

$$
\Psi_{(s)}(x) \sim \sum_{j=k}^{\infty} a_{j(s)} x^{j} \quad(s=1,2) .
$$

From the assumption $R_{1}=\max \left(R_{0}, 2 /\left(\left|A_{2}\right| \delta\right)\right)$ in Theorem 1.1, making use of Proposition 2.4, we have solutions $w_{s}(t)(s=1,2)$ of 2.19 which have an asymptotic expansion

$$
w_{s}(t)=t\left(1+b_{s}\left(t, \frac{\log t}{t}\right)\right)
$$

in $t \in D_{1}\left(\kappa_{0}, R_{1}\right)$, where

$$
b_{s}\left(t, \frac{\log t}{t}\right) \sim t\left(1+\sum_{j+k \geq 1} \hat{q}_{j k(s)} t^{-j}\left(\frac{\log t}{t}\right)^{k}\right) \quad(s=1,2)
$$

Thus we have solutions $x_{s}(t)$ of 1.2 which have asymptotic expansions

$$
x_{s}(t)=-\frac{1}{A_{s} t}\left(1+b_{s}\left(t, \frac{\log t}{t}\right)\right)^{-1} \quad(s=1,2)
$$

there. First we take a small $\delta>0$. For sufficiently large R, since $R_{1} \geq R_{0}$ $>R$, we have

$$
\begin{gather*}
\left|\frac{1}{A_{1} t}\right|\left|1+b_{1}\left(t, \frac{\log t}{t}\right)\right|^{-1}<\frac{1}{\left|A_{1}\right| R}(1+1)<\frac{1}{\left|A_{2}\right| R}(1+1)<\delta, \\
\left|\frac{1}{A_{2} t}\right|\left|1+b_{2}\left(t, \frac{\log t}{t}\right)\right|^{-1}<\frac{1}{\left|A_{2}\right| R}(1+1)<\delta \tag{2.23}
\end{gather*}
$$

for $t \in D_{1}\left(\kappa_{0}, R_{1}\right)$. Since $A_{1} \leq A_{2}<0$ by (1.17),

$$
\begin{aligned}
& \arg \left[-\frac{1}{A_{1} t}\left(1+b_{1}\left(t, \frac{\log t}{t}\right)\right)^{-1}\right]=-\arg [t]-\arg \left[1+b_{1}\left(t, \frac{\log t}{t}\right)\right] \\
& \arg \left[-\frac{1}{A_{2} t}\left(1+b_{2}\left(t, \frac{\log t}{t}\right)\right)^{-1}\right]=-\arg [t]-\arg \left[1+b_{2}\left(t, \frac{\log t}{t}\right)\right]
\end{aligned}
$$

For sufficiently large R_{1}, we then have

$$
\left|\arg \left[1+b_{1}\left(t, \frac{\log t}{t}\right)\right]\right|,\left|\arg \left[1+b_{2}\left(t, \frac{\log t}{t}\right)\right]\right|<\kappa_{0} \quad \text { for } t \in D_{1}\left(\kappa_{0}, R_{1}\right)
$$

Hence

$$
-\kappa_{0}-\kappa_{0} \leq \arg \left[-\frac{1}{A_{s} t}\left(1+b_{s}\left(t, \frac{\log t}{t}\right)\right)^{-1}\right] \leq \kappa_{0}+\kappa_{0} \quad(s=1,2)
$$

From the assumption $\kappa=2 \kappa_{0}$, we have

$$
\begin{align*}
\left|\arg \left[-\frac{1}{A_{s} t}\left(1+b_{s}\left(t, \frac{\log t}{t}\right)\right)^{-1}\right]\right| & <\kappa \leq \frac{\pi}{2} \tag{2.24}\\
& \text { for } t \in D_{1}\left(\kappa_{0}, R_{1}\right) \quad(s=1,2)
\end{align*}
$$

From 2.23 and 2.24 , we obtain

$$
x_{1}(t)=-\frac{1}{A_{1} t}\left(1+b_{1}\left(t, \frac{\log t}{t}\right)\right)^{-1}, x_{2}(t)=-\frac{1}{A_{2} t}\left(1+b_{1}\left(t, \frac{\log t}{t}\right)\right)^{-1}
$$

such that $x_{s}(t) \in D^{*}(\kappa, \delta)$ for some $\kappa(0<\kappa \leq \pi / 2)$. Hence we have $\Psi_{(s)}(x(t))(s=1,2)$ which satisfies the equation 1.6$)$.

Therefore from existence of solutions $\Psi_{(s)}(s=1,2)$ of 1.6$)$ and Proposition 2.4, we have holomorphic solutions $w_{s}(t)$ of the first order difference equation (2.19) for $t \in D_{1}\left(\kappa_{0}, R_{1}\right)$. Hence we obtain solutions $x_{s}(t)$ of 1.2$)$ for t there, which satisfy the following conditions:
(i) $x_{s}(t)$ are holomorphic and $x_{s}(t) \in D^{*}(\kappa, \delta)$ for $t \in D_{1}\left(\kappa_{0}, R_{1}\right), s=$ 1,2 ,
(ii) $x_{s}(t)(s=1,2)$ are expressible in the form

$$
\begin{equation*}
x_{s}(t)=-\frac{1}{A_{s} t}\left(1+b_{s}\left(t, \frac{\log t}{t}\right)\right)^{-1} . \tag{2.25}
\end{equation*}
$$

Here $b_{s}(t,(\log t) / t)$ has an asymptotic expansion

$$
b_{s}\left(t, \frac{\log t}{t}\right) \sim \sum_{j+k \geq 1} \hat{q}_{j k(s)} t^{-j}\left(\frac{\log t}{t}\right)^{k}
$$

as $t \rightarrow \infty$ through $D_{1}\left(\kappa_{0}, R_{1}\right)$.
Finally, we have a solution $(u(t), v(t))$ of (1.1) by the transformation

$$
\binom{u(t)}{v(t)}=P\binom{x_{1}(t)}{\Psi_{(s)}\left(x_{1}(t)\right)} \text { and } P\binom{x_{2}(t)}{\Psi_{(s)}\left(x_{2}(t)\right)} .
$$

From Proposition 2.5 and Theorem 1.1, we obtain
Lemma 2.6. Suppose $X(x, y)$ and $Y(x, y)$ are expanded in the forms 1.5) such that $X_{1}(x, y) \not \equiv 0$ or $Y_{1}(x, y) \not \equiv 0$. Define $A_{2}=g_{0}^{+}\left(c_{20}, d_{11}, d_{30}\right)$ $+c_{20}, A_{1}=g_{0}^{-}\left(c_{20}, d_{11}, d_{30}\right)+c_{20}\left(A_{1} \leq A_{2}\right)$.
(1) Suppose $d_{20}=0$ and

$$
\begin{equation*}
\left(g_{0}^{-}\left(c_{20}, d_{11}, d_{30}\right)+c_{20}\right) n \neq c_{20}-d_{11}-g_{0}^{-}\left(c_{20}, d_{11}, d_{30}\right) \tag{2.26}
\end{equation*}
$$

for all $n \in \mathbb{N}(n \geq 4)$. Then we have a formal solution $x(t)$ of (1.2) of the form

$$
\begin{equation*}
-\frac{1}{A_{1} t}\left(1+\sum_{j+k \geq 1} \hat{q}_{j k} t^{-j}\left(\frac{\log t}{t}\right)^{k}\right)^{-1}, \tag{2.27}
\end{equation*}
$$

where $\hat{q}_{j k}$ are constants determined by X and Y.
(2) Further suppose $R_{1}=\max \left(R_{0}, 2 /\left(\left|A_{1}\right| \delta\right)\right)$, and assume

$$
\begin{equation*}
A_{1}<0 \tag{2.28}
\end{equation*}
$$

Then there is a solution $x_{1}(t)$ of (1.2) such that
(i) $x_{1}(t)$ is holomorphic and $x_{1}(t) \in D^{*}(\kappa, \delta)$ for $t \in D_{1}\left(\kappa_{0}, R_{1}\right)$,
(ii) $x_{1}(t)$ is expressible in the form

$$
\begin{equation*}
x_{1}(t)=-\frac{1}{A_{1} t}\left(1+b_{1}\left(t, \frac{\log t}{t}\right)\right)^{-1} \tag{2.29}
\end{equation*}
$$

where $b_{1}(t,(\log t) / t)$ has an asymptotic expansion

$$
b_{1}\left(t, \frac{\log t}{t}\right) \sim \sum_{j+k \geq 1} \hat{q}_{j k(1)} t^{-j}\left(\frac{\log t}{t}\right)^{k}
$$

as $t \rightarrow \infty$ through $D_{1}\left(\kappa_{0}, R_{1}\right)$.
3. An application. Consider the following population model:

$$
\begin{equation*}
u(t+2)=\alpha u(t+1)+\beta \frac{u(t+1)-\alpha u(t)}{\alpha u(t)} \tag{P}
\end{equation*}
$$

where $\alpha=1+r$ and β are constants. This model was proposed by Prof. D. S. Dendrinos [D. Here r is the net (births minus deaths) endogenous population (stock) growth rate. The second term on the right hand side is a function depicting net in-migration (immigration) at $t+1$, which should be considered as a "momentum" to grow from t to $t+1$. We assume that α and β are constants such that $\alpha>0(r>-1)$ and $\beta>0$ in (P).

Let

$$
u(t+2)=u_{1}(t+2)+u_{2}(t+2)
$$

where $u_{1}(t+2)=\alpha u(t+1), u_{2}(t+2)=\beta \frac{u(t+1)-\alpha u(t)}{\alpha u(t)}$. Then $u_{1}(t+2)$ is a term for endogenous population growth rate from $t+1$ to $t+2$, and $u_{2}(t+2)$ is due to net in-migration (immigration) rate. Indeed we can write

$$
\begin{aligned}
& u_{1}(t+2)=\alpha u(t+1)=\alpha\left\{u_{1}(t+1)+u_{2}(t+1)\right\} \\
& u_{2}(t+2)=\beta \frac{u(t+1)-\alpha u(t)}{\alpha u(t)}=\beta \frac{u(t+1)-u_{1}(t+1)}{u_{1}(t+1)}=\beta \frac{u_{2}(t+1)}{u_{1}(t+1)}
\end{aligned}
$$

and we see that $u_{1}(t+1)$ is the endogenous population growth rate from t to $t+1$, and $u_{2}(t+1)$ is due to net in-migration (immigration) ratio at $t+1$.

We may write (P) as

$$
u(t+2)-\alpha u(t+1)=\frac{c}{u(t)}\{u(t+1)-\alpha u(t)\}, \quad c=\frac{\beta}{\alpha}
$$

When $\alpha \neq 1$, (P) admits the unique equilibrium value $c=\beta / \alpha$, and we have eigenvalues λ_{1} and λ_{2} of this equation such that $\left|\lambda_{1}\right| \neq 1$ and $\left|\lambda_{2}\right| \neq 1$. Therefore we can have general analytic solutions such that $u(t+n) \rightarrow c$ as $n \rightarrow \infty(n \in \mathbb{N})$, making use of Theorems of [S6].

If $\alpha=1$, then any value can be an equilibrium point of (P). Suppose the equation (P) has a solution $u(t)$ such that $u(t+n) \rightarrow u_{0}>0$ as $n \rightarrow \infty$. From [S4], we have the following three cases.

1) $u\left(t_{0}+n\right) \downarrow u_{0} \geq c$ as $n \rightarrow \infty$,
2) $u\left(t_{0}+n\right) \uparrow u_{0}>c$ as $n \rightarrow \infty$,
3) there is n_{0} such that $u\left(t_{0}+n_{0}\right) \leq 0$ (extermination).

However in [S4] we have not been able to prove the existence of a solution of (P) under this condition. In this paper, we will obtain a solution of (P) by Lemma 2.6 for the case $\alpha=1$.

Putting $u(t)=v(t)+\beta / \alpha$, we have

$$
\begin{aligned}
v(t+2) & +\frac{\beta}{\alpha} \\
= & \alpha v(t+1)+\beta+\frac{v(t+1)-\alpha v(t)+\frac{\beta}{\alpha}-\beta}{1+\frac{\alpha}{\beta} v(t)} \\
= & \alpha v(t+1)+\beta \\
& +\left\{v(t+1)-\alpha v(t)+\frac{\beta}{\alpha}-\beta\right\} \\
& \times\left\{1-\frac{\alpha}{\beta} v(t)+\frac{\alpha^{2}}{\beta^{2}} v(t)^{2}-\frac{\alpha^{3}}{\beta^{3}} v(t)^{3}+\frac{\alpha^{4}}{\beta^{4}} v(t)^{4}-\cdots\right\} \\
= & (1+\alpha) v(t+1)+(-\alpha-1+\alpha) v(t)+\beta+\frac{\beta}{\alpha}-\beta+F(v(t), v(t+1)),
\end{aligned}
$$

i.e.,

$$
v(t+2)=(1+\alpha) v(t+1)-v(t)+F(v(t), v(t+1))
$$

where

$$
\begin{align*}
F(v(t), v(t+1))= & -\frac{\alpha}{\beta} v(t) v(t+1)+\frac{\alpha^{2}}{\beta} v(t)^{2} \tag{3.1}\\
& +\left(v(t+1)-\alpha v(t)+\frac{\beta}{\alpha}-\beta\right) \sum_{i=2}^{\infty}\left(-\frac{\alpha}{\beta}\right)^{i} v(t)^{i}
\end{align*}
$$

Next put $v(t+1)=\xi(t), v(t)=\eta(t)$. Then

$$
\binom{\xi(t+1)}{\eta(t+1)}=\left(\begin{array}{cc}
\alpha+1 & -1 \\
1 & 0
\end{array}\right)\binom{\xi(t)}{\eta(t)}+\binom{F(\eta(t), \xi(t))}{0} .
$$

Set

$$
M=\left(\begin{array}{cc}
\alpha+1 & -1 \\
1 & 0
\end{array}\right) .
$$

When $\alpha=1$, the eigenvalues λ_{1} and λ_{2} of M are $\lambda_{1}=\lambda_{2}=1$. Further put $P=\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right)$ and $\binom{\xi}{\eta}=P\binom{x}{y}$. Then we obtain the difference equation

$$
\begin{align*}
& \binom{x(t+1)}{y(t+1)} \tag{3.2}\\
& \quad=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{x(t)}{y(t)}+P^{-1}\binom{F(x(t)+y(t), x(t)+2 y(t))}{0} .
\end{align*}
$$

Since

$$
P^{-1}\binom{F(x(t)+y(t), x(t)+2 y(t))}{0}=\binom{-F(x(t)+y(t), x(t)+2 y(t))}{F(x(t)+y(t), x(t)+2 y(t))},
$$

we can write the equations 3.2 as follows:

$$
\left\{\begin{array}{l}
x(t+1)=X(x(t), y(t)) \tag{1.3}\\
y(t+1)=Y(x(t), y(t))
\end{array}\right.
$$

where

$$
\left\{\begin{align*}
X(x, y) & =x+y-F(x+y, x+2 y) \\
& =x+\left(y+\sum_{i+j \geq 2} c_{i j} x^{i} y^{j}\right)=x+X_{1}(x, y) \\
Y(x, y) & =y+F(x+y, x+2 y) \\
& =y+\left(\sum_{i+j \geq 2} d_{i j} x^{i} y^{j}\right)=y+Y_{1}(x, y)
\end{align*}\right.
$$

with $d_{i j}=-c_{i j}$.
From the definition (3.1) of F, when $\alpha=1$, we have

$$
\begin{equation*}
F(\eta, \xi)=\frac{1}{\beta} \eta^{2}-\frac{1}{\beta} \eta \xi-\frac{1}{\beta^{2}} \eta^{3}+\frac{1}{\beta^{2}} \eta^{2} \xi+\sum_{i \geq 3} \frac{1}{\beta^{i}}(-1)^{i} \eta^{i}(\xi-\eta) \tag{3.3}
\end{equation*}
$$

Thus

$$
\begin{equation*}
F(x+y, x+2 y)=-\frac{1}{\beta}\left(x y+y^{2}\right)+\frac{1}{\beta^{2}}\left(x^{2} y+2 x y^{2}+y^{3}\right)+\sum_{i+j \geq 4, j \geq 1} \gamma_{i j} x^{i} y^{j} \tag{3.4}
\end{equation*}
$$

where $\gamma_{i j}=\gamma_{i j}(\beta)$ are constants. From (3.4), we have $c_{20}=d_{20}=0, c_{n 0}=$ $d_{n 0}=0(n \geq 3), d_{11}=-1 / \beta<0, d_{02}=-1 / \beta<0, d_{21}=1 / \beta^{2}$. Thus

$$
\begin{aligned}
A_{1}=g_{0}^{-}\left(c_{20}, d_{11}, d_{30}\right)+c_{20} & =\frac{-\left(2 c_{20}-d_{11}\right)-\sqrt{\left(2 c_{20}-d_{11}\right)^{2}+8 d_{30}}}{4}+c_{20} \\
& =\frac{-(0+1 / \beta)-\sqrt{(0+1 / \beta)^{2}+0}}{4}+0 \\
& =-\frac{1}{2 \beta}<0
\end{aligned}
$$

$$
A_{2}=g_{0}^{+}\left(c_{20}, d_{11}, d_{30}\right)+c_{20}=\frac{-\left(2 c_{20}-d_{11}\right)+\sqrt{\left(2 c_{20}-d_{11}\right)^{2}+8 d_{30}}}{4}+c_{20}
$$

$$
=\frac{-(0+1 / \beta)+\sqrt{(0+1 / \beta)^{2}+0}}{4}+0=0
$$

$$
c_{20}-d_{11}-g_{0}^{-}\left(c_{20}, d_{11}, d_{30}\right)=\frac{3}{2 \beta}>0
$$

Here we cannot have $A_{1} \leq A_{2}<0$, but we have $A_{1}<A_{2}=0$, which is the condition 2.28 in Lemma 2.6. Thus putting $a_{2}=g_{0}^{-}\left(c_{20}, d_{11}, d_{30}\right)$, we have $a_{2}+c_{20}<0$. Further

$$
\left(g_{0}^{-}\left(c_{20}, d_{11}, d_{30}\right)+c_{20}\right) n \neq c_{20}-d_{11}-g_{0}^{-}\left(c_{20}, d_{11}, d_{30}\right)
$$

for all $n \in \mathbb{N}$. By Proposition 2.5, the functional equation (1.6) with X and Y defined by (1.2') has a formal solution $\Psi^{-}(x)=\sum_{n \geq 2}^{\infty} a_{n}^{-} x^{n}$, where a_{n}^{-} are given by X and Y. Here the function F is defined by (3.3). Further, for any κ with $0<\kappa \leq \pi / 2$, there are a $\delta>0$ and a solution $\Psi^{-}(x)$ of (1.6), which is holomorphic and can be expanded asymptotically as

$$
\Psi^{-}(x) \sim \sum_{n=2}^{\infty} a_{n}^{-} x^{n}
$$

in the domain $D^{*}(\kappa, \delta)$ defined in 1.10$)$.
Making use of Lemma 2.6, we have a formal solution $x(t)$ of (3.2),

$$
\begin{align*}
&-\frac{1}{A_{1} t}\left(1+\sum_{j+k \geq 1} \hat{q}_{j k} t^{-j}\left(\frac{\log t}{t}\right)^{k}\right)^{-1} \tag{3.5}\\
&=\frac{2 \beta}{t}\left(1+\sum_{j+k \geq 1} \hat{q}_{j k} t^{-j}\left(\frac{\log t}{t}\right)^{k}\right)^{-1}
\end{align*}
$$

where $\hat{q}_{j k}$ are constants determined by X and Y in (1.2'). Further suppose $R_{1}=\max \left(R_{0}, 2 /\left(\left|A_{1}\right| \delta\right)\right)$. Since $A_{1}=-1 /(2 \beta)<A_{2}=0$, there is a solution $x(t)$ of (3.2) such that
(i) $x(t)$ is holomorphic and $x(t) \in D^{*}(\kappa, \delta)$ for $t \in D_{1}\left(\kappa_{0}, R_{1}\right)$,
(ii) $x(t)$ is expressible in the form

$$
\begin{equation*}
x(t)=-\frac{1}{A_{1} t}\left(1+b\left(t, \frac{\log t}{t}\right)\right)^{-1}=\frac{2 \beta}{t}\left(1+b\left(t, \frac{\log t}{t}\right)\right)^{-1} \tag{3.6}
\end{equation*}
$$

where $b(t,(\log t) / t)$ has an asymptotic expansion

$$
b\left(t, \frac{\log t}{t}\right) \sim \sum_{j+k \geq 1} \hat{q}_{j k(1)} t^{-j}\left(\frac{\log t}{t}\right)^{k}
$$

as $t \rightarrow \infty$ through $D_{1}\left(\kappa_{0}, R_{1}\right)$.
By the definition (1.7), we have $y(t)=\Psi(x(t))$. Since

$$
\binom{u(t+1)-\beta / \alpha}{u(t)-\beta / \alpha}=\binom{v(t+1)}{v(t)}=\binom{\xi}{\eta}=P\binom{x}{y}=\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)\binom{x}{y}
$$

we have a solution $u(t)$ of the population model (P) such that

$$
u(t)=x(t)+y(t)+\frac{\beta}{\alpha}=x(t)+\Psi(x(t))+\frac{\beta}{\alpha},
$$

where $x(t)$ is given in the equation (3.6) as $t \rightarrow \infty$ through $D_{1}\left(\kappa_{0}, R_{1}\right)$.
Acknowledgements. The author would like to thank his supervisor, the late Professor Niro Yanagihara, for his many suggestions.

References

[D] D. S. Dendrinos, private communication.
[K] T. Kimura, On the iteration of analytic functions, Funkcial. Ekvac. 14 (1971), 197238.
[S1] M. Suzuki, On some difference equations in an economic model, Math. Japon. 43 (1996), 129-134.
[S2] -, Holomorphic solutions of some system of n functional equations with n variables related to difference systems, Aequationes Math. 57 (1999), 21-36.
[S3] -, Holomorphic solutions of some functional equations II, Southeast Asian Bull. Math. 24 (2000), 85-94.
[S4] -, Difference equation for a population model, Discrete Dynam. Nature Soc. 5 (2000), 9-18.
[S5] -, Holomorphic solutions of a functional equation and their applications to nonlinear second order difference equations, Aequationes Math. 74 (2007), 7-25.
[S6] -, Analytic general solutions of nonlinear difference equations, Ann. Mat. Pura Appl. 187 (2008), 353-368.
[S7] -, Analytic solutions of second order nonlinear difference equations all of whose eigenvalues are 1, Rend. Sem. Mat. Univ. Padova 122 (2009), 13-25.
[S8] -, Holomorphic solutions of some functional equation which has a relation with nonlinear difference systems, Results Math. 58 (2010), 17-35.
[Y] N. Yanagihara, Meromorphic solutions of some difference equations, Funkcial. Ekvac. 23 (1980), 309-326.

Mami Suzuki
Department of Mathematics
College of Liberal Arts
J. F. Oberlin University

3758 Tokiwa-cho, Machida-City
Tokyo, 194-0294, Japan
E-mail: m-suzuki@obirin.ac.jp

Received 12.10.2010
and in final form 16.1.2011

[^0]: 2010 Mathematics Subject Classification: Primary 30D05, 39B32; Secondary 39A10, 39A45.
 Key words and phrases: analytic solutions, functional equations, nonlinear difference equations.

