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Permanence and global exponential stability of
Nicholson-type delay systems

by Zhonghuai Wu (Yueyang), Jianying Shao (Jiaxing),
Mingquan Yang (Jiaxing) and Wei Gao (Jiaxing)

Abstract. We present several results on permanence and global exponential stabil-
ity of Nicholson-type delay systems, which correct and generalize some recent results of
Berezansky, Idels and Troib [Nonlinear Anal. Real World Appl. 12 (2011), 436–445].

1. Introduction. Recently, to describe the models of Marine Protected
Areas and B-cell Chronic Lymphocytic Leukemia dynamics that belong to
the class of Nicholson-type delay differential systems, L. Berezansky, L. Idels
and L. Troib [BIT] considered the delay systems

(1)

{
x′1(t) = −a1x1(t) + b1x2(t) + c1x1(t− τ)e−x1(t−τ),

x′2(t) = −a2x2(t) + b2x1(t) + c2x2(t− τ)e−x2(t−τ),

with initial conditions

(2) xi(s) = ϕi(s), s ∈ [−τ, 0], ϕi(0) > 0,

where ϕi ∈ C([−τ, 0], [0,+∞)), ai, bi, ci and τ are nonnegative constants,
i = 1, 2.

In [BIT], L. Berezansky, L. Idels and L. Troib claim the following results:

Theorem A (see Theorem 2.3 in [BIT]). Suppose c1 > a1 > 0 and
c2 > a2 > 0. Then the solution of system (1)–(2) is bounded from below by
a positive constant, and moreover

lim inf
t→+∞

x1(t) ≥ c21
ea2

1

e
− c1

a1e , lim inf
t→+∞

x2(t) ≥ c22
ea2

2

e
− c2

a2e .

Theorem B (see Theorem 4.1 in [BIT]). Suppose

(3) max{c1, c2} < min{a1 − b1, a2 − b2}.
Then the trivial solution of system (1)–(2) is globally asymptotically stable.
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Unfortunately, Theorem A is incorrect, as can be seen from the following
example.

Example. Consider the system

(4)

{
x′1(t) = −ax1(t) + cx1(t− τ)e−x1(t−τ),

x′2(t) = −ax2(t) + cx2(t− τ)e−x2(t−τ),

where c > a > 0 and c/a ∈ (1, 2). Obviously, (4) is a special case of (1) with
a1 = a2, c1 = c2 and b1 = b2 = 0.

Consider the trivial solution (x1(t), x2(t)) = (ln c
a , ln

c
a). Theorem A im-

plies

lim inf
t→+∞

x1(t) = lim inf
t→+∞

x2(t) = ln
c

a
≥ c2

ea2
e−

c
ae >

1
e
e−

2
e .

Letting c/a→ 1+, we obtain

0 ≥ 1
e
e−

2
e ,

which is a contradiction.
Since Theorem A is incorrect, the proof of Theorem 2.4 in [BIT] has

to be amended; this is done in Section 2. Moreover, as shown in Section 3,
the global asymptotical stability of Theorem B can be replaced by global
exponential stability, and the condition (3) can be relaxed to ρ(D) < 1,
where ρ(D) denotes the spectral radius of

D =

(
c1/a1 b1/a1

b2/a2 c2/a2

)
.

The main purpose of this paper is to employ a novel proof to establish
some criteria to guarantee the permanence and global exponential stability
of system (1)–(2), and our conditions are weak.

2. Permanence

Definition 2.1. System (1)–(2) is said to be permanent if there are
positive constants mi and Mi such that

mi ≤ lim inf
t→+∞

xi(t) ≤ lim sup
t→+∞

xi(t) ≤Mi for all i = 1, 2.

Theorem 2.1 (see Theorem 2.4 in [BIT]). System (1)–(2) is permanent
if

a1a2 − b1b2 > 0, c1 > a1 > 0 and c2 > a2 > 0.

Proof. By Theorem 2.2 in [BIT], we need only prove that there exist
positive constants m1 and m2 such that

(5) lim inf
t→+∞

x1(t) ≥ m1, lim inf
t→+∞

x2(t) ≥ m2.



Nicholson-type delay systems 207

From Theorem 2.1 in [BIT] and the first equation of (1), we have

(6) x′1(t) ≥ −a1x1(t) + c1x1(t− τ)e−x1(t−τ), x1(t) > 0, t ∈ [0,+∞).

We next prove that there exists a positive constant m1 such that

(7) lim inf
t→+∞

x1(t) ≥ m1.

Suppose, for the sake of contradiction, lim inft→+∞ x1(t) = 0. For each t ≥ 0,
we define

θ(t) = max{ξ : ξ ≤ t, x1(ξ) = min
0≤s≤t

x1(s)}.

Observe that θ(t)→ +∞ as t→ +∞, and

(8) lim
t→+∞

x1(θ(t)) = 0.

However, x1(θ(t)) = min0≤s≤t x1(s), and so x′1(θ(t)) ≤ 0 whenever θ(t) > 0.
According to (6), we have

0 ≥ x′1(θ(t)) ≥ −a1x1(θ(t)) + c1x1(θ(t)− τ)e−x1(θ(t)−τ),

and consequently

(9) a1x1(θ(t)) ≥ c1x1(θ(t)− τ)e−x1(θ(t)−τ) whenever θ(t) > 0.

This together with (8) implies that

(10) lim
t→+∞

x1(θ(t)− τ) = 0.

Thus, we get
(11)
a1

c1
≥ x1(θ(t)− τ)e−x1(θ(t)−τ)

x1(θ(t))
≥ x1(θ(t)− τ)e−x1(θ(t)−τ)

x1(θ(t)− τ)
= e−x1(θ(t)−τ)

whenever θ(t) > τ.

Letting t→ +∞, (8), (10) and (11) imply that
a1

c1
≥ 1,

which contradicts the assumption that c1 > a1 > 0. Hence, (7) holds. The
second inequality of (5) can be proven similarly. This completes the proof
of Theorem 2.1.

3. Global exponential stability. In this section, for a matrix A =
(aij)n×n, AT denotes the transpose of A, A−1 denotes the inverse of A, and
ρ(A) denotes the spectral radius of A. For a matrix or vector A, the inequal-
ity A ≥ 0 means that all entries of A are non-negative; A > 0 is defined
similarly. For matrices or vectors A and B, A ≥ B (resp. A > B) means
that A−B ≥ 0 (resp. A−B > 0).
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Definition 3.1. A real non-singular n × n matrix K = (kij) is said to
be an M -matrix if kij ≤ 0 for all i, j = 1, 2, . . . , n, i 6= j, and K−1 ≥ 0.

Lemma 3.1 (see [BP, HJ, L]). Let K = (kij)n×n with kij ≤ 0, i, j =
1, . . . , n, i 6= j. Then the following statements are equivalent.

(1) K is an M -matrix.
(2) There exists a vector η = (η1, . . . , ηn) > (0, . . . , 0) such that ηK > 0.
(3) There exists a vector ξ=(ξ1, . . . , ξn)T >(0, . . . , 0)T such that Kξ>0.

Lemma 3.2 (see [BP, HJ, L]). Let A≥0 be an n×n matrix and ρ(A)<1.
Then (En −A)−1 ≥ 0, where En denotes the identity matrix of size n.

Theorem 3.1. Suppose

ρ(D) < 1, D =

(
c1/a1 b1/a1

b2/a2 c2/a2

)
.

Then the trivial solution of system (1)–(2) is globally exponentially stable.

Proof. Since ρ(D) < 1, by Lemma 3.2, E2−D is anM -matrix. Therefore,
by Lemma 3.1, there exists a vector ξ=(ξ1, ξ2)T >0 such that (E2−D)ξ>0.
Then

(12) − a1ξ1 + ξ1c1 + ξ2b1 < 0,−a2ξ2 + ξ2c2 + ξ1b2 < 0.

Hence, there exists a sufficiently small constant λ > 0 such that

(13) (λ− a1)ξ1 + c1ξ1e
λτ + ξ2b1 < 0, (λ− a2)ξ2 + c2ξ2e

λτ + b2ξ1 < 0.

We consider the Lyapunov functions

(14) V1(t) = x1(t)eλt, V2(t) = x2(t)eλt.

Calculating the derivative of Vi(t) along the solution x(t) = (x1(t), x2(t))
of system (1)–(2) with the initial value ϕ = (ϕ1, ϕ2), from Theorem 2.1 in
[BIT] and the two equations of (1), for t ≥ 0, we have

V ′1(t) = (λ− a1)x1(t)eλt + c1x1(t− τ)e−x1(t−τ)eλt + b1x2(t)eλt(15)

≤ (λ− a1)x1(t)eλt + c1x1(t− τ)eλt + b1x2(t)eλt,

and

V ′2(t) = (λ− a2)x2(t)eλt + c2x2(t− τ)e−x2(t−τ)eλt + b2x1(t)eλt(16)

≤ (λ− a2)x2(t)eλt + c2x2(t− τ)eλt + b2x1(t)eλt.

Let m > 1 be such that

mξi > sup
−τ≤s≤0

ϕi(s) > 0, i = 1, 2.

It follows from (14) that

Vi(t) = xi(t)eλt < mξi for all t ∈ [−τ, 0], i = 1, 2.



Nicholson-type delay systems 209

We claim that

(17) Vi(t) = xi(t)eλt < mξi for all t > 0, i = 1, 2.

Otherwise, one of the following cases must occur.

Case 1: There exists t1 > 0 such that

(18) V1(t1) = mξ1 and Vj(t) < mξj for all t ∈ [−τ, t1), j = 1, 2.

Case 2: There exists t2 > 0 such that

(19) V2(t2) = mξ2 and Vj(t) < mξj for all t ∈ [−τ, t2), j = 1, 2.

If Case 1 holds, then calculating the derivative of V1(t)−mξ1 and making
use of (15), (18) yields

0 ≤ (V1(t1)−mξ1)′ = V ′1(t1)(20)

≤ (λ− a1)x1(t1)eλt1 + c1x1(t1 − τ)eλt1 + b1x2(t1)eλt1

= (λ− a1)x1(t1)eλt1 + c1x1(t1 − τ)eλ(t1−τ)eλτ + b1x2(t1)eλt1

≤ (λ− a1)mξ1 + c1mξ1e
λτ + b1mξ2

= [(λ− a1)ξ1 + c1ξ1e
λτ + b1ξ2]m,

which contradicts the fact that (λ− a1)ξ1 + c1ξ1e
λτ + ξ2b1 < 0. This implies

that (17) holds.
If Case 2 holds, then calculating the derivative of V2(t)−mξ2 and making

use of (16), (19) yields

0 ≤ (V2(t2)−mξ2)′ = V ′2(t2)(21)

≤ (λ− a2)x2(t2)eλt2 + c2x2(t2 − τ)eλt2 + b2x1(t2)eλt2

= (λ− a2)x2(t2)eλt2 + c2x2(t2 − τ)eλ(t2−τ)eλτ + b2x1(t2)eλt2

≤ (λ− a2)mξ2 + c2mξ2e
λτ + b2mξ1

= [(λ− a2)ξ2 + c2ξ2e
λτ + b2ξ1]m,

which contradicts the fact that (λ− a2)ξ2 + c2ξ2e
λτ + b2ξ1 < 0. This implies

that (17) holds.
Therefore, from (17), we obtain

(22) xi(t) < mξie
−λt for all t > 0, i = 1, 2.

It follows that (x1(t), x2(t)) converges exponentially to (0, 0) as t → +∞.
This ends the proof of Theorem 3.1.

Remark 3.1. One can easily show that max{c1, c2}<min{a1−b1, a2−b2}
implies the row norm of the matrix D is less than 1. Therefore, ρ(D) < 1.
Hence, Theorem 4.1 of [BIT] is a special case of our Theorem 3.1. Moreover,
exponential convergence is an important dynamic behavior since it gives a
rate of convergence. This implies that our results improve those in [BIT].
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4. An example

Example 4.1. Consider the Nicholson-type delay system

(23)

{
x′1(t) = −20x1(t) + 10

9 x2(t) + 10x1(t− τ)e−x1(t−τ),

x′2(t) = −40x2(t) + 80x1(t) + 20x2(t− τ)e−x2(t−τ).

Obviously, a1 = 20, b1 = 10/9, c1 = 10, a2 = 40, b2 = 80, c2 = 20, and

D =

(
c1/a1 b1/a1

b2/a2 c2/a2

)
=

(
1/2 1/18
2 1/2

)
.

An easy computation shows that ρ(D) = 5/6 < 1. Thus, from Theorem
3.1, every solution (x1(t), x2(t)) of system (23) with initial conditions (2)
converges exponentially to (0, 0) as t→ +∞.

Remark 4.1. System (23) is a very simple form of Nicholson-type delay
system. One can observe that

max{c1, c2} = 20 > −40 = min{a1 − b1, a2 − b2}.

Therefore, no results in [BIT, Theorem 4.1] can be applied to (23). This
implies that the results in Theorem 3.1 of this paper are essentially new.
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