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Distribution of zeros and shared values of
difference operators

by Jilong Zhang (Beijing), Zongsheng Gao (Beijing) and
Sheng Li (Zhanjiang)

Abstract. We investigate the distribution of zeros and shared values of the difference
operator on meromorphic functions. In particular, we show that if f is a transcendental
meromorphic function of finite order with a small number of poles, c is a non-zero complex
constant such that ∆k

cf 6= 0 for n ≥ 2, and a is a small function with respect to f , then
fn∆k

cf equals a ( 6= 0,∞) at infinitely many points. Uniqueness of difference polynomials
with the same 1-points or fixed points is also proved.

1. Introduction and results. We apply the standard notation of value
distribution theory: m(r, f), N(r, f), T (r, f), N(r, f) and S(r, f). Let f(z)
be meromorphic in the plane and let c be a non-zero complex number. Define
the differences of f(z) by

(1.1) ∆cf(z) = f(z + c)− f(z), ∆k+1
c f(z) = ∆c(∆k

cf(z)), k = 1, 2, . . . .

Value distribution of difference operators (1.1) on meromorphic func-
tions has become a subject of great interest recently. Bergweiler and Langley
[BL] investigated the distribution of zeros of ∆k

cf(z). Halburd and Korhonen
[HK1] established a difference analogue of Nevanlinna’a second main theo-
rem. For other results in this field, the reader is referred to [Z] and [ZK].
An analogue of the logarithmic derivative lemma, developed by Chiang and
Feng [CF] and Halburd and Korhonen [HK2] independently, reads as follows.

Theorem 1.1. Let f be a meromorphic function of finite order and let
c be a non-zero complex constant. Then

m

(
r,
f(z + c)
f(z)

)
+m

(
r,

f(z)
f(z + c)

)
= S(r, f),

where S(r, f) = o (T (r, f)) as r →∞ outside of a possible exceptional set of
finite logarithmic measure.

2010 Mathematics Subject Classification: 39A05, 30D35.
Key words and phrases: meromorphic function, difference, shared value.

DOI: 10.4064/ap102-3-2 [213] c© Instytut Matematyczny PAN, 2011



214 J. L. Zhang et al.

Noting that

∆k
cf(z) =

k∑
j=0

Cjk(−1)k−jf(z + jc),

it is easy to get

(1.2) m

(
r,

∆k
cf

f

)
= S(r, f)

from Theorem 1.1 (see also [HK1, Lemma 2.3]).
Let f be a transcendental meromorphic function and let n be a posi-

tive integer. Hayman [H67] conjectured that fnf ′ assumes every non-zero
value a ∈ C infinitely often. For results concerning this conjecture, see
[BE, H59, M]. Laine and Yang [LY] proved that if f(z) is a transcendental
entire function of finite order and n ≥ 2, then f(z)nf(z + c) assumes every
non-zero value a ∈ C infinitely often. Liu and Yang [LiY] considered the
case of f(z)n∆cf(z). They proved

Theorem 1.2. Let f be a transcendental entire function of finite order
and let c be non-zero complex constant with ∆cf(z) 6≡ 0. Then for n ≥ 2
and any polynomial p(z) 6≡ 0, f(z)n∆cf(z)− p(z) has infinitely many zeros.

We intend to study the distribution of zeros of f(z)n∆k
cf(z)−a(z), where

a(z) ( 6≡ 0,∞) is a small function with respect to f(z), i.e., T (r, a) = S(r, f).
The following theorem is an extension of Theorem 1.2.

Theorem 1.3. Let f(z) be a transcendental meromorphic function of
finite order ρ, and let n, k be positive integers. Suppose that c is a non-zero
complex number such that ∆k

cf(z) 6≡ 0 and a(z) ( 6≡ 0,∞) is a small function
with respect to f(z). If n ≥ 2 and the exponent of convergence of poles of f
satisfies

λ(1/f) := lim sup
r→∞

logN(r, f)
log r

< ρ,

then f(z)n∆k
cf(z)− a(z) has infinitely many zeros, and

N

(
r,

1
fn∆k

cf − a

)
≥ T (r, f) + S(r, f).

The following two counterexamples from [LiY] show that Theorem 1.3
is not true if n = 1 or the restriction on the order of f is removed.

Example 1.4. Let f(z) = z + ez, c = 2kπi. Then

f(z)∆cf − cz = cez 6= 0, ∀z ∈ C.

Example 1.5. Let f(z) = zee
z
, ec = −n. Then f is an entire function

of infinite order and
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f(z)n∆cf − zn(z + c) = −zn+1e(n+1)ez

has a finite number of zeros for any n ∈ N.

We have the following result for meromorphic functions in general.

Theorem 1.6. Let f(z) be a transcendental meromorphic function of
finite order. Suppose that n, k, c and a(z) are as in Theorem 1.3. If n ≥
3k + 5, then f(z)n∆k

cf(z)− a(z) has infinitely many zeros, and

N

(
r,

1
fn∆k

cf − a

)
≥ T (r, f) + S(r, f).

We now introduce the definition of sharing a common value: we say that
functions f and g share a value a CM (counting multiplicities) if f − a and
g−a have the same zeros with the same multiplicities (see, e.g., [H64, YY]).
We say that f and g share z CM if f − z and g − z share 0 CM. A finite
value z0 is called a fixed point of f if f(z0) = z0. It is easy to see that a
polynomial P with degree n ≥ 2 has n fixed points (counting multiplicities).
A transcendental function may not have fixed points: for example, f(z) =
ez + z. Obviously, if f and g share z CM, then f and g have the same fixed
points with the same multiplicities.

Yang and Hua [YH] studied differential polynomials sharing a common
value and obtained the following uniqueness theorem corresponding to Hay-
man’s conjecture.

Theorem 1.7. Let f and g be nonconstant entire functions, and let
n ≥ 6 be an integer. If fnf ′ and gng′ share 1 CM, then either f(z) = c1e

cz

and g(z) = c2e
−cz, where c1, c2 and c are constants satisfying (c1c2)n+1c2 =

−1, or f = tg for a constant t such that tn+1 = 1.

Fang and Qiu [FQ] obtained the following result concerning fixed points.

Theorem 1.8. Let f and g be nonconstant entire functions, and let
n ≥ 6 be a positive integer. If fnf ′ and gng′ share z CM, then either
f(z) = c1e

cz2 and g(z) = c2e
−cz2, where c1, c2 and c are constants sat-

isfying 4(c1c2)n+1c2 = −1, or f = tg for a constant t such that tn+1 = 1.

In the present paper, we get analogous results on difference operators.

Theorem 1.9. Let f and g be nonconstant entire functions of finite
order, and let n ≥ 5 be an integer. Suppose that c is a non-zero complex
constant such that ∆cf(z) 6≡ 0 and ∆cg(z) 6≡ 0. If fn∆cf and gn∆cg share
1 CM, and g(z + c) and g(z) share 0 CM, then

(1) f(z) = c1e
az and g(z) = c2e

−az, where c1, c2 and a are constants
satisfying (c1c2)n+1(eac + e−ac − 2) = −1; or

(2) f = tg, where t is a constant satisfying tn+1 = 1.
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Theorem 1.10. Let f and g be nonconstant entire functions of finite
order, and let n ≥ 5 be an integer. Suppose that c is a non-zero complex
constant such that ∆cf(z) 6≡ 0 and ∆cg(z) 6≡ 0. If fn∆cf and gn∆cg share
z CM, and g(z+ c) and g(z) share 0 CM, then f = tg, where t is a constant
satisfying tn+1 = 1.

2. Some preliminary results. In this section, we give some results
needed in this paper. Chiang and Feng [CF] estimated the characteristic
function and the counting function of f(z + c), and got the following two
results.

Lemma 2.1 ([CF, Theorem 2.1]). Let f be a meromorphic function of
finite order ρ and let c be a non-zero complex constant. Then, for each ε > 0,

T (r, f(z + c)) = T (r, f) +O(rρ−1+ε) +O(log r).

It is evident that S(r, f(z + c)) = S(r, f) from Lemma 2.1.
Recall that λ(1/f) denotes the exponent of convergence of poles of a

meromorphic function f , defined in Theorem 1.3.

Lemma 2.2 ([CF, Theorem 2.2]). Let f be a meromorphic function with
λ(1/f) finite and let c be a non-zero complex constant. Then, for each ε > 0,

N(r, f(z + c)) = N(r, f) +O(rλ(1/f)−1+ε) +O(log r).

The following result bases on Lemmas 2.1 and 2.2.

Lemma 2.3. Let f(z) be a transcendental meromorphic function of finite
order, and let n, k be positive integers. Suppose that c is a non-zero complex
number such that ∆k

cf(z) 6≡ 0 and a(z) (6≡ 0,∞) is a small function with
respect to f(z). Denote F (z) = f(z)n∆k

cf(z). Then

(n+ 1)T (r, f) ≤ N(r, 1/f) +N(r,∆k
cf/f)(2.1)

+N(r, 1/(F − a))−N(r, F )
+N(r, fn+1) +N(r, F ) + S(r, f).

Proof. We deduce from the second main theorem that

(n+ 1)T (r, f) = T (r, fn+1) = m(r, fn+1) +N(r, fn+1)(2.2)
≤ m(r, fn+1/F ) +m(r, F ) +N(r, fn+1)
= m(r, f/∆k

cf) + T (r, F )−N(r, F ) +N(r, fn+1)
≤ m(r, f/∆k

cf) +N(r, 1/F ) +N(r, 1/(F − a))
+N(r, F )−N(r, F ) +N(r, fn+1).

Noting that

N

(
r,

1
F

)
= N

(
r,

f

fn+1∆k
cf

)
≤ N

(
r,

1
f

)
+N

(
r,

f

∆k
cf

)
,
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we see from (1.2) that

m

(
r,

f

∆k
cf

)
+N

(
r,

1
F

)
≤ m

(
r,

f

∆k
cf

)
+N

(
r,

1
f

)
+N

(
r,

f

∆k
cf

)
(2.3)

= T

(
r,

f

∆k
cf

)
+N

(
r,

1
f

)
= T

(
r,

∆k
cf

f

)
+N

(
r,

1
f

)
+O(1)

= N

(
r,

∆k
cf

f

)
+N

(
r,

1
f

)
+ S(r, f).

Applying (2.3) and (2.2), we obtain the assertion.

When nonconstant meromorphic functions F , G share at least one finite
value CM, the following lemma plays a key role.

Lemma 2.4 ([YH, Lemma 3]). Let F and G be nonconstant meromorphic
functions. If F and G share 1 CM, then one of the following three cases
holds:

(1) max{T (r, F ), T (r,G)} ≤ N2(r, 1/F ) + N2(r, 1/G) + N2(r, F ) +
N2(r,G) + S(r, F ) + S(r,G);

(2) FG = 1;
(3) F = G,

where N2(r, 1/F ) denotes the counting function of zeros of F such that
simple zeros are counted once and multiple zeros twice.

3. Proofs

Proof of Theorem 1.3. For each ε > 0 we have N(r, f) = O(rλ(1/f)+ε).
Since f is transcendental, it follows from Lemma 2.2 that

(3.1) N(r, f(z+ c)) = N(r, f)+O(rλ(1/f)−1+ε)+O(log r) = O(rλ(1/f)+ε).

Thus N(r,∆k
cf) = O(rλ(1/f)+ε). Denote F (z) = f(z)n∆k

cf(z). Lemma 2.3
gives

(3.2) (n+ 1)T (r, f) ≤ N(r, 1/f) +N(r,∆k
cf/f) +N(r, 1/(F − a))

−N(r, F ) +N(r, fn+1) +N(r, F ) + S(r, f)

≤ 2N(r, 1/f) +N(r,∆k
cf) +N(r, 1/(F − a))

+N(r, fn+1) + S(r, f)

≤ 2T (r, f) +N(r, 1/(F − a)) +O(rλ(1/f)+ε) + S(r, f).
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Since λ(1/f) < ρ, we can choose ε small enough such that λ(1/f) + 2ε < ρ.
Hence O(rλ(1/f)+ε) = S(r, f), and (3.2) yields

(n− 1)T (r, f) ≤ N(r, 1/(F − a)) + S(r, f).

Proof of Theorem 1.6. Define F (z) as before. Using (1.2), we have

N(r, fn+1)−N(r, F ) = N(r, Ff/∆k
cf)−N(r, F ) ≤ N(r, f/∆k

cf)
≤ T (r,∆k

cf/f) +O(1) ≤ N(r,∆k
cf/f) + S(r, f).

From this and (2.1), we deduce using Lemma 2.2 that

nT (r, f) ≤ N(r,∆k
cf/f) +N(r, 1/(F − a))−N(r, F )

+N(r, fn+1) +N(r, F ) + S(r, f)
≤ 2N(r,∆k

cf/f) +N(r, F ) +N(r, 1/(F − a)) + S(r, f)
≤ 3N(r,∆k

cf/f) +N(r, f) +N(r, 1/(F − a)) + S(r, f)
≤ 3(N(r, 1/f) + kN(r, f)) +N(r, f) +N(r, 1/(F − a)) + S(r, f)
≤ (3k + 4)T (r, f) +N(r, 1/(F − a)) + S(r, f),

which is
(n− 3k − 4)T (r, f) ≤ N(r, 1/(F − a)) + S(r, f).

The assertion follows as n ≥ 3k + 5.

Proof of Theorem 1.10. Denote

(3.3) F (z) =
f(z)n∆cf(z)

z
, G(z) =

g(z)n∆cg(z)
z

.

Then F and G share 1 CM. Since f is a transcendental entire function, we
deduce from the definition of F that N2(r, F ) = O(log r) = S(r, f) and

N2(r, 1/F ) ≤ N2(r, 1/(fn∆cf)) ≤ N2(r, 1/fn+1) +N2(r, f/∆cf)
≤ 2N(r, 1/f) + T (r,∆cf/f) +O(1)
≤ 2N(r, 1/f) +N(r,∆cf/f) + S(r, f)
≤ 2N(r, 1/f) +N(r, 1/f) + S(r, f) ≤ 3T (r, f) + S(r, f).

Thus

(3.4) N2(r, 1/F ) +N2(r, F ) ≤ 3T (r, f) + S(r, f).

Similarly, we get N2(r,G) = S(r, g) and

N2(r, 1/G) ≤ 2N(r, 1/g) +N(r,∆cg/g) + S(r, g).

Noting that g(z + c) and g(z) share 0 CM, we obtain N(r,∆cg/g) = 0 and
the last inequality gives

N2(r, 1/G) ≤ 2T (r, g) + S(r, g).

Thus

(3.5) N2(r, 1/G) +N2(r,G) ≤ 2T (r, g) + S(r, g).



Shared values of difference operators 219

Assume that case (1) of Lemma 2.4 holds. Using (3.4) and (3.5), we have

max{T (r, F ), T (r,G)} ≤ 3T (r, f) + 2T (r, g) + S(r, f) + S(r, g).(3.6)

On the other hand, it follows from Theorem 1.1 that

(n+ 1)T (r, f) = T (r, fn+1) = m(r, fn+1) ≤ m(r, fn+1/F ) +m(r, F )
= m(r, zf/∆cf) + T (r, F )
≤ m(r, f/∆cf) + T (r, F ) +O(log r)
≤ N(r,∆cf/f) + T (r, F ) + S(r, f)
≤ T (r, f) + T (r, F ) + S(r, f),

which means

(3.7) T (r, F ) ≥ nT (r, f) + S(r, f).

By the same reasoning, it follows from N(r,∆cg/g) = 0 that

(3.8) T (r,G) ≥ (n+ 1)T (r, g) + S(r, g).

Combining (3.7), (3.8) with (3.6), we conclude that

(n− 3)T (r, f) ≤ 2T (r, g) + S(r, f) + S(r, g)

and
(n− 1)T (r, g) ≤ 3T (r, f) + S(r, f) + S(r, g).

The last two inequalities yield an immediate contradiction, as n ≥ 5. Hence
F (z) · G(z) ≡ 1 or F (z) ≡ G(z) by Lemma 2.4. We discuss the two cases
separately.

Case 1. Suppose that F (z) ·G(z) ≡ 1. Then

(3.9) fn(z)(f(z + c)− f(z))gn(z)(g(z + c)− g(z)) = z2.

Notice, that for n ≥ 5, zero is a Picard exceptional value of both f and g
from (3.9). Then f(z) = eQ(z) and g(z) = eP (z), where Q(z) and P (z) are
polynomials. It follows from (3.9) that

(eQ(z+c)−Q(z) − 1)(eP (z+c)−P (z) − 1) = z2e−(n+1)[Q(z)+P (z)].

Denote φ(z) = eQ(z+c)−Q(z). Then φ(z) 6= 0,∞ for any z ∈ C. If φ(z) 6≡
const, then it is a transcendental entire function. We infer from the above
equation and the second main theorem that

T (r, φ) ≤ N(r, φ) +N(r, 1/φ) +N(r, 1/(φ− 1)) + S(r, φ)
= N(r, 1/z2) + S(r, φ) = O(log r) + S(r, φ) = S(r, φ),

which is a contradiction. Therefore, φ(z) ≡ const. Similarly, eP (z+c)−P (z) ≡
const. It follows that z2e−(n+1)[Q(z)+P (z)] ≡ const, which is impossible.

Case 2. Suppose that F (z) ≡ G(z). Then

fn(z)(f(z + c)− f(z)) = gn(z)(g(z + c)− g(z)).



220 J. L. Zhang et al.

Let h(z) = f(z)/g(z). We deduce that

(3.10) (hn+1(z)− 1)g(z) = (hn(z)h(z + c)− 1)g(z + c).

If h(z + c) ≡ h(z), then (hn+1 − 1)∆cg = 0 and h(z)n+1 ≡ 1. Thus h(z)
is a constant, say t, satisfying tn+1 = 1.

Assume now that h(z + c) 6≡ h(z). Suppose that there exists a point z0
such that h(z0)n+1 = 1. Then h(z0)nh(z0 + c) = 1 from (3.10) since g(z)
and g(z + c) share 0 CM. Hence h(z0) = h(z0 + c) and

N(r, 1/(hn+1 − 1)) ≤ N(r, 1/(h(z + c)− h)) ≤ 2T (r, h) + S(r, h)

by Lemma 2.1. In the above inequality, we apply the second main theorem
to hn+1, resulting in

T (r, hn+1) ≤ N(r, hn+1) +N(r, 1/hn+1) +N(r, 1/(hn+1 − 1)) + S(r, h)
≤ 4T (r, h) + S(r, h).

Then
(n+ 1)T (r, h) ≤ 4T (r, h) + S(r, h),

which means h is a constant, because n ≥ 5. Let h = t. Making use of (3.10)
again, we obtain tn+1 = 1.

Proof of Theorem 1.9. Denote

F (z) = f(z)n∆cf(z), G(z) = g(z)n∆cg(z).

Then F and G share 1 CM. By the same arguments as in the proof of
Theorem 1.10, we have F (z) · G(z) ≡ 1 or F (z) ≡ G(z) by Lemma 2.4. If
F (z) ≡ G(z), we obtain the second assertion by the same reasoning as in
Case 2 in the proof of Theorem 1.10.

It thus remains to consider the case F (z) ·G(z) ≡ 1. Then

(3.11) fn(z)(f(z + c)− f(z))gn(z)(g(z + c)− g(z)) = 1.

Case 1 in the proof of Theorem 1.10 gives us f(z) = eQ(z) and g(z) =
eP (z), where Q(z) and P (z) are polynomials. We conclude from (3.11) that
eQ(z+c)−Q(z) − 1 is never zero. Denote H(z) = eQ(z+c)−Q(z). Then H(z) 6=
0, 1,∞ for any z ∈ C. By Picard’s theorem, H is a constant, so degQ = 1.
Similarly, degP = 1. Assume now that

f(z) = c1e
az, g(z) = c2e

bz,

where a, b, c1 and c2 are non-zero constants. Applying (3.11) again, we get
a = −b and (c1c2)n+1(eac + e−ac− 2) = −1. The first assertion follows. This
completes the proof of Theorem 1.9.
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