Unicity of meromorphic mappings sharing few hyperplanes

by Si Duc Quang (Hanoi)

Abstract

We prove some theorems on uniqueness of meromorphic mappings into complex projective space $\mathbb{P}^{n}(\mathbb{C})$, which share $2 n+3$ or $2 n+2$ hyperplanes with truncated multiplicities.

1. Introduction. In 1926, R. Nevanlinna showed that two distinct nonconstant meromorphic functions f and g on the complex plane \mathbb{C} cannot have the same inverse images for five distinct values, and that g is a special type of linear fractional transformation of f if they have the same inverse images counted with multiplicities for four distinct values $[\mathrm{N}]$.

In 1975, H. Fujimoto [Fu1 generalized Nevalinna's results to the case of meromorphic mappings of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})$. He considered two distinct meromorphic maps f and g of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})$ satisfying the condition that $\nu_{\left(f, H_{j}\right)}=\nu_{\left(g, H_{j}\right)}$ for q hyperplanes H_{1}, \ldots, H_{q} of $\mathbb{P}^{n}(\mathbb{C})$ in general position, where $\nu_{\left(f, H_{j}\right)}$ is the map of \mathbb{C}^{m} into \mathbb{Z} whose value $\nu_{\left(f, H_{j}\right)}(a)\left(a \in \mathbb{C}^{m}\right)$ is the intersection multiplicity of the images of f and H_{j} at $f(a)$. He proved the following

Theorem A ([Fu1]). Let $H_{i}, 1 \leq i \leq 3 n+2$, be $3 n+2$ hyperplanes of $\mathbb{P}^{n}(\mathbb{C})$ in general position, and let f and g be nonconstant meromorphic mappings of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})$ with $f\left(\mathbb{C}^{m}\right) \nsubseteq H_{i}$ and $g\left(\mathbb{C}^{m}\right) \nsubseteq H_{i}$ such that $\nu_{\left(f, H_{i}\right)}=\nu_{\left(g, H_{i}\right)}$ for $1 \leq i \leq 3 n+2$. Assume that either f or g is linearly nondegenerate over \mathbb{C}, that is, the image is not included in any hyperplane in $\mathbb{P}^{n}(\mathbb{C})$. Then $f \equiv g$.

Since that time, the unicity problem without truncated mutiplicities has been studied intensively by many authors, including M. Ru, Y. Aihara, D. D. Thai-S. D. Quang, G. Dethloff-T. V. Tan, Z. Chen-Q. Yan and others.

We state here the recent result of Z. Chen and Q. Yan which is the best result available at present.

[^0]Take a meromorphic mapping f of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})$ which is linearly nondegenerate over \mathbb{C}, a positive integer d, and q hyperplanes H_{1}, \ldots, H_{q} in $\mathbb{P}^{n}(\mathbb{C})$ in general position with

$$
\operatorname{dim} f^{-1}\left(H_{i} \cap H_{j}\right) \leq m-2 \quad(1 \leq i<j \leq q),
$$

and consider the set $\mathcal{F}\left(f,\left\{H_{i}\right\}_{i=1}^{q}, d\right)$ of all linearly nondegenerate (over \mathbb{C}) meromorphic maps $g: \mathbb{C}^{m} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ satisfying the conditions:
(a) $\min \left(\nu_{\left(f, H_{j}\right)}, d\right)=\min \left(\nu_{\left(g, H_{j}\right)}, d\right)(1 \leq j \leq q)$,
(b) $f(z)=g(z)$ on $\bigcup_{j=1}^{q} f^{-1}\left(H_{j}\right)$.

Denote by $\sharp S$ the cardinality of the set S.
Theorem B (Z. Chen-Q. Yan [ChY]). $\sharp \mathcal{F}\left(f,\left\{H_{i}\right\}_{i=1}^{2 n+3}, 1\right)=1$.
We emphasize that the proof of Theorem B was complicated.
Our first purpose is to prove a more general and slightly stronger form of the result of Z. Chen and Q. Yan. Moreover, we simplify its proof. First of all, let us recall the following.

Let f be a nonconstant meromorphic mapping of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})$, let H be a hyperplane in $\mathbb{P}^{n}(\mathbb{C})$ and let k be a positive integer. For every $z \in \mathbb{C}^{m}$, we set

$$
\begin{aligned}
& \nu_{(f, H), \leq k}(z)= \begin{cases}0 & \text { if } \nu_{(f, H)}(z)>k, \\
\nu_{(f, H)}(z) & \text { if } \nu_{(f, H)}(z) \leq k,\end{cases} \\
& \nu_{(f, H),>k}(z)= \begin{cases}\nu_{(f, H)}(z) & \text { if } \nu_{(f, H)}(z)>k, \\
0 & \text { if } \nu_{(f, H)}(z) \leq k .\end{cases}
\end{aligned}
$$

We now take a meromorphic mapping f of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})$ which is linearly nondegenerate over \mathbb{C}, positive integers k, d, and q hyperplanes H_{1}, \ldots, H_{q} of $\mathbb{P}^{n}(\mathbb{C})$ in general position with

$$
\operatorname{dim}\left\{z \in \mathbb{C}^{m}: \nu_{\left(f, H_{i}\right), \leq k}(z)>0 \text { and } \nu_{\left(f, H_{j}\right), \leq k}(z)>0\right\} \leq m-2
$$

$(1 \leq i<j \leq q)$, and consider the set $\mathcal{F}\left(f,\left\{H_{j}\right\}_{j=1}^{q}, k, d\right)$ of all linearly nondegenerate meromorphic maps $g: \mathbb{C}^{m} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ satisfying the conditions:
(a) $\min \left(\nu_{\left(f, H_{j}\right), \leq k}, d\right)=\min \left(\nu_{\left(g, H_{j}\right), \leq k}, d\right)(1 \leq j \leq q)$,
(b) $f(z)=g(z)$ on $\bigcup_{j=1}^{q}\left\{z \in \mathbb{C}^{m}: \nu_{\left(f, H_{j}\right), \leq k}(z)>0\right\}$.

Then we see that

$$
\mathcal{F}\left(f,\left\{H_{j}\right\}_{j=1}^{q}, d\right)=\mathcal{F}\left(f,\left\{H_{j}\right\}_{j=1}^{q}, \infty, d\right) \subset \mathcal{F}\left(f,\left\{H_{j}\right\}_{j=1}^{q}, k, d\right) .
$$

We will improve Theorem B to the following.
Theorem 1. $\sharp \mathcal{F}\left(f,\left\{H_{i}\right\}_{i=1}^{2 n+3}, k, 1\right)=1$ for $k>\frac{n\left(4 n^{2}+11 n+4\right)}{3 n+2}-1$.

Our second main aim is to show a unicity theorem for meromorphic mappings sharing $2 n+2$ hyperplanes with truncated multiplicities to level 1. Namely, we will prove the following.

ThEOREM 2. Let f be a linearly nondegenerate meromorphic mapping of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})$ and let $H_{1}, \ldots, H_{2 n+2}$ be $2 n+2$ hyperplanes of $\mathbb{P}^{n}(\mathbb{C})$ in general position with

$$
\operatorname{dim} f^{-1}\left(H_{i} \cap H_{j}\right) \leq m-2 \quad(1 \leq i<j \leq q)
$$

Let g be a linearly nondegenerate meromorphic mapping of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})$ satisfying:
(a) $\min \left\{\nu_{\left(f, H_{j}\right), \leq n}, 1\right\}=\min \left\{\nu_{\left(g, H_{j}\right), \leq n}, 1\right\}$,
$\min \left\{\nu_{\left(f, H_{j}\right), \geq n}, 1\right\}=\min \left\{\nu_{\left(g, H_{j}\right), \geq n}, 1\right\}(1 \leq j \leq q)$,
(b) $f(z)=g(z)$ on $\bigcup_{j=1}^{2 n+2} f^{-1}\left(H_{j}\right)$.

If $n \geq 2$ then $f \equiv g$.

2. Basic notions in Nevanlinna theory

2.1. We set $\|z\|=\left(\left|z_{1}\right|^{2}+\cdots+\left|z_{m}\right|^{2}\right)^{1 / 2}$ for $z=\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{C}^{m}$ and define
$B(r):=\left\{z \in \mathbb{C}^{m}:\|z\|<r\right\}, \quad S(r):=\left\{z \in \mathbb{C}^{m}:\|z\|=r\right\} \quad(0<r<\infty)$.
Set

$$
\begin{aligned}
\sigma(z) & :=\left(d d^{c}\|z\|^{2}\right)^{m-1} \\
\eta(z) & :=d^{c} \log \|z\|^{2} \wedge\left(d d^{c} \log \|z\|^{2}\right)^{m-1} \quad \text { on } \mathbb{C}^{m} \backslash\{0\}
\end{aligned}
$$

2.2. Let F be a nonzero holomorphic function on a domain Ω in \mathbb{C}^{m}. For a set $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ of nonnegative integers, we set $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$ and $\mathcal{D}^{\alpha} F=\partial^{|\alpha|} F / \partial^{\alpha_{1}} z_{1} \cdots \partial^{\alpha_{m}} z_{m}$. We define the map $\nu_{F}: \Omega \rightarrow \mathbb{Z}$ by

$$
\nu_{F}(z):=\max \left\{l: \mathcal{D}^{\alpha} F(z)=0 \text { for all } \alpha \text { with }|\alpha|<l\right\} \quad(z \in \Omega)
$$

A divisor on a domain Ω in \mathbb{C}^{m} is a map $\nu: \Omega \rightarrow \mathbb{Z}$ such that, for each $a \in \Omega$, there are nonzero holomorphic functions F and G on a connected neighborhood $U \subset \Omega$ of a such that $\nu(z)=\nu_{F}(z)-\nu_{G}(z)$ for each $z \in U$ outside an analytic set of dimension $\leq m-2$. Two divisors are regarded as the same if they are identical outside an analytic set of dimension $\leq m-2$. For a divisor ν on Ω we set $|\nu|:=\overline{\{z: \nu(z) \neq 0\}}$, which is a purely $(m-1)$ dimensional analytic subset of Ω or an empty set.

Take a nonzero meromorphic function φ on a domain Ω in \mathbb{C}^{m}. For each $a \in \Omega$, we choose nonzero holomorphic functions F and G on a neighborhood $U \subset \Omega$ such that $\varphi=F / G$ on U and $\operatorname{dim}\left(F^{-1}(0) \cap G^{-1}(0)\right) \leq m-2$, and we define the divisors $\nu_{\varphi}, \nu_{\varphi}^{\infty}$ by $\nu_{\varphi}:=\nu_{F}, \nu_{\varphi}^{\infty}:=\nu_{G}$, which are independent of the choices of F and G and so globally well-defined on Ω.
2.3. For a divisor ν on \mathbb{C}^{m} and for positive integers k, M or $M=\infty$, we define the counting function of ν by

$$
\begin{aligned}
\nu^{(M)}(z) & =\min \{M, \nu(z)\}, \\
\nu_{\leq k}^{(M)}(z) & =\left\{\begin{array}{ll}
0 & \text { if } \nu(z)>k, \\
\nu^{(M)}(z) & \text { if } \nu(z) \leq k,
\end{array} \quad \nu_{\geq k}^{(M)}(z)= \begin{cases}\nu^{(M)}(z) & \text { if } \nu(z) \geq k, \\
0 & \text { if } \nu(z)<k,\end{cases} \right. \\
n(t) & = \begin{cases}\int_{B(t)} \nu(z) \sigma & \text { if } m \geq 2 \\
\sum_{|z| \leq t} \nu(z) & \text { if } m=1 .\end{cases}
\end{aligned}
$$

Similarly, we define $n^{(M)}(t), n_{\leq k}^{(M)}(t), n_{\geq k}^{(M)}(t)$. Set

$$
N(r, \nu)=\int_{1}^{r} \frac{n(t)}{t^{2 m-1}} d t \quad(1<r<\infty)
$$

Similarly, we define $N\left(r, \nu^{(M)}\right), N\left(r, \nu_{\leq k}^{(M)}\right), N\left(r, \nu_{\geq k}^{(M)}\right)$ and denote them by $N^{(M)}(r, \nu), N_{\leq k}^{(M)}(r, \nu), N_{\geq k}^{(M)}(r, \nu)$ respectively.

Let $\varphi: \mathbb{C}^{m^{-}} \rightarrow \mathbb{C}$ be a meromorphic function. Define

$$
\begin{aligned}
N_{\varphi}(r)=N\left(r, \nu_{\varphi}\right), & N_{\varphi}^{(M)}(r)=N^{(M)}\left(r, \nu_{\varphi}\right) \\
N_{\varphi, \leq k}^{(M)}(r)=N_{\leq k}^{(M)}\left(r, \nu_{\varphi}\right), & N_{\varphi, \geq k}^{(M)}(r)=N_{\geq k}^{(M)}\left(r, \nu_{\varphi}\right)
\end{aligned}
$$

For brevity we will omit the superscript ${ }^{(M)}$ if $M=\infty$.
2.4. Let $f: \mathbb{C}^{m} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ be a meromorphic mapping. For fixed homogeneous coordinates $\left(w_{0}: \cdots: w_{n}\right)$ on $\mathbb{P}^{n}(\mathbb{C})$, we take a reduced representation $f=\left(f_{0}: \cdots: f_{n}\right)$, which means that each f_{i} is a holomorphic function on \mathbb{C}^{m} and $f(z)=\left(f_{0}(z): \cdots: f_{n}(z)\right)$ outside the analytic set $I(f)=\left\{f_{0}=\right.$ $\left.\cdots=f_{n}=0\right\}$ of codimension ≥ 2. Set $\|f\|=\left(\left|f_{0}\right|^{2}+\cdots+\left|f_{n}\right|^{2}\right)^{1 / 2}$.

The characteristic function of f is defined by

$$
T_{f}(r)=\int_{S(r)} \log \|f\| \eta-\int_{S(1)} \log \|f\| \eta
$$

Let H be a hyperplane in $\mathbb{P}^{n}(\mathbb{C})$ given by $H=\left\{a_{0} \omega_{0}+\cdots+a_{n} \omega_{n}=0\right\}$, where $a:=\left(a_{0}, \ldots, a_{n}\right) \neq(0, \ldots, 0)$. We set $(f, H)=\sum_{i=0}^{n} a_{i} f_{i}$. We define the corresponding divisor $f^{*} H$ by $f^{*} H(z)=\nu_{(f, H)}(z)\left(z \in \mathbb{C}^{m}\right)$, which is independent of the choice of the reduced representation of f. From now on, we will write $\nu_{(f, H)}$ for $f^{*} H$ if there is no confusion. Moreover, we define the proximity function of f with respect to H by

$$
m_{f, H}(r)=\int_{S(r)} \log \frac{\|f\| \cdot\|H\|}{|(f, H)|} \eta-\int_{S(1)} \log \frac{\|f\| \cdot\|H\|}{|(f, H)|} \eta
$$

where $\|H\|=\left(\sum_{i=0}^{n}\left|a_{i}\right|^{2}\right)^{1 / 2}$.
2.5. Let φ be a nonzero meromorphic function on \mathbb{C}^{m}, which is occasionally regarded as a meromorphic map into $\mathbb{P}^{1}(\mathbb{C})$. The proximity function of φ is defined by

$$
m(r, \varphi):=\int_{S(r)} \log ^{+}|\varphi| \eta
$$

where $\log ^{+} t=\max \{0, \log t\}$ for $t>0$. The Nevanlinna characteristic function of φ is defined by

$$
T(r, \varphi)=N_{1 / \varphi}(r)+m(r, \varphi)
$$

Then

$$
T_{\varphi}(r)=T(r, \varphi)+O(1)
$$

The meromorphic function φ is said to be small with respect to f if $\| T(r, \varphi)=o\left(T_{f}(r)\right)$
2.6. As usual, the notation $\| P$ means the assertion P holds for all $r \in[0, \infty)$ excluding a Borel subset E of $[0, \infty)$ with $\int_{E} d r<\infty$.

The following statements are essential in Nevanlinna theory (see [NO]).
2.7. The First Main Theorem. Let $f: \mathbb{C}^{m} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ be a meromorphic mapping and let H be a hyperplane in $\mathbb{P}^{n}(\mathbb{C})$ such that $f\left(\mathbb{C}^{m}\right) \not \subset H$. Then

$$
N_{(f, H)}(r)+m_{f, H}(r)=T_{f}(r) \quad(r>1)
$$

2.8. The Second Main Theorem. Let $f: \mathbb{C}^{m} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ be a linearly nondegenerate meromorphic mapping and H_{1}, \ldots, H_{q} be q hyperplanes in general position in $\mathbb{P}^{n}(\mathbb{C})$. Then

$$
\|(q-n-1) T_{f}(r) \leq \sum_{i=1}^{q} N_{\left(f, H_{i}\right)}^{(n)}(r)+o\left(T_{f}(r)\right)
$$

2.9. LEMMA ON LOGARITHMIC DERIVATIVE. Let f be a nonzero meromorphic function on \mathbb{C}^{m}. Then

$$
\| m\left(r, \frac{\mathcal{D}^{\alpha}(f)}{f}\right)=O\left(\log ^{+} T(r, f)\right) \quad\left(\alpha \in \mathbb{Z}_{+}^{m}\right)
$$

2.10. Denote by \mathcal{M}_{m}^{*} the abelian multiplicative group of all nonzero meromorphic functions on \mathbb{C}^{m}. Denote by \mathcal{R}_{f}^{*} the group of all nonzero meromorphic functions on \mathbb{C}^{m} which are small with respect to f. Then \mathcal{R}_{f}^{*} is a subgroup of \mathcal{M}_{m}^{*} and the multiplicative group $\mathcal{M}_{m}^{*} / \mathcal{R}_{f}^{*}$ is a torsion free abelian group.

Let G be a torsion free abelian group and let $A=\left(a_{1}, \ldots, a_{q}\right)$ be a q-tuple of elements of G. Let $q \geq r>s>1$. We say that the q-tuple A has the property $\left(P_{r, s}\right)$ if any r elements $a_{l(1)}, \ldots, a_{l(r)}$ in A satisfy the condition that for any given $i_{1}, \ldots, i_{s}\left(1 \leq i_{1}<\cdots<i_{s} \leq r\right)$, there exist
$j_{1}, \ldots, j_{s}\left(1 \leq j_{1}<\cdots<j_{s} \leq r\right)$ with $\left\{i_{1}, \ldots, i_{s}\right\} \neq\left\{j_{1}, \ldots, j_{s}\right\}$ such that $a_{l\left(i_{1}\right)} \ldots a_{l\left(i_{s}\right)}=a_{l\left(j_{1}\right)} \ldots a_{l\left(j_{s}\right)}$.
2.11. Proposition (H. Fujimoto [Fu1]). Let G be a torsion free abelian group and $A=\left(a_{1}, \ldots, a_{q}\right)$ a q-tuple in G. If A has the property $\left(P_{r, s}\right)$ for some r, s with $q \geq r>s>1$, then there exist i_{1}, \ldots, i_{q-r+2} with $1 \leq i_{1}<\cdots$ $<i_{q-r+2} \leq q$ such that $a_{i_{1}}=\cdots=a_{i_{q-r+2}}$.

3. Proofs of Theorems 1 and 2

3.1. Lemma. Let $f: \mathbb{C}^{m} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ be a linearly nondegenerate meromorphic mapping and let H_{1}, \ldots, H_{q} be q hyperplanes of $\mathbb{P}^{n}(\mathbb{C})$ in general position and let k be a positive integer. Assume that $q \geq n+2$ and $k \geq n q /(q-n-1)$. Then

$$
\| T_{f}(r) \leq \frac{k+1-n}{(k+1)(q-n-1)-n q} \sum_{i=1}^{q} N_{\left(f, H_{i}\right), \leq k}^{(n)}(r)+o\left(T_{f}(r)\right) .
$$

Proof. By the Second Main Theorem, we have

$$
\begin{aligned}
& \|(q-n-1) T_{f}(r) \leq \sum_{i=1}^{q} N_{\left(f, H_{i}\right)}^{(n)}(r)+o\left(T_{f}(r)\right) \\
&= \sum_{i=1}^{q} N_{\left(f, H_{i}\right), \leq k}^{(n)}(r)+\sum_{i=1}^{q} N_{\left(f, H_{i}\right), \geq k+1}^{(n)}(r)+o\left(T_{f}(r)\right) \\
& \leq \sum_{i=1}^{q} N_{\left(f, H_{i}\right), \leq k}^{(n)}(r)+\frac{n}{k+1} \sum_{i=1}^{q} N_{\left(f, H_{i}\right), \geq k+1}(r)+o\left(T_{f}(r)\right) \\
& \leq\left(1-\frac{n}{k+1}\right) \sum_{i=1}^{q} N_{\left(f, H_{i}\right), \leq k}^{(n)}(r) \\
&+\frac{n}{k+1} \sum_{i=1}^{q}\left(N_{\left(f, H_{i}\right), \geq k+1}(r)+N_{\left(f, H_{i}\right), \leq k}(r)\right)+o\left(T_{f}(r)\right) \\
&=\left(1-\frac{n}{k+1}\right) \sum_{i=1}^{q} N_{\left(f, H_{i}\right), \leq k}^{(n)}(r)+\frac{n}{k+1} \sum_{i=1}^{q} N_{\left(f, H_{i}\right)}(r)+o\left(T_{f}(r)\right) \\
& \leq\left(1-\frac{n}{k+1}\right) \sum_{i=1}^{q} N_{\left(f, H_{i}\right), \leq k}^{(n)}(r)+\frac{n q}{k+1} T_{f}(r)+o\left(T_{f}(r)\right) .
\end{aligned}
$$

Hence

$$
\| T_{f}(r) \leq \frac{k+1-n}{(k+1)(q-n-1)-n q} \sum_{i=1}^{q} N_{\left(f, H_{i}\right), \leq k}^{(n)}(r)+o\left(T_{f}(r)\right)
$$

3.2. Lemma. Suppose $k \geq 2 n+1$ and $q \geq 2 n+2$. Then

$$
\| T_{g}(r)=O\left(T_{f}(r)\right) \quad \text { and } \quad \| T_{f}(r)=O\left(T_{g}(r)\right)
$$

for each $g \in \mathcal{F}\left(f,\left\{H_{i}\right\}_{i=1}^{q}, k, 1\right)$.
Proof. By the Second Main Theorem, we have

$$
\begin{aligned}
\|(q-n-1) T_{g}(r) \leq & \sum_{i=1}^{q} N_{\left(g, H_{i}\right)}^{(n)}(r)+o\left(T_{g}(r)\right) \\
\leq & \sum_{i=1}^{q} n N_{\left(g, H_{i}\right)}^{(1)}(r)+o\left(T_{g}(r)\right) \\
\leq & \sum_{i=1}^{q} n N_{\left(f, H_{i}\right), \leq k}^{(1)}(r)+\sum_{i=1}^{q} \frac{n}{k+1} N_{\left(g, H_{i}\right), \geq k+1}^{(1)}(r) \\
& +o\left(T_{g}(r)\right) \\
\leq & q n T_{f}(r)+\frac{q n}{k+1} T_{g}(r)+o\left(T_{g}(r)\right)
\end{aligned}
$$

Thus

$$
\|\left(\frac{q(k+1-n)}{k+1}-n-1\right) T_{g}(r) \leq q n T_{f}(r)+o\left(T_{g}(r)\right)
$$

Hence $\| T_{g}(r)=O\left(T_{f}(r)\right)$. Similarly, we get $\| T_{f}(r)=O\left(T_{g}(r)\right)$.
3.3. Proof of Theorem 1. Suppose that there exist two distinct maps $f, g \in \mathcal{F}\left(f,\left\{H_{i}\right\}_{i=1}^{2 n+3}, k, 1\right)$.

By changing indices if necessary, we may assume that

$$
\begin{array}{l}
\frac{\left(f, H_{1}\right)}{\left(g, H_{1}\right)} \equiv \cdots \equiv \frac{\left(f, H_{k_{1}}\right)}{\left(g, H_{k_{1}}\right)}
\end{array} \equiv \underbrace{\frac{\left(f, H_{k_{1}+1}\right)}{\left(g, H_{k_{1}+1}\right)} \equiv \cdots \equiv \frac{\left(f, H_{k_{2}}\right)}{\left(g, H_{k_{2}}\right)}}_{\text {group 1 }})=\underbrace{\left(f, H_{k_{2}+1}\right)}_{\text {group } 2} \equiv \cdots \equiv \frac{\left(f, H_{k_{3}}\right)}{\left(g, H_{k_{3}}\right)} \not \equiv \cdots \not \equiv \equiv \underbrace{\frac{\left(f, H_{k_{s-1}+1}\right)}{\left(g, H_{k_{s-1}+1}\right)} \equiv \cdots \equiv \frac{\left(f, H_{k_{s}}\right)}{\left(g, H_{k_{s}}\right)}}_{\text {group } 3},
$$

where $k_{s}=2 n+3$.
For each $1 \leq i \leq 2 n+3$, we set

$$
\sigma(i)= \begin{cases}i+n & \text { if } i+n \leq 2 n+3 \\ i-n-3 & \text { if } i+n>2 n+3\end{cases}
$$

and

$$
P_{i}=\left(f, H_{i}\right)\left(g, H_{\sigma(i)}\right)-\left(g, H_{i}\right)\left(f, H_{\sigma(i)}\right)
$$

Since $f \not \equiv g$, the number of elements of each group is at most n. Hence $\left(f, H_{i}\right) /\left(g, H_{i}\right)$ and $\left(f, H_{\sigma(i)}\right) /\left(g, H_{\sigma(i)}\right)$ belong to distinct groups. This means that $P_{i} \not \equiv 0(1 \leq i \leq 2 n+3)$.

Fix an index i with $1 \leq i \leq 2 n+3$. For $z \notin I(f) \cup I(g) \cup \bigcup_{s \neq t} f^{-1}\left(H_{s} \cap H_{t}\right)$, it is easy to see that:

- If z is a zero of $\left(f, H_{i}\right)$ then it is a zero of P_{i} with multiplicity at least $\min \left\{\nu_{\left(f, H_{i}\right)}, \nu_{\left(g, H_{i}\right)}\right\}$. Similarly, if z is a zero of $\left(f, H_{\sigma(i)}\right)$ then it is a zero of P_{i} with multiplicity at least $\min \left\{\nu_{\left(f, H_{\sigma(i)}\right)}, \nu_{\left(g, H_{\sigma(i)}\right)}\right\}$.
- If z is a zero of $\left(f, H_{v}\right)$ with $v \notin\{i, \sigma(i)\}$ then it is a zero of P_{i} (because $f(z)=g(z))$.

Thus, we have
$\nu_{P_{i}}(z) \geq \min \left\{\nu_{\left(f, H_{i}\right)}, \nu_{\left(g, H_{i}\right)}\right\}+\min \left\{\nu_{\left(f, H_{\sigma(i)}\right)}, \nu_{\left(g, H_{\sigma(i)}\right)}\right\}+\sum_{\substack{v=1 \\ v \neq i, \sigma(i)}}^{2 n+3} \nu_{\left(f, H_{v}\right), \leq k}^{(1)}(z)$
for all z outside the analytic set $I(f) \cup I(g) \cup \bigcup_{s \neq t} f^{-1}\left(H_{s} \cap H_{t}\right)$ of dimension $\leq m-2$.

Since $\min \{a, b\} \geq \min \{a, n\}+\min \{b, n\}-n$ for all positive integers a and b, the above inequality implies that

$$
\begin{aligned}
\nu_{P_{i}}(z) \geq & \sum_{v=i, \sigma(i)}\left(\min \left\{\nu_{\left(f, H_{v}\right)}(z), n\right\}+\min \left\{\nu_{\left(g, H_{v}\right)}(z), n\right\}\right. \\
& \left.-n \min \left\{\nu_{\left(f, H_{v}\right)}(z), 1\right\}\right)+\sum_{\substack{v=1 \\
v \neq i, \sigma(i)}}^{2 n+3} \nu_{\left(f, H_{v}\right), \leq k}^{(1)}(z)
\end{aligned}
$$

for all z outside the analytic set $I(f) \cup I(g) \cup \bigcup_{s \neq t} f^{-1}\left(H_{s} \cap H_{t}\right)$.
Integrating both sides of the above inequality, we get

$$
\begin{aligned}
N_{P_{i}}(r) \geq & \sum_{v=i, \sigma(i)}\left(N_{\left(f, H_{v}\right), \leq k}^{(n)}(r)+N_{\left(g, H_{v}\right), \leq k}^{(n)}(r)-n N_{\left(f, H_{v}\right), \leq k}^{(1)}(r)\right) \\
& +\sum_{\substack{v=1 \\
v \neq i, \sigma(i)}}^{2 n+3} N_{\left(f, H_{v}\right), \leq k}^{(1)}(r)
\end{aligned}
$$

On the other hand, by Jensen's formula and the definition of the characteristic function, we have

$$
\begin{aligned}
N_{P_{i}}(r)= & \int_{S(r)} \log \left|P_{i}\right| \eta+O(1) \\
\leq & \int_{S(r)} \log \left(\left|\left(f, H_{i}\right)\right|^{2}+\mid\left(f,\left.H_{\sigma(i)}\right|^{2}\right)^{1 / 2} \eta\right. \\
& +\int_{S(r)} \log \left(\left|\left(g, H_{i}\right)\right|^{2}+\mid\left(g,\left.H_{\sigma(i)}\right|^{2}\right)^{1 / 2} \eta+O(1)\right.
\end{aligned}
$$

$$
\begin{aligned}
\leq & \int_{S(r)} \log \left(\|f\|\left(\left\|H_{i}\right\|^{2}+\left\|H_{\sigma(i)}\right\|^{2}\right)^{1 / 2}\right) \eta \\
& +\int_{S(r)} \log \left(\|g\|\left(\left\|H_{i}\right\|^{2}+\left\|H_{\sigma(i)}\right\|^{2}\right)^{1 / 2}\right) \eta+O(1) \\
= & \int_{S(r)} \log \|f\| \eta+\int_{S(r)} \log \|g\| \eta+O(1) \\
= & T_{f}(r)+T_{g}(r)+O(1)
\end{aligned}
$$

This implies that

$$
\begin{aligned}
T_{f}(r)+T_{g}(r) \geq & \sum_{v=i, \sigma(i)}\left(N_{\left(f, H_{v}\right), \leq k}^{(n)}(r)+N_{\left(g, H_{v}\right), \leq k}^{(n)}(r)-n N_{\left(f, H_{v}\right), \leq k}^{(1)}(r)\right) \\
& +\sum_{\substack{v=1 \\
v \neq i, \sigma(i)}}^{2 n+3} N_{\left(f, H_{v}\right), \leq k}^{(1)}(r)+o\left(T_{f}(r)\right)
\end{aligned}
$$

Summing both sides of the above inequality over $i=1, \ldots, 2 n+3$, we have

$$
\begin{aligned}
(2 n+3)\left(T_{f}(r)+T_{g}(r)\right) \geq & 2 \sum_{v=1}^{2 n+3}\left(N_{\left(f, H_{v}\right), \leq k}^{(n)}(r)+N_{\left(g, H_{v}\right), \leq k}^{(n)}(r)\right) \\
& +\sum_{v=1}^{2 n+3} N_{\left(f, H_{v}\right), \leq k}^{(1)}(r)+o\left(T_{f}(r)\right) \\
\geq & \left(2+\frac{1}{2 n}\right) \sum_{v=1}^{2 n+3}\left(N_{\left(f, H_{v}\right), \leq k}^{(n)}(r)+N_{\left(g, H_{v}\right), \leq k}^{(n)}(r)\right) \\
& +o\left(T_{f}(r)\right)
\end{aligned}
$$

By Lemma 3, it follows that

$$
\begin{aligned}
& \|\left(2+\frac{1}{2 n}\right) \sum_{v=i}^{2 n+3}\left(N_{\left(f, H_{v}\right), \leq k}^{(n)}(r)+N_{\left(g, H_{v}\right), \leq k}^{(n)}(r)\right) \\
& \quad \geq\left(2+\frac{1}{2 n}\right) \frac{(k+1)(n+2)-2 n^{2}-3 n}{k+1-n}\left(T_{f}(r)+T_{g}(r)\right)+o\left(T_{f}(r)\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
\|(2 n+3)\left(T_{f}(r)+T_{g}(r)\right) \geq & \left(2+\frac{1}{2 n}\right) \frac{(k+1)(n+2)-2 n^{2}-3 n}{k+1-n} \\
& \times\left(T_{f}(r)+T_{g}(r)\right)+o\left(T_{f}(r)\right)
\end{aligned}
$$

Letting $r \rightarrow \infty$, we get $k \leq \frac{n\left(4 n^{2}+11 n+4\right)}{3 n+2}-1$. This is a contradiction. Hence $\sharp \mathcal{F}\left(f,\left\{H_{i}\right\}_{i=1}^{2 n+3}, k, 1\right)=1$ for all $k>\frac{n\left(4 n^{2}+11 n+4\right)}{3 n+2}-1$.
3.4. Proof of Theorem 2. Suppose that $f \not \equiv g$. Then f and g belong to $\mathcal{F}\left(f,\left\{H_{i}\right\}_{i=1}^{2 n+2}, \infty, 1\right)$. By repeating the same argument as in the proof of Theorem 1, we may assume that $P_{i}=\left(f, H_{i}\right)\left(g, H_{\sigma(i)}\right)-\left(g, H_{i}\right)\left(f, H_{\sigma(i)}\right) \not \equiv 0$ for all $1 \leq i \leq 2 n+2$, where

$$
\sigma(i)= \begin{cases}i+n & \text { if } i+n \leq 2 n+2 \\ i-n-2 & \text { if } i+n>2 n+2\end{cases}
$$

For each $1 \leq i \leq 2 n+2$, we set $S_{i}=\left\{z \in \mathbb{C}^{m}: \nu_{\left(f, H_{i}\right)}(z) \neq \nu_{\left(g, H_{i}\right)}(z)\right\}$. Then \bar{S}_{i} is an analytic subset of dimension $m-1$ and $\bar{S}_{i} \backslash S_{i}$ is an analytic subset of dimension $\leq m-2$. Denote by $\nu_{S_{i}}$ the reduced divisor with support \bar{S}_{i}. For $z \in f^{-1}\left(H_{i}\right)$, it is easy to see that:

- If $z \in S_{i}$ then either

$$
\max \left\{\nu_{\left(f, H_{i}\right)}(z), \nu_{\left(g, H_{i}\right)}(z)\right\}<n \quad \text { or } \quad \min \left\{\nu_{\left(f, H_{i}\right)}(z), \nu_{\left(g, H_{i}\right)}(z)\right\}>n
$$

by assumption (a) of the theorem. Because $\nu_{S_{i}}(z)=1$, we have

$$
\begin{aligned}
\min \left\{\nu_{\left(f, H_{i}\right)}(z), n\right\} & +\min \left\{\nu_{\left(g, H_{i}\right)}(z), n\right\}+\nu_{S_{i}}(z) \\
& \leq \min \left\{\nu_{\left(f, H_{i}\right)}(z), \nu_{\left(g, H_{i}\right)}(z)\right\}+n \min \left\{\nu_{\left(f, H_{i}\right)}(z), 1\right\}
\end{aligned}
$$

- If $z \notin S_{i}$ then $\nu_{\left(f, H_{i}\right)}(z)=\nu_{\left(g, H_{i}\right)}(z)$ and $\nu_{S_{i}}(z)=0$. Hence

$$
\begin{aligned}
\min \left\{\nu_{\left(f, H_{i}\right)}(z), n\right\}+ & \min \left\{\nu_{\left(g, H_{i}\right)}(z), n\right\}+\nu_{S_{i}}(z) \leq \min \left\{\nu_{\left(f, H_{i}\right)}(z), n\right\}+n \\
& \leq \min \left\{\nu_{\left(f, H_{i}\right)}(z), \nu_{\left(g, H_{i}\right)}(z)\right\}+n \min \left\{\nu_{\left(f, H_{i}\right)}(z), 1\right\}
\end{aligned}
$$

This yields

$$
\begin{aligned}
\min \left\{\nu_{\left(f, H_{i}\right)}(z), n\right\}+\min \{ & \left.\nu_{\left(g, H_{i}\right)}(z), n\right\}+\nu_{S_{i}}(z) \\
& \leq \min \left\{\nu_{\left(f, H_{i}\right)}(z), \nu_{\left(g, H_{i}\right)}(z)\right\}+n \min \left\{\nu_{\left(f, H_{i}\right)}(z), 1\right\}
\end{aligned}
$$

for all $z \in f^{-1}\left(H_{i}\right)$ and hence for all $z \in \mathbb{C}^{m}$.
By using the same argument as in the proof of Theorem 1, we obtain

$$
\begin{aligned}
\nu_{P_{i}}(z) \geq & \min \left\{\nu_{\left(f, H_{i}\right)}(z), \nu_{\left(g, H_{i}\right)}(z)\right\}+\min \left\{\nu_{\left(f, H_{\sigma(i)}\right)}(z), \nu_{\left(g, H_{\sigma(i)}\right)}(z)\right\} \\
& +\sum_{\substack{v=1 \\
v \neq i, \sigma(i)}}^{2 n+2} \nu_{\left(f, H_{v}\right)}^{(1)}(z) \\
\geq & \sum_{v=i, \sigma(i)}\left(\min \left\{\nu_{\left(f, H_{v}\right)}(z), n\right\}+\min \left\{\nu_{\left(g, H_{i}\right)}(z), n\right\}+\nu_{S_{v}}(z)\right. \\
& \left.-n \min \left\{\nu_{\left(f, H_{v}\right)}(z), 1\right\}\right)+\sum_{\substack{v=1 \\
v \neq i, \sigma(i)}}^{2 n+2} \nu_{\left(f, H_{v}\right)}^{(1)}(z)
\end{aligned}
$$

for all z outside an analytic set of dimension $\leq m-2$. This implies that

$$
\begin{aligned}
N_{P_{i}}(r) \geq & \sum_{v=i, \sigma(i)}\left(N_{\left(f, H_{v}\right)}^{(n)}(r)+N_{\left(g, H_{i}\right)}^{(n)}(r)+N\left(r, \nu_{S_{v}}\right)-n N_{\left(f, H_{v}\right)}^{(1)}(r)\right) \\
& +\sum_{\substack{v=1 \\
v \neq i, \sigma(i)}}^{2 n+2} N_{\left(f, H_{v}\right)}^{(1)}(r)
\end{aligned}
$$

By repeating the same argument as in the proof of Theorem 1, we have

$$
\begin{equation*}
T_{f}(r)+T_{g}(r) \geq N_{P_{i}}(r) \tag{3.5}
\end{equation*}
$$

$$
\geq \sum_{v=i, \sigma(i)}\left(N_{\left(f, H_{v}\right)}^{(n)}(r)+N_{\left(g, H_{i}\right)}^{(n)}(r)+N\left(r, \nu_{S_{v}}\right)-n N_{\left(f, H_{v}\right)}^{(1)}(r)\right)+\sum_{\substack{v=1 \\ v \neq i, \sigma(i)}}^{2 n+2} N_{\left(f, H_{v}\right)}^{(1)}(r)
$$

Summing over $i=1, \ldots, 2 n+2$ and using the Second Main Theorem, we obtain

$$
\begin{align*}
& \|(2 n+2)\left(T_{f}(r)+T_{g}(r)\right) \tag{3.6}\\
& \geq 2 \sum_{i=1}^{2 n+2}\left(N_{\left(f, H_{i}\right)}^{(n)}(r)+N_{\left(g, H_{i}\right)}^{(n)}(r)+N\left(r, \nu_{S_{i}}\right)-n N_{\left(f, H_{i}\right)}^{(1)}(r)\right) \\
& \\
& \quad+2 n \sum_{i=1}^{2 n+2} N_{\left(f, H_{i}\right)}^{(1)}(r) \\
& = \\
& 2 \sum_{i=1}^{2 n+2}\left(N_{\left(f, H_{i}\right)}^{(n)}(r)+N_{\left(g, H_{i}\right)}^{(n)}(r)+N\left(r, \nu_{S_{i}}\right)\right) \\
& \geq \\
& (2 n+2)\left(T_{f}(r)+T_{g}(r)\right)+2 \sum_{i=1}^{2 n+2} N\left(r, \nu_{S_{i}}\right)+o\left(T_{f}(r)\right) .
\end{align*}
$$

Hence,

$$
\begin{equation*}
\| N\left(r, \nu_{S_{i}}\right)=o\left(T_{f}(r)\right) \tag{3.7}
\end{equation*}
$$

and inequalities (3.5), 3.6) become equalities for all $1 \leq i \leq 2 n+2$. Thus, for $1 \leq i \leq 2 n+2$, we have

$$
\begin{align*}
\| N_{P_{i}}(r)= & \sum_{v=i, \sigma(i)}\left(N_{\left(f, H_{v}\right)}^{(n)}(r)+N_{\left(g, H_{i}\right)}^{(n)}(r)-n N_{\left(f, H_{v}\right)}^{(1)}(r)\right) \tag{3.8}\\
& +\sum_{\substack{v=1 \\
v \neq i, \sigma(i)}}^{2 n+2} N_{\left(f, H_{v}\right)}^{(1)}(r)+o\left(T_{f}(r)\right)
\end{align*}
$$

$$
\begin{aligned}
= & \sum_{v=i, \sigma(i)}\left(2 N_{\left(f, H_{v}\right)}^{(n)}(r)-n N_{\left(f, H_{v}\right)}^{(1)}(r)\right)+\sum_{\substack{v=1 \\
v \neq i, \sigma(i)}}^{2 n+2} N_{\left(f, H_{v}\right)}^{(1)}(r) \\
& +o\left(T_{f}(r)\right)
\end{aligned}
$$

$$
\begin{align*}
& \| T_{f}(r)+T_{g}(r) \tag{3.9}\\
& \| \begin{array}{l}
\|(n+1) T_{f}(r)
\end{array}=(n+1) T_{g}(r)+o\left(T_{f}(r)\right) \tag{3.10}\\
& \\
& =\sum_{i=1}^{2 n+2} N_{\left(f, H_{i}\right)}^{(n)}(r)+o\left(T_{f}(r)\right)
\end{align*}
$$

On the other hand, by (3.7) we also have

$$
\begin{equation*}
\| N_{P_{i}}(r) \geq \sum_{v=i, \sigma(i)} N_{\left(f, H_{v}\right)}(r)+\sum_{\substack{v=1 \\ v \neq i, \sigma(i)}}^{2 n+2} N_{\left(f, H_{v}\right)}^{(1)}(r)+o\left(T_{f}(r)\right) \tag{3.11}
\end{equation*}
$$

From (3.8) and (3.11), it follows that

$$
\begin{equation*}
\| \sum_{v=i, \sigma(i)} N_{\left(f, H_{v}\right)}(r) \leq \sum_{v=i, \sigma(i)}\left(2 N_{\left(f, H_{v}\right)}^{(n)}(r)-n N_{\left(f, H_{v}\right)}^{(1)}(r)\right)+o\left(T_{f}(r)\right) \tag{3.12}
\end{equation*}
$$

Since $N_{\left(f, H_{v}\right)}^{(n)}(r) \leq n N_{\left(f, H_{v}\right)}^{(1)}(r)$ and $N_{\left(f, H_{v}\right)}^{(n)}(r) \leq N_{\left(f, H_{v}\right)}(r)$, the inequality (3.12) implies that

$$
\begin{equation*}
\| N_{\left(f, H_{i}\right)}(r)=N_{\left(f, H_{i}\right)}^{(n)}(r)+o\left(T_{f}(r)\right)=n N_{\left(f, H_{i}\right)}^{(1)}(r)+o\left(T_{f}(r)\right) \tag{3.13}
\end{equation*}
$$

for all $1 \leq i \leq 2 n+2$.
Combining (3.8), (3.9), (3.10) and (3.13), we have the following:

$$
\begin{equation*}
\| T_{f}(r)+T_{g}(r)=N_{P_{i}}(r)+o\left(T_{f}(r)\right) \tag{3.15}
\end{equation*}
$$

$$
\begin{equation*}
\| N_{P_{i}}(r)=\sum_{v=i, \sigma(i)} N_{\left(f, H_{v}\right)}^{(n)}(r)+\sum_{\substack{v=1 \\ v \neq i, \sigma(i)}}^{2 n+2} N_{\left(f, H_{v}\right)}^{(1)}(r)+o\left(T_{f}(r)\right) \tag{3.14}
\end{equation*}
$$

$$
\begin{equation*}
\| T_{f}(r)=T_{g}(r)+o\left(T_{f}(r)\right)=\sum_{v=i, \sigma(i)} N_{\left(f, H_{v}\right)}^{(n)}(r)+o\left(T_{f}(r)\right) \tag{3.16}
\end{equation*}
$$

Assume that $H_{i}=\left\{a_{i 0} \omega_{0}+\cdots+a_{i n} \omega_{n}=0\right\}$. We set $h_{i}=\left(f, H_{i}\right) /\left(g, H_{i}\right)$ $(1 \leq i \leq 2 n+2)$. Then

$$
h_{i} / h_{j}=\frac{\left(f, H_{i}\right) \cdot\left(g, H_{j}\right)}{\left(f, H_{j}\right) \cdot\left(g, H_{i}\right)}
$$

does not depend on the representations of f and g respectively. Since
$\sum_{k=0}^{n} a_{i k} f_{k}-h_{i} \sum_{k=0}^{n} a_{i k} g_{k}=0(1 \leq i \leq 2 n+2)$, this implies that $\operatorname{det}\left(a_{i 0}, \ldots, a_{i n}, a_{i 0} h_{i}, \ldots, a_{i n} h_{i} ; 1 \leq i \leq 2 n+2\right)=0$.

For each subset $I \subset\{1, \ldots, 2 n+2\}$, put $h_{I}=\prod_{i \in I} h_{i}$. Denote by \mathcal{I} the set of all combinations $I=\left(i_{1}, \ldots, i_{n+1}\right)$ with $1 \leq i_{1}<\cdots<i_{n+1} \leq 2 n+2$.

For each $I=\left(i_{1}, \ldots, i_{n+1}\right) \in \mathcal{I}$, define

$$
\begin{aligned}
A_{I}= & (-1)^{(n+1)(n+2) / 2+i_{1}+\cdots+i_{n+1}} \operatorname{det}\left(a_{i_{r}} l ; 1 \leq r \leq n+1,0 \leq l \leq n\right) \\
& \times \operatorname{det}\left(a_{j_{s} l} ; 1 \leq s \leq n+1,0 \leq l \leq n\right)
\end{aligned}
$$

where $J=\left(j_{1}, \ldots, j_{n+1}\right) \in \mathcal{I}$ such that $I \cup J=\{1, \ldots, 2 n+2\}$. We have

$$
\sum_{I \in \mathcal{I}} A_{I} h_{I}=0
$$

Take $I_{0} \in \mathcal{I}$. Then $A_{I_{0}} h_{I_{0}}=-\sum_{I \in \mathcal{I}, I \neq I_{0}} A_{I} h_{I}$, that is,

$$
h_{I_{0}}=-\sum_{I \in \mathcal{I}, I \neq I_{0}} \frac{A_{I}}{A_{I_{0}}} h_{I}
$$

Observe then $A_{I} / A_{I_{0}} \not \equiv 0$ for each $I \in \mathcal{I}$.
Denote by t the minimal number satisfying the following: There exist t elements $I_{1}, \ldots, I_{t} \in \mathcal{I} \backslash\left\{I_{0}\right\}$ and t nonzero constants $b_{i} \in \mathbb{C}$ such that $h_{I_{0}}=\sum_{i=1}^{t} b_{i} h_{I_{i}}$.

Since $h_{I_{0}} \not \equiv 0$ and by the minimality of t, it follows that the family $\left\{h_{I_{1}}, \ldots, h_{I_{t}}\right\}$ is linearly independent over \mathbb{C}.

CASE 1: $t=1$. Then $h_{I_{0}} / h_{I_{1}}=o\left(T_{f}(r)\right)$.
CASE 2: $t \geq 2$. Consider the meromorphic mapping $h: \mathbb{C}^{m} \rightarrow \mathbb{P}^{t-1}(\mathbb{C})$ with a reduced representation $h=\left(d h_{I_{1}}: \cdots: d h_{I_{t}}\right)$, where d is meromorphic on \mathbb{C}^{m}.

If z is a zero of $d h_{I_{i}}$, then z must be either a zero or a pole of some h_{v}. Hence z belongs to S_{v} for some v. This yields

$$
\| N_{d h_{I_{i}}}^{(1)}(r) \leq \sum_{v=1}^{2 n+2} N\left(r, \nu_{S_{v}}\right)=o\left(T_{f}(r)\right)
$$

By the Second Main Theorem, we have

$$
\| T_{h}(r) \leq \sum_{i=1}^{t} N_{d h_{I_{i}}}^{(t)}(r)+N_{d h_{I_{0}}}^{(t)}(r)+o\left(T_{f}(r)\right)=o\left(T_{f}(r)\right)+o\left(T_{f}(r)\right)
$$

This yields $\| T_{h}(r)=o\left(T_{f}(r)\right)$. Then $h_{I_{0}} / h_{I_{1}}=o\left(T_{f}(r)\right)$.
Hence, from Cases 1 and 2 we see that for each $I \in \mathcal{I}$, there is $J \in \mathcal{I} \backslash\{I\}$ such that $h_{I} / h_{J} \in \mathcal{R}_{f}^{*}$.

We now consider the torsion free abelian subgroup generated by the subset $\left\{\left[h_{1}\right], \ldots,\left[h_{2 n+2}\right]\right\}$ of the abelian group $\mathcal{M}_{m}^{*} / \mathcal{R}_{f}^{*}$. Then the tuple
$\left(\left[h_{1}\right], \ldots,\left[h_{2 n+2}\right]\right)$ has the property $\left(P_{2 n+2, n+1}\right)$. This implies that there exist $2 n+2-2 n=2$ elements, say $\left[h_{1}\right],\left[h_{2}\right]$, such that $\left[h_{1}\right]=\left[h_{2}\right]$. Then $h_{1} / h_{2}=$ $\chi \in \mathcal{R}_{f}^{*}$.

Suppose that $\chi \not \equiv 1$.
Since $h_{1}(z) / h_{2}(z)=1$ for each $z \in \bigcup_{i=3}^{2 n+2} f^{-1}\left(H_{i}\right) \backslash\left(f^{-1}\left(H_{1}\right) \cup f^{-1}\left(H_{2}\right)\right)$, it follows that $\bigcup_{i=3}^{2 n+2} f^{-1}\left(H_{i}\right) \backslash\left(f^{-1}\left(H_{1}\right) \cup f^{-1}\left(H_{2}\right)\right) \subset \chi^{-1}\{1\}$. By the Second Main Theorem, we have

$$
\begin{aligned}
\|(2 n-n-1) T_{f}(r) & \leq \sum_{i=3}^{2 n+2} N_{\left(f, H_{i}\right)}^{(n)}(r)+o\left(T_{f}(r)\right) \\
& \leq(2 n+2) n N_{(\chi-1)}^{(1)}(r)+o\left(T_{f}(r)\right)=o\left(T_{f}(r)\right)
\end{aligned}
$$

This is a contradiction. Thus, $\chi \equiv 1$, i.e., $h_{1} \equiv h_{2}$. Hence $\nu_{\left(f, H_{i}\right)}=$ $\nu_{\left(g, H_{i}\right)}, i=1,2$. By changing the reduced representations of f_{1}, f_{2} if necessary, we may assume that $\left(f, H_{1}\right)=\left(g, H_{1}\right)$. This yields $\left(f, H_{2}\right)=\left(g, H_{2}\right)$.

Now we consider

$$
\begin{aligned}
P_{1} & =\left(f, H_{1}\right)\left(g, H_{n+1}\right)-\left(f, H_{n+1}\right)\left(g, H_{1}\right) \\
& =\left(f, H_{1}\right)\left(\left(f_{1}, H_{n+1}\right)-\left(g, H_{n+1}\right)\right) \not \equiv 0
\end{aligned}
$$

Since $\left(f, H_{i}\right)(z)=\left(g, H_{i}\right)(z)$ on $\bigcup_{j=1}^{2 N+2} f^{-1}\left(H_{j}\right) \backslash\left(f^{-1}\left(H_{1}\right) \cap f^{-1}\left(H_{2}\right)\right)$ $(1 \leq i \leq 2 n+2)$, we have

$$
\begin{align*}
\| N_{P_{1}}(r) \geq & \left(N_{\left(f, H_{1}\right)}(r)+N_{\left(f, H_{1}\right)}^{(1)}(r)\right)+N_{\left(f, H_{n+1}\right)}(r) \tag{3.17}\\
& +\sum_{\substack{v=1 \\
v \neq 1, n+1}}^{2 n+2} N_{\left(f, H_{v}\right)}^{(1)}(r)+o\left(T_{f}(r)\right)
\end{align*}
$$

From 3.14 and 3.17, we have $\| N_{\left(f, H_{1}\right)}^{(1)}(r)=o\left(T_{f}(r)\right)$. Then $\| T_{f}(r)=$ $N_{\left(f, H_{n+1}\right)}^{(n)}(r)+o\left(T_{f}(r)\right)$ by 3.16 .

We set $Q_{i}=\left(f, H_{i}\right)\left(g, H_{n+1}\right)-\left(g, H_{i}\right)\left(f, H_{n+1}\right)$. Put $\mathcal{Q}=\{1 \leq i \leq$ $\left.2 n+2: Q_{i} \not \equiv 0\right\}$. Suppose that $\sharp \mathcal{Q} \geq n+2$. Without loss of generality, we may assume that $i_{j} \in \mathcal{Q}(1 \leq j \leq n+2)$. Repeating the same argument as in the proof of Theorem 1 and using the Second Main Theorem, we obtain

$$
\begin{aligned}
\| T_{f}(r)+T_{g}(r) & \geq N_{Q_{i}}(r)+O(1) \\
& \geq \sum_{v=n+1, i_{j}} N_{\left(f, H_{v}\right)}^{(n)}(r)+\sum_{\substack{v=1 \\
v \neq n+1, i_{j}}}^{2 n+2} N_{\left(f, H_{v}\right)}^{(1)}(r)+o\left(T_{f}(r)\right) \\
& =\frac{n-1}{n} \sum_{v=n+1, i_{j}} N_{\left(f, H_{v}\right)}^{(n)}(r)+\sum_{v=1}^{2 n+2} N_{\left(f, H_{v}\right)}^{(1)}(r)+o\left(T_{f}(r)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{n-1}{n} T_{f}(r)+\frac{n-1}{n} N_{\left(f, H_{i_{j}}\right)}^{(n)}(r)+\frac{n+1}{n} T_{f}(r)+o\left(T_{f}(r)\right) \\
& =T_{f}(r)+T_{g}(r)+\frac{n-1}{n} N_{\left(f, H_{i_{j}}\right)}^{(n)}(r)+o\left(T_{f}(r)\right)
\end{aligned}
$$

Thus, $\| N_{\left(f, H_{i_{j}}\right)}^{(n)}(r)=o\left(T_{f}(r)\right)$. By the Second Main Theorem again,

$$
\| T_{f}(r) \leq \sum_{j=1}^{n+2} N_{\left(f, H_{i_{j}}\right)}^{(n)}(r)+o\left(T_{f}(r)\right)=o\left(T_{f}(r)\right)
$$

This is a contradiction. Hence $\sharp \mathcal{Q} \leq n+1$. This means that there exist at least $n+1$ indices i such that $Q_{i} \equiv 0$. This implies that $f \equiv g$. This is a contradiction.

Hence $f \equiv g$. The theorem is proved.
Acknowledgments. I am grateful to my advisor Professor Junjiro Noguchi for his advice and many valuable suggestions. I would also like to thank Professor Do Duc Thai for helpful discussions concerning this material.

References

[A] Y. Aihara, Finiteness theorem for meromorphic mappings, Osaka J. Math. 35 (1998), 593-61.
[ChY] Z. H. Chen and Q. M. Yan, Uniqueness theorem of meromorphic mappings into $\mathbb{P}^{N}(\mathbb{C})$ sharing $2 N+3$ hyperplanes regardless of multiplicities, Int. J. Math. 20 (2009), 717-726.
[DT] G. Dethloff and T. V. Tan, Uniqueness theorems for meromorphic mappings with few hyperplanes, Bull. Sci. Math. 133 (2009), 501-514.
[HQT] P. H. Ha, S. D. Quang and D. D. Thai, Unicity theorems with truncated multiplicities of meromorphic mappings in several complex variables sharing small identical sets for moving targets, Int. J. Math. 21 (2010), 1095-1120.
[Fu1] H. Fujimoto, The uniqueness problem of meromorphic maps into the complex projective space, Nagoya Math. J. 58 (1975), 1-23.
[Fu2] -, Non-integrated defect relation for meromorphic maps of complete Kähler manifolds into $\mathbb{P}^{N_{1}}(\mathbb{C}) \times \cdots \times \mathbb{P}^{N_{k}}(\mathbb{C})$, Japan. J. Math. 11 (1985), 233-264.
[Fu3] -, Uniqueness problem with truncated multiplicities in value distribution theory, Nagoya Math. J. 152 (1998), 131-152.
[Fu4] -, Uniqueness problem with truncated multiplicities in value distribution theory, II, ibid. J. 155 (1999), 161-188.
[N] R. Nevanlinna, Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen, Acta Math. 48 (1926), 367-391.
[NO] J. Noguchi and T. Ochiai, Introduction to Geometric Function Theory in Several Complex Variables, Transl. Math. Monogr. 80, Amer. Math. Soc., Providence, RI, 1990.
[QT] S. D. Quang and T. V. Tan, Uniqueness theorem of meromorphic mappings with few hyperplanes, Ann. Univ. Mariae Curie-Skłodowska 62 (2008), 123-142.
[R] M. Ru, A uniqueness theorem with moving targets without counting multiplicity, Proc. Amer. Math. Soc. 129 (2001), 2701-2707.
[S] L. Smiley, Geometric conditions for unicity of holomorphic curves, in: Contemp. Math. 25, Amer. Math. Soc., 1983, 149-154.
[TQ1] D. D. Thai and S. D. Quang, Uniqueness problem with truncated multiplicities of meromorphic mappings in several complex variables for moving targets, Int. J. Math. 16 (2005), 903-939.
[TQ2] —, 一, Uniqueness problem with truncated multiplicities of meromorphic mappings in several complex variables, ibid. 17 (2006), 1223-1257.

Si Duc Quang
Department of Mathematics
Hanoi National University of Education
136-Xuan Thuy, Cau Giay, Hanoi, Vietnam
E-mail: ducquang.s@gmail.com

Received 14.11.2010
and in final form 23.1.2011

[^0]: 2010 Mathematics Subject Classification: Primary 32H30, 32A22; Secondary 30D35. Key words and phrases: truncated multiplicity, meromorphic mapping, unicity.

