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Unicity of meromorphic mappings sharing few hyperplanes

by Si Duc Quang (Hanoi)

Abstract. We prove some theorems on uniqueness of meromorphic mappings into
complex projective space Pn(C), which share 2n + 3 or 2n + 2 hyperplanes with truncated
multiplicities.

1. Introduction. In 1926, R. Nevanlinna showed that two distinct non-
constant meromorphic functions f and g on the complex plane C cannot have
the same inverse images for five distinct values, and that g is a special type
of linear fractional transformation of f if they have the same inverse images
counted with multiplicities for four distinct values [N].

In 1975, H. Fujimoto [Fu1] generalized Nevalinna’s results to the case
of meromorphic mappings of Cm into Pn(C). He considered two distinct
meromorphic maps f and g of Cm into Pn(C) satisfying the condition that
ν(f,Hj) = ν(g,Hj) for q hyperplanes H1, . . . ,Hq of Pn(C) in general position,
where ν(f,Hj) is the map of Cm into Z whose value ν(f,Hj)(a) (a ∈ Cm) is
the intersection multiplicity of the images of f and Hj at f(a). He proved
the following

Theorem A ([Fu1]). Let Hi, 1 ≤ i ≤ 3n + 2, be 3n + 2 hyperplanes
of Pn(C) in general position, and let f and g be nonconstant meromorphic
mappings of Cm into Pn(C) with f(Cm) * Hi and g(Cm) * Hi such that
ν(f,Hi) = ν(g,Hi) for 1 ≤ i ≤ 3n + 2. Assume that either f or g is linearly
nondegenerate over C, that is, the image is not included in any hyperplane
in Pn(C). Then f ≡ g.

Since that time, the unicity problem without truncated mutiplicities has
been studied intensively by many authors, including M. Ru, Y. Aihara,
D. D. Thai–S. D. Quang, G. Dethloff–T. V. Tan, Z. Chen–Q. Yan and others.

We state here the recent result of Z. Chen and Q. Yan which is the best
result available at present.
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Take a meromorphic mapping f of Cm into Pn(C) which is linearly non-
degenerate over C, a positive integer d, and q hyperplanes H1, . . . ,Hq in
Pn(C) in general position with

dim f−1(Hi ∩Hj) ≤ m− 2 (1 ≤ i < j ≤ q),

and consider the set F(f, {Hi}qi=1, d) of all linearly nondegenerate (over C)
meromorphic maps g : Cm → Pn(C) satisfying the conditions:

(a) min(ν(f,Hj), d) = min(ν(g,Hj), d) (1 ≤ j ≤ q),
(b) f(z) = g(z) on

⋃q
j=1 f

−1(Hj).

Denote by ]S the cardinality of the set S.

Theorem B (Z. Chen–Q. Yan [ChY]). ]F(f, {Hi}2n+3
i=1 , 1) = 1.

We emphasize that the proof of Theorem B was complicated.
Our first purpose is to prove a more general and slightly stronger form

of the result of Z. Chen and Q. Yan. Moreover, we simplify its proof. First
of all, let us recall the following.

Let f be a nonconstant meromorphic mapping of Cm into Pn(C), let H
be a hyperplane in Pn(C) and let k be a positive integer. For every z ∈ Cm,
we set

ν(f,H),≤k(z) =
{ 0 if ν(f,H)(z) > k,
ν(f,H)(z) if ν(f,H)(z) ≤ k,

ν(f,H),>k(z) =
{
ν(f,H)(z) if ν(f,H)(z) > k,
0 if ν(f,H)(z) ≤ k.

We now take a meromorphic mapping f of Cm into Pn(C) which is
linearly nondegenerate over C, positive integers k, d, and q hyperplanes
H1, . . . ,Hq of Pn(C) in general position with

dim{z ∈ Cm : ν(f,Hi),≤k(z) > 0 and ν(f,Hj),≤k(z) > 0} ≤ m− 2

(1 ≤ i < j ≤ q), and consider the set F(f, {Hj}qj=1, k, d) of all linearly non-
degenerate meromorphic maps g : Cm → Pn(C) satisfying the conditions:

(a) min(ν(f,Hj),≤k, d) = min(ν(g,Hj),≤k, d) (1 ≤ j ≤ q),
(b) f(z) = g(z) on

⋃q
j=1{z ∈ Cm : ν(f,Hj),≤k(z) > 0}.

Then we see that

F(f, {Hj}qj=1, d) = F(f, {Hj}qj=1,∞, d) ⊂ F(f, {Hj}qj=1, k, d).

We will improve Theorem B to the following.

Theorem 1. ]F(f, {Hi}2n+3
i=1 , k, 1) = 1 for k >

n(4n2 + 11n+ 4)
3n+ 2

− 1.
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Our second main aim is to show a unicity theorem for meromorphic
mappings sharing 2n+2 hyperplanes with truncated multiplicities to level 1.
Namely, we will prove the following.

Theorem 2. Let f be a linearly nondegenerate meromorphic mapping
of Cm into Pn(C) and let H1, . . . ,H2n+2 be 2n+ 2 hyperplanes of Pn(C) in
general position with

dim f−1(Hi ∩Hj) ≤ m− 2 (1 ≤ i < j ≤ q).
Let g be a linearly nondegenerate meromorphic mapping of Cm into Pn(C)
satisfying:

(a) min{ν(f,Hj),≤n, 1} = min{ν(g,Hj),≤n, 1},
min{ν(f,Hj),≥n, 1} = min{ν(g,Hj),≥n, 1} (1 ≤ j ≤ q),

(b) f(z) = g(z) on
⋃2n+2
j=1 f−1(Hj).

If n ≥ 2 then f ≡ g.

2. Basic notions in Nevanlinna theory

2.1. We set ‖z‖ = (|z1|2 + · · ·+ |zm|2)1/2 for z = (z1, . . . , zm) ∈ Cm and
define

B(r) := {z ∈ Cm : ‖z‖ < r}, S(r) := {z ∈ Cm : ‖z‖ = r} (0 < r <∞).

Set

σ(z) := (ddc‖z‖2)m−1,

η(z) := dc log ‖z‖2 ∧ (ddc log ‖z‖2)m−1 on Cm \ {0}.
2.2. Let F be a nonzero holomorphic function on a domain Ω in Cm.

For a set α = (α1, . . . , αm) of nonnegative integers, we set |α| = α1+· · ·+αn
and DαF = ∂|α|F/∂α1z1 · · · ∂αmzm. We define the map νF : Ω → Z by

νF (z) := max{l : DαF (z) = 0 for all α with |α| < l} (z ∈ Ω).

A divisor on a domain Ω in Cm is a map ν : Ω → Z such that, for each
a ∈ Ω, there are nonzero holomorphic functions F and G on a connected
neighborhood U ⊂ Ω of a such that ν(z) = νF (z) − νG(z) for each z ∈ U
outside an analytic set of dimension ≤ m− 2. Two divisors are regarded as
the same if they are identical outside an analytic set of dimension ≤ m− 2.
For a divisor ν on Ω we set |ν| := {z : ν(z) 6= 0}, which is a purely (m− 1)-
dimensional analytic subset of Ω or an empty set.

Take a nonzero meromorphic function ϕ on a domain Ω in Cm. For each
a ∈ Ω, we choose nonzero holomorphic functions F and G on a neighborhood
U ⊂ Ω such that ϕ = F/G on U and dim(F−1(0)∩G−1(0)) ≤ m−2, and we
define the divisors νϕ, ν∞ϕ by νϕ := νF , ν

∞
ϕ := νG, which are independent

of the choices of F and G and so globally well-defined on Ω.
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2.3. For a divisor ν on Cm and for positive integers k,M or M = ∞,
we define the counting function of ν by

ν(M)(z) = min {M,ν(z)},

ν
(M)
≤k (z) =

{
0 if ν(z) > k,
ν(M)(z) if ν(z) ≤ k,

ν
(M)
≥k (z) =

{
ν(M)(z) if ν(z) ≥ k,
0 if ν(z) < k,

n(t) =


	

B(t)

ν(z)σ if m ≥ 2,∑
|z|≤t

ν(z) if m = 1.

Similarly, we define n(M)(t), n(M)
≤k (t), n(M)

≥k (t). Set

N(r, ν) =
r�

1

n(t)
t2m−1

dt (1 < r <∞).

Similarly, we define N(r, ν(M)), N(r, ν(M)
≤k ), N(r, ν(M)

≥k ) and denote them by

N (M)(r, ν), N (M)
≤k (r, ν), N (M)

≥k (r, ν) respectively.
Let ϕ : Cm → C be a meromorphic function. Define

Nϕ(r) = N(r, νϕ), N (M)
ϕ (r) = N (M)(r, νϕ),

N
(M)
ϕ,≤k(r) = N

(M)
≤k (r, νϕ), N

(M)
ϕ,≥k(r) = N

(M)
≥k (r, νϕ).

For brevity we will omit the superscript (M) if M =∞.

2.4. Let f : Cm → Pn(C) be a meromorphic mapping. For fixed homoge-
neous coordinates (w0 : · · · : wn) on Pn(C), we take a reduced representation
f = (f0 : · · · : fn), which means that each fi is a holomorphic function on
Cm and f(z) = (f0(z) : · · · : fn(z)) outside the analytic set I(f) = {f0 =
· · · = fn = 0} of codimension ≥ 2. Set ‖f‖ = (|f0|2 + · · ·+ |fn|2)1/2.

The characteristic function of f is defined by

Tf (r) =
�

S(r)

log ‖f‖ η −
�

S(1)

log ‖f‖ η.

Let H be a hyperplane in Pn(C) given by H = {a0ω0 + · · ·+ anωn = 0},
where a := (a0, . . . , an) 6= (0, . . . , 0). We set (f,H) =

∑n
i=0 aifi. We define

the corresponding divisor f∗H by f∗H(z) = ν(f,H)(z) (z ∈ Cm), which is
independent of the choice of the reduced representation of f . From now on,
we will write ν(f,H) for f∗H if there is no confusion. Moreover, we define the
proximity function of f with respect to H by

mf,H(r) =
�

S(r)

log
‖f‖ · ‖H‖
|(f,H)|

η −
�

S(1)

log
‖f‖ · ‖H‖
|(f,H)|

η,

where ‖H‖ = (
∑n

i=0 |ai|2)1/2.
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2.5. Let ϕ be a nonzero meromorphic function on Cm, which is occa-
sionally regarded as a meromorphic map into P1(C). The proximity function
of ϕ is defined by

m(r, ϕ) :=
�

S(r)

log+ |ϕ| η,

where log+ t = max{0, log t} for t > 0. The Nevanlinna characteristic func-
tion of ϕ is defined by

T (r, ϕ) = N1/ϕ(r) +m(r, ϕ).

Then
Tϕ(r) = T (r, ϕ) +O(1).

The meromorphic function ϕ is said to be small with respect to f if
‖ T (r, ϕ) = o(Tf (r))

2.6. As usual, the notation ‖ P means the assertion P holds for all
r ∈ [0,∞) excluding a Borel subset E of [0,∞) with

	
E dr <∞.

The following statements are essential in Nevanlinna theory (see [NO]).

2.7. The First Main Theorem. Let f : Cm → Pn(C) be a meromor-
phic mapping and let H be a hyperplane in Pn(C) such that f(Cm) 6⊂ H.
Then

N(f,H)(r) +mf,H(r) = Tf (r) (r > 1).

2.8. The Second Main Theorem. Let f : Cm → Pn(C) be a linearly
nondegenerate meromorphic mapping and H1, . . . ,Hq be q hyperplanes in
general position in Pn(C). Then∥∥∥ (q − n− 1)Tf (r) ≤

q∑
i=1

N
(n)
(f,Hi)

(r) + o(Tf (r)).

2.9. Lemma on logarithmic derivative. Let f be a nonzero mero-
morphic function on Cm. Then∥∥∥∥ m(r, Dα(f)

f

)
= O(log+ T (r, f)) (α ∈ Zm+ ).

2.10. Denote by M∗m the abelian multiplicative group of all nonzero
meromorphic functions on Cm. Denote by R∗f the group of all nonzero mero-
morphic functions on Cm which are small with respect to f . Then R∗f is a
subgroup of M∗m and the multiplicative group M∗m/R∗f is a torsion free
abelian group.

Let G be a torsion free abelian group and let A = (a1, . . . , aq) be a
q-tuple of elements of G. Let q ≥ r > s > 1. We say that the q-tuple
A has the property (Pr,s) if any r elements al(1), . . . , al(r) in A satisfy the
condition that for any given i1, . . . , is (1 ≤ i1 < · · · < is ≤ r), there exist
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j1, . . . , js (1 ≤ j1 < · · · < js ≤ r) with {i1, . . . , is} 6= {j1, . . . , js} such that
al(i1) . . . al(is) = al(j1) . . . al(js).

2.11. Proposition (H. Fujimoto [Fu1]). Let G be a torsion free abelian
group and A = (a1, . . . , aq) a q-tuple in G. If A has the property (Pr,s) for
some r, s with q ≥ r > s > 1, then there exist i1, . . . , iq−r+2 with 1 ≤ i1 < · · ·
< iq−r+2 ≤ q such that ai1 = · · · = aiq−r+2 .

3. Proofs of Theorems 1 and 2

3.1. Lemma. Let f : Cm → Pn(C) be a linearly nondegenerate mero-
morphic mapping and let H1, . . . ,Hq be q hyperplanes of Pn(C) in gen-
eral position and let k be a positive integer. Assume that q ≥ n + 2 and
k ≥ nq/(q − n− 1). Then∥∥∥∥ Tf (r) ≤ k + 1− n

(k + 1)(q − n− 1)− nq

q∑
i=1

N
(n)
(f,Hi),≤k(r) + o(Tf (r)).

Proof. By the Second Main Theorem, we have∥∥∥ (q − n− 1)Tf (r) ≤
q∑
i=1

N
(n)
(f,Hi)

(r) + o(Tf (r))

=
q∑
i=1

N
(n)
(f,Hi),≤k(r) +

q∑
i=1

N
(n)
(f,Hi),≥k+1(r) + o(Tf (r))

≤
q∑
i=1

N
(n)
(f,Hi),≤k(r) +

n

k + 1

q∑
i=1

N(f,Hi),≥k+1(r) + o(Tf (r))

≤
(

1− n

k + 1

) q∑
i=1

N
(n)
(f,Hi),≤k(r)

+
n

k + 1

q∑
i=1

(N(f,Hi),≥k+1(r) +N(f,Hi),≤k(r)) + o(Tf (r))

=
(

1− n

k + 1

) q∑
i=1

N
(n)
(f,Hi),≤k(r) +

n

k + 1

q∑
i=1

N(f,Hi)(r) + o(Tf (r))

≤
(

1− n

k + 1

) q∑
i=1

N
(n)
(f,Hi),≤k(r) +

nq

k + 1
Tf (r) + o(Tf (r)).

Hence∥∥∥∥ Tf (r) ≤ k + 1− n
(k + 1)(q − n− 1)− nq

q∑
i=1

N
(n)
(f,Hi),≤k(r) + o(Tf (r)).
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3.2. Lemma. Suppose k ≥ 2n+ 1 and q ≥ 2n+ 2. Then

‖ Tg(r) = O(Tf (r)) and ‖ Tf (r) = O(Tg(r))

for each g ∈ F(f, {Hi}qi=1, k, 1).

Proof. By the Second Main Theorem, we have∥∥∥ (q − n− 1)Tg(r) ≤
q∑
i=1

N
(n)
(g,Hi)

(r) + o(Tg(r))

≤
q∑
i=1

nN
(1)
(g,Hi)

(r) + o(Tg(r))

≤
q∑
i=1

nN
(1)
(f,Hi),≤k(r) +

q∑
i=1

n

k + 1
N

(1)
(g,Hi),≥k+1(r)

+ o(Tg(r))

≤ qnTf (r) +
qn

k + 1
Tg(r) + o(Tg(r)).

Thus ∥∥∥∥ (q(k + 1− n)
k + 1

− n− 1
)
Tg(r) ≤ qnTf (r) + o(Tg(r)).

Hence ‖ Tg(r) = O(Tf (r)). Similarly, we get ‖ Tf (r) = O(Tg(r)).

3.3. Proof of Theorem 1. Suppose that there exist two distinct maps
f, g ∈ F(f, {Hi}2n+3

i=1 , k, 1).
By changing indices if necessary, we may assume that

(f,H1)
(g,H1)

≡ · · · ≡ (f,Hk1)
(g,Hk1)︸ ︷︷ ︸

group 1

6≡ (f,Hk1+1)
(g,Hk1+1)

≡ · · · ≡ (f,Hk2)
(g,Hk2)︸ ︷︷ ︸

group 2

6≡ (f,Hk2+1)
(g,Hk2+1)

≡ · · · ≡ (f,Hk3)
(g,Hk3)︸ ︷︷ ︸

group 3

6≡ · · · 6≡
(f,Hks−1+1)
(g,Hks−1+1)

≡ · · · ≡ (f,Hks)
(g,Hks)︸ ︷︷ ︸

group s

,

where ks = 2n+ 3.
For each 1 ≤ i ≤ 2n+ 3, we set

σ(i) =
{
i+ n if i+ n ≤ 2n+ 3,
i− n− 3 if i+ n > 2n+ 3.

and
Pi = (f,Hi)(g,Hσ(i))− (g,Hi)(f,Hσ(i)).

Since f 6≡ g, the number of elements of each group is at most n. Hence
(f,Hi)/(g,Hi) and (f,Hσ(i))/(g,Hσ(i)) belong to distinct groups. This means
that Pi 6≡ 0 (1 ≤ i ≤ 2n+ 3).
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Fix an index i with 1 ≤ i ≤ 2n+3. For z 6∈ I(f)∪I(g)∪
⋃
s 6=t f

−1(Hs∩Ht),
it is easy to see that:

• If z is a zero of (f,Hi) then it is a zero of Pi with multiplicity at least
min{ν(f,Hi), ν(g,Hi)}. Similarly, if z is a zero of (f,Hσ(i)) then it is a
zero of Pi with multiplicity at least min{ν(f,Hσ(i)), ν(g,Hσ(i))}.
• If z is a zero of (f,Hv) with v 6∈ {i, σ(i)} then it is a zero of Pi (because
f(z) = g(z)).

Thus, we have

νPi(z)≥min{ν(f,Hi), ν(g,Hi)}+min{ν(f,Hσ(i)), ν(g,Hσ(i))}+
2n+3∑
v=1

v 6=i,σ(i)

ν
(1)
(f,Hv),≤k(z)

for all z outside the analytic set I(f)∪I(g)∪
⋃
s 6=t f

−1(Hs∩Ht) of dimension
≤ m− 2.

Since min{a, b} ≥ min{a, n} + min{b, n} − n for all positive integers a
and b, the above inequality implies that

νPi(z) ≥
∑

v=i,σ(i)

(
min{ν(f,Hv)(z), n}+ min{ν(g,Hv)(z), n}

− nmin{ν(f,Hv)(z), 1}
)

+
2n+3∑
v=1

v 6=i,σ(i)

ν
(1)
(f,Hv),≤k(z)

for all z outside the analytic set I(f) ∪ I(g) ∪
⋃
s6=t f

−1(Hs ∩Ht).
Integrating both sides of the above inequality, we get

NPi(r) ≥
∑

v=i,σ(i)

(N (n)
(f,Hv),≤k(r) +N

(n)
(g,Hv),≤k(r)− nN

(1)
(f,Hv),≤k(r))

+
2n+3∑
v=1

v 6=i,σ(i)

N
(1)
(f,Hv),≤k(r).

On the other hand, by Jensen’s formula and the definition of the char-
acteristic function, we have

NPi(r) =
�

S(r)

log |Pi| η +O(1)

≤
�

S(r)

log(|(f,Hi)|2 + |(f,Hσ(i)|2)1/2 η

+
�

S(r)

log(|(g,Hi)|2 + |(g,Hσ(i)|2)1/2 η +O(1)
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≤
�

S(r)

log(‖f‖(‖Hi‖2 + ‖Hσ(i)‖2)1/2)η

+
�

S(r)

log(‖g‖(‖Hi‖2 + ‖Hσ(i)‖2)1/2)η +O(1)

=
�

S(r)

log ‖f‖ η +
�

S(r)

log ‖g‖ η +O(1)

= Tf (r) + Tg(r) +O(1).

This implies that

Tf (r) + Tg(r) ≥
∑

v=i,σ(i)

(N (n)
(f,Hv),≤k(r) +N

(n)
(g,Hv),≤k(r)− nN

(1)
(f,Hv),≤k(r))

+
2n+3∑
v=1

v 6=i,σ(i)

N
(1)
(f,Hv),≤k(r) + o(Tf (r)).

Summing both sides of the above inequality over i = 1, . . . , 2n+ 3, we have

(2n+ 3)(Tf (r) + Tg(r)) ≥ 2
2n+3∑
v=1

(N (n)
(f,Hv),≤k(r) +N

(n)
(g,Hv),≤k(r))

+
2n+3∑
v=1

N
(1)
(f,Hv),≤k(r) + o(Tf (r))

≥
(

2 +
1

2n

) 2n+3∑
v=1

(N (n)
(f,Hv),≤k(r) +N

(n)
(g,Hv),≤k(r))

+ o(Tf (r)).

By Lemma 3, it follows that∥∥∥∥ (2 +
1

2n

) 2n+3∑
v=i

(N (n)
(f,Hv),≤k(r) +N

(n)
(g,Hv),≤k(r))

≥
(

2 +
1

2n

)
(k + 1)(n+ 2)− 2n2 − 3n

k + 1− n
(Tf (r) + Tg(r)) + o(Tf (r)).

Thus∥∥∥∥ (2n+ 3)(Tf (r) + Tg(r)) ≥
(

2 +
1

2n

)
(k + 1)(n+ 2)− 2n2 − 3n

k + 1− n
× (Tf (r) + Tg(r)) + o(Tf (r)).

Letting r →∞, we get k ≤ n(4n2+11n+4)
3n+2 − 1. This is a contradiction.

Hence ]F(f, {Hi}2n+3
i=1 , k, 1) = 1 for all k > n(4n2+11n+4)

3n+2 − 1.
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3.4. Proof of Theorem 2. Suppose that f 6≡ g. Then f and g belong
to F(f, {Hi}2n+2

i=1 ,∞, 1). By repeating the same argument as in the proof of
Theorem 1, we may assume that Pi = (f,Hi)(g,Hσ(i))−(g,Hi)(f,Hσ(i)) 6≡ 0
for all 1 ≤ i ≤ 2n+ 2, where

σ(i) =
{
i+ n if i+ n ≤ 2n+ 2,
i− n− 2 if i+ n > 2n+ 2.

For each 1 ≤ i ≤ 2n+2, we set Si = {z ∈ Cm : ν(f,Hi)(z) 6= ν(g,Hi)(z)}. Then
Si is an analytic subset of dimension m− 1 and Si \Si is an analytic subset
of dimension ≤ m − 2. Denote by νSi the reduced divisor with support Si.
For z ∈ f−1(Hi), it is easy to see that:

• If z ∈ Si then either

max{ν(f,Hi)(z), ν(g,Hi)(z)} < n or min{ν(f,Hi)(z), ν(g,Hi)(z)} > n

by assumption (a) of the theorem. Because νSi(z) = 1, we have

min{ν(f,Hi)(z), n}+ min{ν(g,Hi)(z), n}+ νSi(z)

≤ min{ν(f,Hi)(z), ν(g,Hi)(z)}+ nmin{ν(f,Hi)(z), 1}.

• If z 6∈ Si then ν(f,Hi)(z) = ν(g,Hi)(z) and νSi(z) = 0. Hence

min{ν(f,Hi)(z), n}+min{ν(g,Hi)(z), n}+νSi(z) ≤ min{ν(f,Hi)(z), n}+n
≤ min{ν(f,Hi)(z), ν(g,Hi)(z)}+ nmin{ν(f,Hi)(z), 1}.

This yields

min{ν(f,Hi)(z), n}+ min{ν(g,Hi)(z), n}+ νSi(z)

≤ min{ν(f,Hi)(z), ν(g,Hi)(z)}+ nmin{ν(f,Hi)(z), 1}

for all z ∈ f−1(Hi) and hence for all z ∈ Cm.
By using the same argument as in the proof of Theorem 1, we obtain

νPi(z) ≥ min{ν(f,Hi)(z), ν(g,Hi)(z)}+ min{ν(f,Hσ(i))(z), ν(g,Hσ(i))(z)}

+
2n+2∑
v=1

v 6=i,σ(i)

ν
(1)
(f,Hv)

(z)

≥
∑

v=i,σ(i)

(
min{ν(f,Hv)(z), n}+ min{ν(g,Hi)(z), n}+ νSv(z)

− nmin{ν(f,Hv)(z), 1}
)

+
2n+2∑
v=1

v 6=i,σ(i)

ν
(1)
(f,Hv)

(z)
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for all z outside an analytic set of dimension ≤ m− 2. This implies that

NPi(r) ≥
∑

v=i,σ(i)

(N (n)
(f,Hv)

(r) +N
(n)
(g,Hi)

(r) +N(r, νSv)− nN
(1)
(f,Hv)

(r))

+
2n+2∑
v=1

v 6=i,σ(i)

N
(1)
(f,Hv)

(r).

By repeating the same argument as in the proof of Theorem 1, we have

(3.5) Tf (r) + Tg(r) ≥ NPi(r)

≥
∑

v=i,σ(i)

(N (n)
(f,Hv)

(r)+N
(n)
(g,Hi)

(r)+N(r, νSv)−nN
(1)
(f,Hv)

(r))+
2n+2∑
v=1

v 6=i,σ(i)

N
(1)
(f,Hv)

(r).

Summing over i = 1, . . . , 2n + 2 and using the Second Main Theorem, we
obtain

(3.6)
∥∥∥ (2n+ 2)(Tf (r) + Tg(r))

≥ 2
2n+2∑
i=1

(N (n)
(f,Hi)

(r) +N
(n)
(g,Hi)

(r) +N(r, νSi)− nN
(1)
(f,Hi)

(r))

+ 2n
2n+2∑
i=1

N
(1)
(f,Hi)

(r)

= 2
2n+2∑
i=1

(N (n)
(f,Hi)

(r) +N
(n)
(g,Hi)

(r) +N(r, νSi))

≥ (2n+ 2)(Tf (r) + Tg(r)) + 2
2n+2∑
i=1

N(r, νSi) + o(Tf (r)).

Hence,

‖ N(r, νSi) = o(Tf (r)),(3.7)

and inequalities (3.5), (3.6) become equalities for all 1 ≤ i ≤ 2n+ 2. Thus,
for 1 ≤ i ≤ 2n+ 2, we have∥∥∥ NPi(r) =

∑
v=i,σ(i)

(N (n)
(f,Hv)

(r) +N
(n)
(g,Hi)

(r)− nN (1)
(f,Hv)

(r))(3.8)

+
2n+2∑
v=1

v 6=i,σ(i)

N
(1)
(f,Hv)

(r) + o(Tf (r))
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=
∑

v=i,σ(i)

(2N (n)
(f,Hv)

(r)− nN (1)
(f,Hv)

(r)) +
2n+2∑
v=1

v 6=i,σ(i)

N
(1)
(f,Hv)

(r)

+ o(Tf (r)),

‖ Tf (r) + Tg(r) = NPi(r) + o(Tf (r)),(3.9) ∥∥∥ (n+ 1)Tf (r) = (n+ 1)Tg(r) + o(Tf (r))(3.10)

=
2n+2∑
i=1

N
(n)
(f,Hi)

(r) + o(Tf (r)).

On the other hand, by (3.7) we also have∥∥∥ NPi(r) ≥
∑

v=i,σ(i)

N(f,Hv)(r) +
2n+2∑
v=1

v 6=i,σ(i)

N
(1)
(f,Hv)

(r) + o(Tf (r)).(3.11)

From (3.8) and (3.11), it follows that

∥∥∥ ∑
v=i,σ(i)

N(f,Hv)(r) ≤
∑

v=i,σ(i)

(2 N (n)
(f,Hv)

(r)− n N (1)
(f,Hv)

(r)) + o(Tf (r)).

(3.12)

Since N (n)
(f,Hv)

(r) ≤ nN
(1)
(f,Hv)

(r) and N
(n)
(f,Hv)

(r) ≤ N(f,Hv)(r), the inequality
(3.12) implies that

‖ N(f,Hi)(r) = N
(n)
(f,Hi)

(r) + o(Tf (r)) = nN
(1)
(f,Hi)

(r) + o(Tf (r))(3.13)

for all 1 ≤ i ≤ 2n+ 2.
Combining (3.8), (3.9), (3.10) and (3.13), we have the following:∥∥∥ NPi(r) =

∑
v=i,σ(i)

N
(n)
(f,Hv)

(r) +
2n+2∑
v=1

v 6=i,σ(i)

N
(1)
(f,Hv)

(r) + o(Tf (r)),(3.14)

‖ Tf (r) + Tg(r) = NPi(r) + o(Tf (r)),(3.15) ∥∥∥ Tf (r) = Tg(r) + o(Tf (r)) =
∑

v=i,σ(i)

N
(n)
(f,Hv)

(r) + o(Tf (r)).(3.16)

Assume that Hi = {ai0ω0 + · · ·+ainωn = 0}. We set hi = (f,Hi)/(g,Hi)
(1 ≤ i ≤ 2n+ 2). Then

hi/hj =
(f,Hi) · (g,Hj)
(f,Hj) · (g,Hi)

does not depend on the representations of f and g respectively. Since
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k=0 aikfk − hi

∑n
k=0 aikgk = 0 (1 ≤ i ≤ 2n + 2), this implies that

det(ai0, . . . , ain, ai0hi, . . . , ainhi; 1 ≤ i ≤ 2n+ 2) = 0.
For each subset I ⊂ {1, . . . , 2n+ 2}, put hI =

∏
i∈I hi. Denote by I the

set of all combinations I = (i1, . . . , in+1) with 1 ≤ i1 < · · · < in+1 ≤ 2n+ 2.
For each I = (i1, . . . , in+1) ∈ I, define

AI = (−1)(n+1)(n+2)/2+i1+···+in+1 det(airl; 1 ≤ r ≤ n+ 1, 0 ≤ l ≤ n)
× det(ajsl; 1 ≤ s ≤ n+ 1, 0 ≤ l ≤ n),

where J = (j1, . . . , jn+1) ∈ I such that I ∪ J = {1, . . . , 2n+ 2}. We have∑
I∈I

AIhI = 0.

Take I0 ∈ I. Then AI0hI0 = −
∑

I∈I, I 6=I0 AIhI , that is,

hI0 = −
∑

I∈I, I 6=I0

AI
AI0

hI .

Observe then AI/AI0 6≡ 0 for each I ∈ I.
Denote by t the minimal number satisfying the following: There exist

t elements I1, . . . , It ∈ I \ {I0} and t nonzero constants bi ∈ C such that
hI0 =

∑t
i=1 bihIi .

Since hI0 6≡ 0 and by the minimality of t, it follows that the family
{hI1 , . . . , hIt} is linearly independent over C.

Case 1: t = 1. Then hI0/hI1 = o(Tf (r)).

Case 2: t ≥ 2. Consider the meromorphic mapping h : Cm → Pt−1(C)
with a reduced representation h = (dhI1 : · · · : dhIt), where d is meromorphic
on Cm.

If z is a zero of dhIi , then z must be either a zero or a pole of some hv.
Hence z belongs to Sv for some v. This yields∥∥∥ N (1)

dhIi
(r) ≤

2n+2∑
v=1

N(r, νSv) = o(Tf (r)).

By the Second Main Theorem, we have∥∥∥ Th(r) ≤
t∑
i=1

N
(t)
dhIi

(r) +N
(t)
dhI0

(r) + o(Tf (r)) = o(Tf (r)) + o(Tf (r)).

This yields ‖ Th(r) = o(Tf (r)). Then hI0/hI1 = o(Tf (r)).
Hence, from Cases 1 and 2 we see that for each I ∈ I, there is J ∈ I\{I}

such that hI/hJ ∈ R∗f .
We now consider the torsion free abelian subgroup generated by the

subset {[h1], . . . , [h2n+2]} of the abelian group M∗m/R∗f . Then the tuple
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([h1], . . . , [h2n+2]) has the property (P2n+2,n+1). This implies that there exist
2n+ 2− 2n = 2 elements, say [h1], [h2], such that [h1] = [h2]. Then h1/h2 =
χ ∈ R∗f .

Suppose that χ 6≡ 1.
Since h1(z)/h2(z) = 1 for each z ∈

⋃2n+2
i=3 f−1(Hi)\(f−1(H1)∪f−1(H2)),

it follows that
⋃2n+2
i=3 f−1(Hi) \ (f−1(H1) ∪ f−1(H2)) ⊂ χ−1{1}. By the

Second Main Theorem, we have∥∥∥ (2n− n− 1)Tf (r) ≤
2n+2∑
i=3

N
(n)
(f,Hi)

(r) + o(Tf (r))

≤ (2n+ 2)nN (1)
(χ−1)(r) + o(Tf (r)) = o(Tf (r)).

This is a contradiction. Thus, χ ≡ 1, i.e., h1 ≡ h2. Hence ν(f,Hi) =
ν(g,Hi), i = 1, 2. By changing the reduced representations of f1, f2 if neces-
sary, we may assume that (f,H1) = (g,H1). This yields (f,H2) = (g,H2).

Now we consider

P1 = (f,H1)(g,Hn+1)− (f,Hn+1)(g,H1)
= (f,H1)((f1, Hn+1)− (g,Hn+1)) 6≡ 0.

Since (f,Hi)(z) = (g,Hi)(z) on
⋃2N+2
j=1 f−1(Hj) \ (f−1(H1) ∩ f−1(H2))

(1 ≤ i ≤ 2n+ 2), we have

‖ NP1(r) ≥ (N(f,H1)(r) +N
(1)
(f,H1)(r)) +N(f,Hn+1)(r)(3.17)

+
2n+2∑
v=1

v 6=1,n+1

N
(1)
(f,Hv)

(r) + o(Tf (r)).

From (3.14) and (3.17), we have ‖ N (1)
(f,H1)(r) = o(Tf (r)). Then ‖ Tf (r) =

N
(n)
(f,Hn+1)(r) + o(Tf (r)) by (3.16).

We set Qi = (f,Hi)(g,Hn+1) − (g,Hi)(f,Hn+1). Put Q = {1 ≤ i ≤
2n + 2 : Qi 6≡ 0}. Suppose that ]Q ≥ n + 2. Without loss of generality, we
may assume that ij ∈ Q (1 ≤ j ≤ n+ 2). Repeating the same argument as
in the proof of Theorem 1 and using the Second Main Theorem, we obtain

‖ Tf (r) + Tg(r) ≥ NQi(r) +O(1)

≥
∑

v=n+1,ij

N
(n)
(f,Hv)

(r) +
2n+2∑
v=1

v 6=n+1,ij

N
(1)
(f,Hv)

(r) + o(Tf (r))

=
n− 1
n

∑
v=n+1,ij

N
(n)
(f,Hv)

(r) +
2n+2∑
v=1

N
(1)
(f,Hv)

(r) + o(Tf (r))
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=
n−1
n

Tf (r) +
n−1
n

N
(n)
(f,Hij )

(r) +
n+1
n

Tf (r) + o(Tf (r))

= Tf (r) + Tg(r) +
n− 1
n

N
(n)
(f,Hij )

(r) + o(Tf (r)).

Thus, ‖ N (n)
(f,Hij )

(r) = o(Tf (r)). By the Second Main Theorem again,

∥∥∥ Tf (r) ≤
n+2∑
j=1

N
(n)
(f,Hij )

(r) + o(Tf (r)) = o(Tf (r)).

This is a contradiction. Hence ]Q ≤ n+ 1 . This means that there exist at
least n + 1 indices i such that Qi ≡ 0. This implies that f ≡ g. This is a
contradiction.

Hence f ≡ g. The theorem is proved.
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