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Three periodic solutions for an
ordinary differential inclusion with two parameters

by Antonio Iannizzotto (Catania)

Abstract. Applying a nonsmooth version of a three critical points theorem of Ricceri,
we prove the existence of three periodic solutions for an ordinary differential inclusion
depending on two parameters.

1. Introduction. In the present paper we will study a second order
ordinary differential inclusion subject to periodic boundary conditions, of
the following type:

(1.1)


−u′′ + u ∈ H(x, u) in [0, 1],
u(0) = u(1),
u′(0) = u′(1).

Here H is a multifunction defined in [0, 1] × R whose values are compact
intervals in R, measurable with respect to the first variable and upper semi-
continuous (u.s.c.) with respect to the second (a set of assumptions that
reduces to the usual Carathéodory condition if H is single-valued).

Ordinary differential inclusions (o.d.i.’s) represent a natural generaliza-
tion of ordinary differential equations (o.d.e.’s). They can be studied through
a variety of methods, most of which lead to existence results: for instance,
we recall the interesting works of Frigon & Granas [4], Erbe & Krawcewicz
[3] and Kourogenis [7]. In [4], the existence of a periodic solution for the
general o.d.i. u′′ ∈ K(x, u, u′) is proved using the method of sub- and super-
solutions. In [3], a solution for a system of o.d.i.’s with nonlinear boundary
condition is obtained via a priori bounds. In [7], the existence of a solution
for a system of o.d.i.’s with general boundary conditions is proved through
fixed point theory (a remarkable feature of that paper is that the author
deals with both convex- and nonconvex-valued multifunctions).
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In order to achieve multiplicity results, the best way is to provide o.d.i.’s
with a convenient variational framework, following the ideas of Chang [1]
relating to partial differential inclusions. Problem (1.1) cannot be studied
in a variational framework using the classical critical point theory for con-
tinuously Gâteaux differentiable functionals. Nevertheless, we may define a
locally Lipschitz energy functional ϕ for (1.1) and apply to that functional
the theory of generalized differentiation introduced by Clarke [2]. Critical
points of ϕ turn out to be solutions of (1.1) in a very natural sense.

Multiplicity results can be obtained by using different methods from
nonsmooth critical point theory: we recall the work of Kandilakis, Kouro-
genis & Papageorgiou [6], where the existence of two periodic solutions is
established via local linking.

The case of o.d.i.’s deriving from o.d.e.’s with discontinuous nonlineari-
ties deserves special interest: in such a case, the multifunction H is usually
introduced to fill in the gaps at the discontinuity points of some single-valued
nonlinearity. Problems of this type are studied, for instance, in the paper
of Papageorgiou & Papalini [9] via variational methods and the theory of
monotone operators. We are interested in a more general problem, involving
multifunctions which do not necessarily extend discontinuous single-valued
mappings.

In the present paper, we will study problem (1.1) with a general set-
valued nonlinearity of the type

H(x, u) = λF (u) + µG(x, u),

where F and G are multifunctions and λ, µ > 0 are parameters. We will
apply a nonsmooth version of a three critical points theorem of Ricceri [12],
based on a minimax inequality, in order to prove the existence, for λ and µ
lying in convenient intervals, of at least three periodic solutions for the o.d.i.,
plus a uniform estimate on the norms of such solutions (see Theorem 4.1
below).

The paper has the following structure: in Section 2 we recall some ba-
sic features of nonsmooth analysis and the abstract result we are going to
apply; in Section 3 we introduce a variational method for problem (1.1);
and in Section 4 we state and prove our multiplicity result and give some
examples.

2. Some nonsmooth analysis. In the present section we will collect,
for the convenience of the reader, some basic notions and results of non-
smooth analysis, namely the calculus for locally Lispchitz functionals devel-
oped by Clarke [2]. Our main reference is the monograph of Motreanu &
Panagiotopoulos [8].
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Let (X, ‖ · ‖) be a Banach space, (X∗, ‖ · ‖∗) be its topological dual, and
ϕ : X → R be a functional. We recall that ϕ is locally Lipschitz (l.L.) if, for
all u ∈ X, there exist a neighborhood U of u and a real L > 0 such that

|ϕ(v)− ϕ(w)| ≤ L‖v − w‖ for all v, w ∈ U .

If ϕ is l.L. and u ∈ X, the generalized directional derivative of ϕ at u along
the direction v ∈ X is

ϕ◦(u; v) = lim sup
w→u, τ→0+

ϕ(w + τv)− ϕ(w)
τ

.

The generalized gradient of ϕ at u is the set

∂ϕ(u) = {u∗ ∈ X∗ : 〈u∗, v〉 ≤ ϕ◦(u; v) for all v ∈ X}.
So, ∂ϕ : X → 2X

∗
is a multifunction. We say that ϕ has a compact gradient

if ∂ϕ maps bounded subsets of X into relatively compact subsets of X∗.
The following lemmata yield some useful properties of the above defined

tools:

Lemma 2.1 ([8, Proposition 1.1]). Let ϕ ∈ C1(X) be a functional. Then
ϕ is l.L. and

(i) ϕ◦(u; v) = 〈ϕ′(u), v〉 for all u, v ∈ X;
(ii) ∂ϕ(u) = {ϕ′(u)} for all u ∈ X.

Lemma 2.2 ([8, Proposition 1.3]). Let ϕ : X → R be a l.L. functional.
Then

(i) ϕ◦(u; ·) is subadditive and positively homogeneous for all u ∈ X;
(ii) ϕ◦(u; v) ≤ L‖v‖ for all u, v ∈ X, where L > 0 is a Lipschitz constant

for ϕ around u.

Lemma 2.3 ([8, Proposition 1.6]). Let ϕ,ψ : X → R be l.L. functionals.
Then

(i) ∂(λϕ)(u) = λ∂ϕ(u) for all u ∈ X, λ ∈ R;
(ii) ∂(ϕ+ ψ)(u) ⊆ ∂ϕ(u) + ∂ψ(u) for all u ∈ X.

Lemma 2.4 ([5, Lemma 6]). Let ϕ : X → R be a l.L. functional with a
compact gradient. Then ϕ is sequentially weakly continuous.

We say that u ∈ X is a critical point of a l.L. functional ϕ if 0 ∈ ∂ϕ(u) (of
course, this relation is the link between nonsmooth analysis and differential
inclusions).

With appropriate technical devices, most results from the classical criti-
cal point theory can be adapted to the nonsmooth framework. The following
result, which we are going to apply, is a nonsmooth extension of a three crit-
ical points theorem of Ricceri [12], based on a minimax inequality. Before
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stating it, we recall that an operator A : X → X∗ is of type (S)+ if, for any
sequence (un) in X, whenever un ⇀ u and

lim sup
n
〈A(un), un − u〉 ≤ 0,

then un → u.

Theorem 2.5 (A particular case of [5, Theorem 14]). Let (X, ‖ · ‖) be a
reflexive Banach space, I ⊆ R be an interval, N ∈ C1(X) be a sequentially
weakly l.s.c. functional whose derivative is of type (S)+, F : X → R be a
l.L. functional with a compact gradient, and ρ ∈ R. Assume that

(i) lim
‖u‖→∞

[N (u)− λF(u)] = +∞ for all λ ∈ I;

(ii) sup
λ∈I

inf
u∈X

[N (u) + λ(ρ−F(u))] < inf
u∈X

sup
λ∈I

[N (u) + λ(ρ−F(u))].

Then there exist α, β ∈ I (α < β) and r > 0 with the following property: for
any λ ∈ [α, β] and any l.L. functional G : X → R with a compact gradient,
there exists δ > 0 such that, for all µ ∈ [0, δ], the functional

ϕλ,µ = N − λF − µG
admits at least three critical points in X with norms less than r.

The main hypothesis of Theorem 2.5 above is the minimax inequality (ii).
An easy way to have it satisfied is illustrated by the following result due
again to Ricceri [11]:

Lemma 2.6 ([11, Proposition 3.1]). Let X be a nonempty set, N ,F :
X → R be functions, ǔ, û ∈ X and τ > 0 be such that

(i) N (ǔ) = F(ǔ) = 0;
(ii) N (û) > τ ;

(iii) sup
N (u)<τ

F(u) <
τF(û)
N (û)

.

Then there exists ρ ∈ R such that (ii) of Theorem 2.5 holds.

3. Variational methods for ordinary differential inclusions. In
the present section we will establish an appropriate variational framework
for o.d.i.’s of the type (1.1). We follow Ribarska, Tsachev & Krastanov [10].
Our assumptions on the multifunction H are the following:

H. H : [0, 1]× R→ 2R satisfies

(i) H(x, ·) : R → 2R is u.s.c. with compact convex values for a.a.
x ∈ [0, 1];

(ii) minH,maxH : [0, 1]× R→ R are L ⊗ B-measurable;
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(iii) |ξ| ≤ a(1 + |s|p−1) for a.a. x ∈ [0, 1], all s ∈ R and ξ ∈ H(x, s)
(a > 0, p > 1).

We introduce the Hilbert space

X = {u ∈W 1,2([0, 1]) : u(0) = u(1)},

endowed with the usual norm

‖u‖ =
√	1

0(|u′|2 + |u|2) dx for all u ∈ X.

A function u ∈ X is a (weak) solution of problem (1.1) if there exists u∗ ∈
Lq([0, 1]) (for some q > 1) such that

(3.1)
1�

0

(u′v′ + uv − λu∗v) dx = 0 for all v ∈ X

and

(3.2) u∗(x) ∈ H(x, u(x)) for a.a. x ∈ [0, 1].

We recall that X is compactly embedded into the space C0([0, 1]) endowed
with the maximum norm ‖ · ‖∞, and

‖u‖∞ ≤
√

2 ‖u‖ for all u ∈ X.(3.3)

Obviously, X is compactly embedded into Lν([0, 1]) endowed with the usual
norm ‖ · ‖ν , for all ν ≥ 1.

We introduce for a.a. x ∈ [0, 1] and all s ∈ R the Aumann-type set-valued
integral

s�

0

H(x, t) dt =
{ s�

0

h(x, t) dt : h a measurable selection of H
}

and set

H(u) =
1�

0

min
u�

0

H(x, s) ds dx for all u ∈ Lp([0, 1]).

Lemma 3.1. The functional H : Lp([0, 1]) → R is well defined and Lip-
schitz on any bounded subset of Lp([0, 1]). Moreover, for all u ∈ Lp([0, 1])
and all u∗ ∈ ∂H(u),

u∗(x) ∈ H(x, u(x)) for a.a. x ∈ [0, 1].

Proof. We give an alternative representation for H. For all (x, s) ∈
[0, 1]× R, set

h(x, s) =
{

maxH(x, s) if s ≤ 0,
minH(x, s) if s > 0.
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Then h : [0, 1]×R→ R is a measurable selection of H (see H(ii)) and clearly

min
s�

0

H(x, t) dt =
s�

0

h(x, t) dt for a.a. x ∈ [0, 1] and all s ∈ R.

So, we may write

H(u) =
1�

0

u�

0

h(x, s) ds dx for all u ∈ Lp([0, 1]).(3.4)

Now we prove that H is well defined. For all u ∈ Lp([0, 1]) we have

1�

0

∣∣∣ u�
0

h(x, s) ds
∣∣∣ dx ≤ 1�

0

a

(
|u|+ |u|

p

p

)
dx (see H(iii))

≤ c1‖u‖pp (c1 > 0).

We prove that H is Lipschitz on bounded sets: set M > 0 and choose
u, v ∈ Lp([0, 1]) such that ‖u‖p, ‖v‖p ≤M . Then

|H(u)−H(v)| ≤
1�

0

∣∣∣ u�
v

h(x, s) ds
∣∣∣ dx (see (3.4))

≤
1�

0

a(1 + |u|p−1 + |v|p−1)|u− v| dx (see H(iii))

≤ a(1 + 2Mp−1)‖u− v‖p.

In particular, H is a l.L. functional. Choose u ∈ Lp([0, 1]) and u∗ ∈ ∂H(u).
Then u∗ is a bounded linear functional on Lp([0, 1]), hence it can be identified
with an element of Lq([0, 1]) (1/p + 1/q = 1). By the result of Chang [1,
Theorem 2.2], we get, for a.a. x ∈ [0, 1],

(3.5)

u∗(x) ∈
[

lim inf
s→0, τ→0+

1
τ

u(x)+s�

u(x)+s−τ

h(x, t) dt, lim sup
s→0, τ→0+

1
τ

u(x)+s+τ�

u(x)+s

h(x, t) dt
]
.

An application of the mean value theorem yields, for all s ∈ R and τ > 0,

1
τ

u(x)+s�

u(x)+s−τ

h(x, t) dt ≥ inf
u(x)+s−τ≤t≤u(x)+s

h(x, t)

≥ inf
u(x)+s−τ≤t≤u(x)+s

minH(x, t).

Since minH(x, ·) is u.s.c. (by H(i) and classical results of set-valued analy-
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sis), we have

lim inf
s→0, τ→0+

1
τ

u(x)+s�

u(x)+s−τ

h(x, t) dt ≥ lim inf
s→0, τ→0+

[
inf

u(x)+s−τ≤t≤u(x)+s
minH(x, t)

]
≥ minH(x, u(x)) for a.a. x ∈ [0, 1].

An analogous argument leads to

lim sup
s→0, τ→0+

1
τ

u(x)+s+τ�

u(x)+s

h(x, t) dt ≤ maxH(x, u(x)) for a.a. x ∈ [0, 1].

Then (3.5) implies

u∗(x) ∈ [minH(x, u(x)),maxH(x, u(x))] for a.a. x ∈ [0, 1].

The convexity of the set H(x, u(x)) (see H(i)) finally implies (i).

We define an energy functional for problem (1.1) by setting

ϕ(u) = ‖u‖2/2−H(u) for all u ∈ X.

Lemma 3.2. The functional ϕ : X → R is l.L. Moreover, for all critical
points u ∈ X of ϕ, u is a solution of problem (1.1).

Proof. The functionals u 7→ ‖u‖2/2 and H are l.L. (see Lemmata 2.1
and 3.1, respectively), hence so is ϕ.

Now let u ∈ X be a critical point of ϕ. So

0 ∈ ∂ϕ(u).(3.6)

Set

〈A(u), v〉 =
1�

0

(u′v′ + uv) dx for all u, v ∈ X.(3.7)

By (ii) of Lemma 2.1, and (i) and (ii) of Lemma 2.3, condition (3.6) implies

0 ∈ A(u)− ∂H(u),

that is, there exists u∗ ∈ ∂H(u) such that

A(u) = u∗ in X∗.(3.8)

We extend u∗ to an element of Lq([0, 1]). Here, we regard X as a closed
subspace of Lp([0, 1]).

First, we observe that u∗, as a linear functional on X, is continuous
also with respect to the topology induced by the norm ‖ · ‖p. Indeed, by
Lemma 3.1, H admits a Lipschitz constant L around u with respect to ‖·‖p.
Then, by (ii) of Lemma 2.2, we get

〈u∗, v〉 ≤ L‖v‖p for all v ∈ X.
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Moreover, H◦(u; ·) is subadditive and positively homogeneous on Lp([0, 1])
and

〈u∗, v〉 ≤ H◦(u; v) for all v ∈ X.(3.9)

By the Hahn–Banach theorem, u∗ extends to a bounded linear functional
defined on Lp([0, 1]) satisfying (3.9) for all v ∈ Lp([0, 1]). This implies two
facts. First, we may assume u∗ ∈ Lq([0, 1]) and rephrase (3.8) as

1�

0

(u′v′ + uv − u∗v) dx = 0 for all v ∈ X.

Second, by Lemma 3.1 we have

u∗(x) ∈ H(x, u(x)) for a.a. x ∈ [0, 1].

Thus, (3.1) and (3.2) are fulfilled and u is a solution of (1.1).

Remark. We owe the reader a clarification. Hypothesis H(iii) may seem
unnecessary at first sight, as growth conditions based on powers are usually
not required in dealing with o.d.e.’s (or o.d.i.’s). Actually, we could have
proved that the functional ϕ is l.L. on C0([0, 1]) under looser assumptions.
But the elements of the dual space of C0([0, 1]) cannot, in general, be rep-
resented as functions defined almost everywhere on [0, 1], so we could not
get a relation like (i) of Lemma 3.1 and the subsequent Lemma 3.2. This is
why we need to use the space Lp([0, 1]) (whose dual space is Lq([0, 1])) and
hence condition H(iii).

4. Main result and examples. As we pointed out in the Introduction,
we are going to deal with a special case of problem (1.1), depending on two
positive parameters λ and µ:

−u′′ + u ∈ λF (u) + µG(x, u) in [0, 1],
u(0) = u(1),
u′(0) = u′(1).

(4.1)

We will assume that:

HF . F : R→ 2R satisfies

(i) F is u.s.c. with compact convex values;
(ii) |ξ| ≤ a(1 + |s|p−1) for all s ∈ R and ξ ∈ F (s) (a > 0, p > 1);

(iii) max
|t|≤2

√
τ

min
t�

0

F (s) ds <
2τ
k2

min
k�

0

F (s) ds
(
k > 0, 0 < τ <

k2

4

)
;

(iv) min
t�

0

F (s) ds ≤ b(1 + |t|q) for all t ∈ R (b > 0, 1 < q < 2);
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HG. G : [0, 1]× R→ 2R satisfies

(i) G(x, ·) : R → 2R is u.s.c. with compact convex values for a.a.
x ∈ [0, 1];

(ii) minG,maxG : [0, 1]× R→ R are L ⊗ B-measurable;
(iii) |ξ| ≤ a(1 + |s|p−1) for a.a. x ∈ [0, 1], all s ∈ R and ξ ∈ G(x, s).

Our multiplicity result for the solutions of problem (4.1) is as follows:

Theorem 4.1. Let HF be satisfied. Then there exist a nondegenerate
interval [α, β] ⊂ ]0,+∞[ and r > 0 with the following property: for any
λ ∈ [α, β] and any multifunction G satisfying HG, there exists δ > 0 such
that, for all µ ∈ [0, δ], problem (4.1) admits at least three solutions with
norms in W 1,2([0, 1]) less than r.

Proof. We are going to apply Theorem 2.5. With this aim in mind, we
define X as in Section 3 and we set I = [0,+∞[ and

N (u) =
‖u‖2

2
, F(u) =

1�

0

min
u�

0

F (s) ds dx for all u ∈ X.

We know that N ∈ C1(X) is a weakly l.s.c. functional whose derivative (the
operator A defined in (3.7)) is of type (S)+. By Lemma 3.1, F : X → R is
Lipschitz on bounded subsets of X.

We now prove that the gradient ∂F : X → 2X
∗

is compact. Let us fix a
bounded sequence (un) in X and u∗n ∈ ∂F(un) for all n ∈ N. Let L > 0 be
a Lipschitz constant for F , restricted to a bounded set where the sequence
(un) lies; then, by (ii) of Lemma 2.2 and the definition of ∂ϕ(un), we have

‖u∗n‖∗ ≤ L for all n ∈ N.

Up to a subsequence, (u∗n) weakly converges to some u∗ in X∗. We shall prove
that the convergence is strong, arguing by contradiction: let us assume that
there is ε > 0 such that

‖u∗n − u∗‖∗ > ε for all n ∈ N.

Hence, for all n ∈ N we can find vn ∈ X with ‖vn‖ < 1 such that

〈u∗n − u∗, vn〉 > ε.(4.2)

Passing if necessary to a subsequence, we can assume that vn ⇀ v in X,
while vn → v in both L1([0, 1]) and Lp([0, 1]). From HF (ii) we easily get

〈u∗n − u∗, vn〉 = 〈u∗n, vn − v〉+ 〈u∗n − u∗, v〉+ 〈u∗, v − vn〉
≤ c2(‖vn − v‖1 + ‖vn − v‖p) + 〈u∗n − u∗, v〉+ 〈u∗, v − vn〉

(c2 > 0), and the latter tends to 0 as n→∞, contrary to (4.2).
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Now we prove that, for all λ ≥ 0, the functional N −λF is coercive (that
is, (i) of Theorem 2.5 holds). For all u ∈ X we have

N (u)− λF(u) ≥ ‖u‖2/2− λ
1�

0

b(1 + |u|q) dx (see HF (iv))

≥ ‖u‖2/2− λc3(1 + ‖u‖q) (c3 > 0),

and the latter tends to +∞ as ‖u‖ → ∞ (recall that q < 2).
We prove that (ii) of Theorem 2.5 (the minimax inequality) holds; we

will not argue directly, but use Lemma 2.6. Set

ǔ(x) = 0, û(x) = k for all x ∈ [0, 1] (k as in HF (iii)).

Then, clearly, (i) of Lemma 2.6 holds. Moreover, we have

N (û) =
k2

2
,

so (ii) of Lemma 2.6 holds as well. Finally, we observe that

F(û) = min
k�

0

F (s) ds

and that for all u ∈ X with N (u) < τ we have

‖u‖∞ < 2
√
τ (see (3.3)),

so

F(u) ≤ max
|t|≤2

√
τ

min
t�

0

F (s) ds

<
2τ
k2

min
k�

0

F (s) ds (see HF (iii))

=
τF(û)
N (û)

,

so (iii) of Lemma 2.6 is satisfied. Then we get (ii) of Theorem 2.5 for some
ρ ∈ R.

All assumptions of our abstract result are fulfilled. Let [α, β] (0 < α < β)
and r > 0 be as in Theorem 2.5. Let us choose λ ∈ [α, β] and a multifunction
G satisfying HG. Set

G(u) =
1�

0

min
u�

0

G(s) ds for all u ∈ X.

By Lemma 3.1 and an argument analogous to that used for F , the functional
G : X → R turns out to be l.L. and its gradient ∂G is compact.
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Thus there is δ > 0 such that, for all µ ∈ [0, δ], the functional

ϕλ,µ = N − λF − µG
admits at least three critical points u0, u1, u2 ∈ X with

‖ui‖ < r (i = 0, 1, 2).

For all λ > 0 and µ ≥ 0, the multifunction H defined by putting

H(x, s) = λF (s) + µG(x, s) for all (x, s) ∈ [0, 1]× R
satisfies H. So, by Lemma 3.2, ui (i = 0, 1, 2) is a solution of problem (4.1).

We present two simple examples of multifunctions F satisfying hypothe-
ses HF :

Example 4.2. Set, for all s ∈ R,

F (s) =


{−s2} if s < 1,
[−1, 1] if s = 1,
{
√
s} if s > 1.

Hypotheses HF are satisfied with a = τ = b = 1, p = 3, k = 2 and
q = 3/2. So, for each multifunction G satisfying HG, problem (4.1) admits
at least three solutions (uniformly bounded) for λ and µ lying in appropriate
intervals.

Example 4.3. Set, for all s ∈ R,

F (s) =


{0} if s < 0,
[ln(s+ 1/2), 0] if 0 ≤ s < 1/2,
{ln(s+ 1/2)} if s ≥ 1/2.

Hypotheses HF are satisfied with a, b > 0 large enough, p = 2, τ = 1/16,
k = 1 and q = 3/2. So, for each multifunction G satisfying HG, problem
(4.1) admits at least three solutions (uniformly bounded) for λ and µ lying
in appropriate intervals.
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