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Asymptotic stability and sweeping of
substochastic semigroups

by KATARZYNA PICHOR (Katowice)

Abstract. A new theorem on asymptotic stability and sweeping of substochastic
semigroups is proved, and applied semigroups generated by birth-death processes.

1. Introduction. The purpose of this paper is to provide new sufli-
cient conditions for asymptotic stability and sweeping of substochastic semi-
groups of operators with nontrivial integral parts. Such operators and semi-
groups are intensively studied because they play a special role in appli-
cations [BLPRI [LRl PR} R2l RP1, RP2, RTW]. The book of Lasota and
Mackey |[LM] and the paper [RPT| are excellent surveys of many results
on this subject. This problem has been investigated for Markov operators
IKT| [R1, [PR]. In particular in |[R1] it was shown that if such an operator
has a positive invariant density f, and has no other periodic points in the
set of densities, then the operator is asymptotically stable. In [PR] it was
proved that if a partially integral Markov semigroup has only one invariant
density f. and f,. > 0 a.e., then the semigroup is asymptotically stable.
Some sufficient conditions for sweeping of integral Markov operators were
given in [KT]. Namely, if such an operator P has no invariant density and
possesses a subinvariant locally integrable and positive function, then P is
sweeping.

Our criteria for asymptotic stability and sweeping generalize the results
of [PR [R1]. In particular, earlier results concerning asymptotic stability of
integral stochastic semigroups which spread or overlap supports given in
[BLL BBl M| follow from our main theorem. The proof of this theorem is
based on the results concerning properties of Harris operators [F, [JO|. Many
abstract results concerning Harris operators can be found in [Ne, [Nul.

The plan of the paper is as follows. In Section [2| we give some auxiliary
definition and results. In the next section we formulate the main result.
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Its proof is given in Section [ In Section [5] we apply the main theorem to
semigroups generated by birth-death processes.

2. Preliminaries. Let (X, X, ) be a o-finite measure space and let
LY(X) = LY(X,X,p). A linear operator P: L'(X) — L'(X) satisfying
|IP|| < 1and Pf > 0 for f > 0 is called a substochastic operator. De-
note by D = D(X, X, 1) the subset of L!(X) which consists of all densities,
le.

D={feL'(X): f=20,|f] =1}
A linear mapping P: L'(X) — L'(X) is called a stochastic (or Markov)
operator if P(D) C D.
Let f be a density with f > 0 a.e. Define

(2.1) C:{xeX: iP”f(a:):oo}.
n=0

This definition is independent of the choice of f. A substochastic operator
P: LYX) — LY(X) is called conservative if C = X and dissipative if C = ().

An operator Q: L'(X) — L'(X) is called an integral or kernel operator
if there exists a measurable function k: X x X — [0,00) such that

(2.2) Qf () = | k(=) f(y) n(dy)

X

for every density f. Any substochastic operator P can be written in the
form P = Q + R, where R is a nonnegative contraction on L'(X), Q is a
kernel operator and there is no kernel K with K < R and K # 0. Fix a
substochastic operator P and let P = @Q,, + R,, be the decomposition of P"
into kernel and singular parts.

The operator P is called a pre-Harris operator if

(2.3) SZI@ z,y) p(dy) >0 z-ae.,
X n=1

where k,, is the kernel corresponding to @,. If P is a conservative pre-Harris
operator and pu(X) = 1, then P is called a Harris operator. If instead of ([2.3)
the operator P satisfies the condition

(2.4) S SZI{: (x,y) p(dy) p(dz) > 0,

X X n=1
then P is called partially integral. Let

(2.5) Yi={AeX: P14 =14},
where P* is the adjoint operator of P.
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According to [F, Ch. V, Th. F| if P is conservative, partially integral, and
2J; is trivial, then P is a pre-Harris operator. Now let P be a substochastic
operator and let g be a positive density. Define a new measure space (X, X, i)
with dji = gdp and consider the operator

(2.6) Pf=@1/9)P(f-g)
Then P is also a substochastic operator on L'(X, X, ii). If P is pre-Harris or
conservative operator then P is also pre-Harris or conservative, respectively.
In particular, if P is a pre-Harris conservative operator then P is a Harris
operator.

A family {P(t)}+>0 of substochastic operators such that:

(a) P(0) =14,

(b) P(t+s)= P(t)P(s) for s, t >0,

(c) for each f € L'(X) the function ¢ +— P(t)f is continuous with respect
to the L'(X) norm,

is called a substochastic semigroup. If {P(t)}+>0 is a family of stochastic
operators which satisfies conditions (a)—(c) then it is called a stochastic or
Markov semigroup. A semigroup {P(t) };>0 is called integral if for each t > 0,
the operator P(t) is an integral operator. That is, there exists a measurable
function k: (0,00) x X x X — [0,00), called a kernel, such that

(27) P(t)f(x) = | k(t.2,9)f (y) pldy)
X

for every density f. A semigroup {P(t)}:>0 is called partially integral
if for some ty > 0, the operator P(ty) is partially integral. Let P(tp) =
Q(to) + R(to) be the decomposition of P(tp) into kernel and singular parts,
and let k(to) be the kernel corresponding to Q(tp). According to [F, Ch. V,
Lemma B| if P is a substochastic operator and @ is an integral operator
then the operators P@Q and QP are integral operators. This implies that
Q(t)P(1) < Q(t + 7). From this it follows immediately that if {P(t)}:>0
is a substochastic semigroup and if for some ty > 0, the operator P(ty) is
partially integral then for each ¢ > t¢, the operator P(t) is partially integral.

We also need two definitions concerning the asymptotic behaviour of a
semigroup. A density f, is called invariant if P(t)f. = f« for each t > 0. The
semigroup {P(t)}+>0 is called asymptotically stable if there is an invariant
density fi such that

tlim |P(t)f — f«ll=0 for f e D.
An operator P is called sweeping with respect to the set A € X if
lim | P"fdu=0 for feD.
A
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The semigroup {P(t)}+>0 is sweeping with respect to A if
lim \ P(t)fdu=0 for f€D.
t—o0 7

Let a family A C X' be given. We say that the operator P (or the semigroup
{P(t)}+>0 of operators) is sweeping with respect to A if P (resp. {P(t) }+>0)
is sweeping with respect to each set A € A. It is easy to check that the
substochastic semigroup {P(t)};>0 is asymptotically stable (resp. sweep-
ing) if there exists a typ > 0 such that the operator P(t() is asymptotically
stable (resp. sweeping). A nonnegative function f, is called subinvariant if
Pf. < f«. For any f € LY(X) the support of f is defined up to a set of
measure zero by the formula

supp f = {z € X: f(z) # 0}.
We need some results concerning asymptotic stability and sweeping.

THEOREM 2.1 (|PRI). Let {P(t)}+>0 be a partially integral stochastic
semigroup. Assume that the semigroup {P(t)}>0 has a unique invariant
density f«. If f« > 0 a.e., then the semigroup {P(t)}i>0 is asymptotically
stable.

COROLLARY 2.2 ([R1l). Let P: LY (X, X, u) — LY(X, X, u) be a pre-
Harris stochastic operator. Assume that P has a subinvariant function
fe > 0 which is integrable on each member of A. If P has no invariant
density then the operator P is sweeping with respect to A.

3. Main result. The main result of the paper is the following

MAIN THEOREM 3.1. Let X be a metric space and X be the o-algebra of
Borel sets. Let {P(t)}+>0 be a substochastic semigroup on L*(X) which has
a unique invariant density f. and S = supp f«. Assume that {P(t)}i>0 is a
partially integral semigroup with the kernel k(t,x,y) such that

(3.1) |V E(to, 2, y) p(dz) p(dy) > 0

SS
for some ty > 0. Moreover, assume that for some t1 > 0 there does not
exist a nonempty measurable set A C Z1 such that P*(t1)14 > 14, where
Z1 =C\ S and C is a conservative part of P(t1) and for every i =1,2 and
every yo € Z; there exist € > 0 and a measurable function n; > 0 such that
Szi n; dp > 0 and

(3.2) k(t1,x,y) > ni(x)

forx e X\ S and y € B(yo,e), where Zs = X \ C and B(yo,¢) is the open
ball with center yo and radius €. Then for every f € D there exists a constant
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c(f) such that
lim 1sP(0)f = ().

and for every compact set F' € X and f € D we have

(3.3) lim | P@t)f(2)p(dz) = 0.
> Prx\s

REMARK 3.2. Theorem [3.1| remains true if the semigroup {P(t)}+>0 has

no invariant density. In this case we set S = (), we omit condition (3.1]) and

we have ¢(f) = 0.

REMARK 3.3. In practical applications of Theorem [3.I]there is no need to
determine the conservative part of the operator P(¢;). It is enough to check

the stronger condition that there does not exist a nonempty measurable set
A C X\ S such that P*(t1)14 > 14. Then Z; = X\ Sor Zo = X\ S.

REMARK 3.4. If a substochastic semigroup {P(¢)};>0 on L!(X) has the
only one invariant density f. and supp fi« = X then {P(t)}+>0 is a stochastic
semigroup and if it is partially integral then from Theorem it follows that

tlim P(t)f = f«
for each density f.

REMARK 3.5. If A is a measurable set such that P*(¢¥)14 > 14 for some

t > 0 then

{P@fdp> | fdu

A A
for all f € LY(X) with f > 0. In particular, if supp f C A then we have
supp P(t)f C A. This means that we can study the asymptotic properties of
the sequence {P™(t)},>0 separately on the set A. Further, we check that for
every f € L'(X) such that supp f C S we have supp P(t)f C S for t > 0.
This means that the semigroup {P(t)};>0 can be restricted to the set L!(S).

4. Proof. We split the proof of Theorem [3.1]into a sequence of lemmas.

LEMMA 4.1. Assume that f. is an invariant density with respect to a
substochastic semigroup {P(t)}+>0 and S = supp fi. Then for every f €
LY(X) such that supp f C S we have supp P(t)f C S fort > 0.

Proof. 1t is sufficient to check the assertion for nonnegative functions.
Fix an f € L'(X) such that f > 0 and supp f C S. Then for each positive
integer n there exist a sufficiently large ¢ > 0 and a nonnegative function ¢,
such that f <cf, +¢e, and ||| < 1/n. Then

1X\SP(t)f < ClX\SP(t)f* + P(t)en = ClX\Sf* + P(t)en = P(t)en.
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Since [[P(t)en| < 1/n as n — oo we get 1x\gP(t)f < 0 and we obtain
supp P(t)f C Sfort>0. m

LEMMA 4.2. Let P be a substochastic operator on a probability space
LY(S). If P has an invariant density f. such that f. > 0 a.e., then P is a
stochastic operator.

Proof. We check that ||Pf|| = ||f]| for all f € D. As in the proof of
Lemma for each positive integer n there exist a constant ¢ > 0 and
nonnegative functions g and &, such that f+ g = ¢fs + &, and |le,|| < 1/n.
Then

1A+ llgll = el fell + llenll - and [PFI + [Pgll = el Pfe]l + (| Pen]-

Since [|Pf«|| = || fll, llen]] — 0 and ||Pe,|| — 0 as n — oo we obtain

IPFI + 1Pyl =[£I+ llgll-

On the other hand ||Pf|| < || f]| and || Pg|| < ||g|| because P is a substochastic
operator. Thus ||Pf| = ||f||- =

LEMMA 4.3. Let X be a metric space and X be the o-algebra of Borel
sets. Let P: LY(X, X, ) — LY(X, X, 1) be a substochastic operator. Assume
that the operator P can be written in the form P f(z) = (k(z,y) f(y) p(dy) +
Rf(x), where R is a positive contraction on L'(X) and the kernel k satisfies
the following condition: for every yo € X there exist € > 0 and a measurable
function n > 0 such that \ndp > 0 and k(z,y) > n(z) for x € X and
y € B(yo,¢). If there exists a measurable function fi such that 0 < f, < 00
and Pf, < fi, then f. is integrable on compact sets.

Proof. Suppose, on the contrary, that |, f.(x) pu(dx) = oo for some com-
pact set F* C X. Then for some yy € F we have SB(yo,é) f«(y) p(dy) = oo for
every 0 > 0. Then there exist ¢ > 0 and a measurable function n > 0 such
that {ndu > 0 and k(z,y) > n(z) for z € X and y € B(yo, ). Thus

Pf.(x) > \ k(z,y) fo(y) pdy) > n(z) | fuly) pldy).

X B(yo.e)
Since Pf, < f«, we have f,(z) = oo for z € suppn, which is impossible. =

LEMMA 4.4. Let X be a metric space and X be the o-algebra of Borel
sets. Let P: LY(X, X, ) — LY(X, X, 1) be a substochastic operator. Assume
that the operator P can be written in the form Pf(x) = (k(z,y)f(y) u(dy) +
Rf(x), where R is a positive contraction on L'(X) and the kernel k satisfies
the following condition: for every i = 1,2 and every yo € X there exist € > 0
and a measurable function n; > 0 such that SZi nidp > 0 and k(xz,y) >
ni(x) for x € X and y € B(yo,¢e), where Zy = C, Zy = X \ C and C
18 a conservative part of P. Assume that there does not exist a nonempty
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measurable set A C C such that P*14 > 14. If P has no invariant density
then P is sweeping with respect to the family F of compact sets.

Proof. Let C be the conservative part of P given by . Then from [F,
Ch. 2, Th. B], P*1¢ > 1¢. This implies that if supp f C C thensupp Pf C C
for any f € L'(X). Thus we can restrict the operator P to the space L'(C).
We denote this restriction by Pc. The operator P is stochastic on L'(C).
Thus Pg is conservative, partially integral, and X; = {0, C'}. Hence P¢ is a
pre-Harris operator. Let g € L'(C) be a positive density, then the operator
P: LY(C) — LYC) given by is a Harris operator. According to [F),
Ch. VI, Th. E] there exists a measurable function h such that 0 < h < oo
and Pch = h. Set f, = hg. Then 0 < f, < 0o, fx is a measurable function
and Pcof. = f«. According to Lemma [1.3] the function f, is integrable on
members of F/ = {FNC: F € F}. Moreover P has no invariant density.
From Corollary the operator P¢ is sweeping with respect to F.

Now, let f € L1(X), f > 0, be a fixed density. Then Y >° P"f(z) < oo
for x € X\ C. We define an auxiliary operator Px\c on L*(X \ C). For
g € LYX) we put Px\cg(z) = 1x\¢Pg(z), where g(z) = 0 for z € C
and g(z) = g(z) for x € X \ C. Set fu = > 0, Py\cf < oo. Then f,
is a measurable function and Py\¢f« < f«, fi > 0. By Lemma @, fi 18
integrable on members of F”’, where 7/ = {F N (X \ C): F € F}. Let
F e F. Then

@) | S Phof@udn) =3 | Phof@) plde) < co.
FA(X\C) n=0 n=0 FN(X\C)
Thus
(4.2) lim S Pof (@) p(de) =0 for F e F.
" prx\o)

Set a, = SC P" f du. Then the sequence (ay,) is increasing and convergent to
some a. Indeed, we have {, gdu = §, P *gdy for g € L'(C), n > k. Thus

ar =\ 1cP fdp =\ P F(1cPrf)du < \ P"f dp = a,.
C C C
Fix € > 0. Then |a — a3| < € for some integer k. Set g = 1cP¥f. Then
(4.3) \|Prf—Potgldu<e forn>k.
(&
The operator P is sweeping with respect to the family F’. Thus

nlLH;O S Phgdp=0 for FeF.

Fnc
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From this and (4.2)), (4.3) it follows that
lim | P"fdy=0 for feD FeF. u

n—oo

Proof of Theorem[3.1. According to Lemma we can restrict the semi-
group {P(t)}+>0 to the space L'(S); we denote this restriction by { Ps(t) };>0.
Lemma shows that { Ps(t)}+>0 is a stochastic semigroup. Condition
guarantees that this semigroup is partially integral. Moreover it has the
unique invariant density fi, and f, > 0. According to Theorem the
semigroup {Ps(t)}+>0 is asymptotically stable, i.e. lim;_.o Ps(t)f = fi for
f € LYS)N D. Now let f € L*(X) N D. We introduce an auxiliary func-

tion @f(t) = (4 P(t)fdu. Let 0 < s < t. Lemma yields {qgdp =
§g P(t—s)gdu for g € L'(S). Thus

pr(s) =\ 15P(s)f dp = | P(t — s)(1sP(s)f) du < | P(t) f dpu = 5 (t).
S S S

This implies that ¢(t) is a nondecreasing function of ¢. Set
o(f) = Jim pp(t) = lim | P(t)f dp.
—00 t—o00 3

We check that limy_,oo 1P (t)f = ¢(f)f«. Let € > 0 be given. Then there

exists tg > 0 such that {¢ P(to)fdu > c(f) —e. Let g = 15P(to)f. Then

lims_oo P(8)g = ||lg|| f+ from the asymptotic stability of {Ps(t)}+>0. Since
P(t)f = P(t —to)P(to)f = P(t —to)g

we have P(t)f > |g|| f« —0(t), where lim; . [|6(¢)|| = 0. From the inequality
llgll = c(f) — € it follows that

P@)f = fule(f) =€) = 0(b),

and consequently lim; . ||(LsP(t)f — c(f)f«)~|| = 0. But since
lim { 1sP(t)f du= | e(f)f.dp
X X

we obtain limy_,oo 1gP(t) f = c(f) f«.

Now we introduce an auxiliary semigroup {P(t)}>0 on L'(X \ S). Let
fe LY (X\S). Set f(x) =0forz € S and f(x) = f(x) for z € X\ S. Define
P(t)f(z) = 1X\SP(t)f(x). We claim that P(t+7)f = P(t)(P(7)f). Indeed,

P(t+7)f = 1x\sP(t +7)f = 1x\s P(t)(P(7)]).
According to Lemma supp P(t)(1sP(7)f) C S and consequently
1X\SP(t)(1SP(T)f) =0.
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Since P(7)f = 1X\SP(T)]E +15P(7)f we have

Pt+71)f =1x\sPt)(P(1)f) = 1x\sP(t)(1x\sP(7)f)
= 1x\sP(t)(P(7)f) = P(t)P(1) .

The last equality follows from the fact that supp P(7)f € X \ S. Thus
{P(t)}¢>0 is a substochastic semigroup on L'(X \ S).

It is easy to show that the semigroup {P(t)}+>0 is sweeping with respect
to aset A C X \ S if the semigroup {P(t)};>0 is. Indeed, let f € D. Then
[ = 1x\sf + 1sf. From Lemma we have supp P(t)(1gf) C S and
consequently |, P(t)(1sf)du = 0. ThlS implies

VPt)fdu =\ P(t)(1x\sf)dp =\ 1x\sP(t)f du = | P(t)f dps.
A A A A
Thus if limy o § 4 P(t)f dp = 0 then limy_. §4P(t)fdu=0.

Let F be the family of compact sets. In order to prove we show
that the semigroup {P(t)}+>0 is sweeping with respect to the family F' =
{FN(X\S): F € F}. Observe that the semigroup { P(t)}¢>0 has no invariant
density. Indeed, if g were an invariant density for {P(t)}+>o then P(t)g > g
for t > 0. But since {P(t)}+>0 is substochastic we would have P(t)g = ¢
for t > 0, which contradicts the assumption that {P(t)}+>0 has the unique
invariant density f.. Now, define a substochastic operator P on L'(X \ S,
X,u) by P= 15(151). By Lemma the operator P is sweeping with respect
to F'. Thus the semigroup {ﬁ(t)}tzo is sweeping with respect to F’ and so
holds, which completes the proof. =

5. Example. Most substochastic semigroups satisfy the Foguel alter-
native, i.e. they are either asymptotically stable or sweeping from compact
sets [KM| [RPT]. For example any semigroup generated by a nondegenerate
diffusion process is asymptotically stable or sweeping. Now we give a simple
example which shows that a semigroup can be “partially” asymptotically
stable and “partially” sweeping, i.e. Theorem holds with ¢(f) depending
on f.

We consider a birth-death process
(5.1) .%'g(t) = —aixi(t) + bi_lxi_l(t) + di+1$i+1(t), 1 >0,

where a; = b;+d;, b; > 0, d; > 0, and b_1 = dy = 0. We assume additionally
that there is a constant C' > 0 such that b; < C4% for all ¢ > 0. The last
condition guarantees that the system generates a stochastic semigroup
{P(t)}+>0 on I1, the space of absolutely summable sequences. The semigroup
{P(t)}+>0 is given by (P(t)Z); = z;(t), where z(t) = (x;(t)) is the solution
of with the initial condition z(0) = Z, Z € I*. The semigroup {P(t) }s>0
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can be written in the form
(5.2) (P(t)2)i = pi(t)a;,
=0

where p;;(t) are continuous nonnegative functions. Observe that any stochas-
tic operator P: (! — [' is an integral operator and satisfies (3.2)). Indeed,
I = LY(N, 2V, 1) with the counting measure p(A), where p(A) is the number
of elements of A and N = {0,1,2,...}. We have

(Px); = Zpijffj = S k(i, )z (5) p(dj),
7=0 N
where we put k(4, j) = p;; and x(j) = x;, which means that P is an integral

operator. Since N is a discrete topological space condition (3.2)) follows from
o0

(5.3) Zpij = S k(i,7)pu(di) =1  for each j € N.
=0 N

Now assume that there exists n > 0 such that b, = 0, b; > 0 for i # n,
and d; > 0 for i > 0. Then for each t > 0 we have p;;(t) > 0 when ¢ < j,
j<i<n,orn<j<i, and we have p;;(t) =0if j <n <.

Now we check when P*()14 > 14. We have P*(t)14(j) = >_,c 4 Pij(t)-
This means that P*(t)14 > 14 if and only if ), , ps;(t) > 1 for all j € A.
From condition (5.3) and the above inequalities for p;;(t) we deduce that if
j>nandj € Athen A=Nandif j <nandj€ Athen {0,1,...,n} C A.
Thus the only sets A which satisfy P*(t)14 > 14 are ), N, and N,, =
{0,1,...,n}. Moreover if the sequence z* = (z}) is an invariant density
and S = suppz* then P*(t)1g > 1g. It follows that the semigroup has at
most one invariant density, because in the opposite case we could find two
invariant densities with disjoint supports, which is impossible. Also since
pij(t) = 0 for j < n < i, we can restrict the semigroup {P(t)}+>o to the
space L'(N,, 2% 1), and {P(t)};>0 is still a stochastic semigroup on this
space. The existence of an invariant density follows immediately from the
ergodic theorem for Markov chains on a finite space. The invariant density

x* = (xf) can also be found directly by solving the system

apxo = dix1,
arx1 = boxg + dax2,
azx2 = biz1 + d3x3,

AnTp = bp_1Tp_1.

We have checked all assumptions of Theorem . Thus for each Z € [! there
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exists a constant ¢(z) such that the solution of with the initial condition
x(0) = 7 satisfies

lim (1) = {c(m)xj for i <mn,

t—00 0 for i > n.

Now consider a continuous random walk with an absorbing state at zero,
that is, the gambler’s ruin problem. This process is described by with
a; =b;+di=1fori>1,b_1=by=dg=0and b; =b,d; =d fori>1,
i.e., it is given by the following system:

o(t) = dw1 (),
(5.4) 2y (t) = —z1(t) + dxa(t),

2 (t) = —x;(t) + bri—1 (t) + dxipq (), i > 2.
By b we denote the birth rate (the probability of winning the game). The
death rate (the probability of losing) is denoted by d. We assume additionally
that b > d. The semigroup {P(t)}+>0 generated by has the unique
invariant density z* = (x}), where 2§ = 1 and 2} = 0 for ¢ > 1. Let 7 € D.

Since in the long run, the probability of losing all of the initial capital ¢
(probability of absorption) is (d/b)¢ (see [Al, Ch.6.4.3]), we have

c(z) = i (Z)Zzi and  lim (P(t)Z)o = ¢(Z)xy.

‘ t—o0
=0
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