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On the geometry of tangent bundles with a class of metrics

by Esmaeil Peyghan (Arak), Abbas Heydari (Tehran) and
Leila Nourmohammadi Far (Arak)

Abstract. We introduce a class of metrics on the tangent bundle of a Riemannian
manifold and find the Levi-Civita connections of these metrics. Then by using the Levi-
Civita connection, we study the conformal vector fields on the tangent bundle of the
Riemannian manifold. Finally, we obtain some relations between the flatness (resp. local
symmetry) properties of the tangent bundle and the flatness (resp. local symmetry) on
the base manifold.

1. Introduction. Tangent bundles of differentiable manifolds are of
great importance in many areas of mathematics and physics. In the last
decades, a large number of publications have been devoted to the study of
their special differential geometric properties [CS1, D, FP, FIP, GTS, Mu1,
Mu2, OP].

The geometry of tangent bundles goes back to the fundamental paper [S]
of Sasaki published in 1958. He used a given Riemannian metric g on a
differentiable manifold M to construct a metric gS on the tangent bundle
TM . Today this metric is a standard notion in differential geometry, called
the Sasaki metric and defined by

gS = gij(x)dxi ⊗ dxj + gij(x)δyi ⊗ δyj ,
where gij(x) are the components of the Riemannian metric g. The Sasaki
metric has been extensively studied by several authors, including Yano and
Davies [YD], Kowalski [Ko], Musso and Tricerri [MT], Aso [A], Cenzer and
Salimov [CS2].

For a given Riemannian metric g on a differentiable manifold M , there
are certain other (pseudo-) Riemannian metrics on TM , constructed from g.
One of them, introduced by Yano and Ishihara [YI], is defined by

(1.1) g̃ = 2gij(x)dxi ⊗ δyj + gij(x)δyi ⊗ δyj .
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Hasegawa and Yamauchi investigated infinitesimal conformal and projective
transformations on (TM, g̃) [HY]. By replacing gij(x) in g̃ with the compo-
nents hij(x, y) of a generalized Lagrange metric [MA], one gets a class of
pseudo-Riemannian metrics

(1.2) G = 2hij(x)dxi ⊗ δyj + hij(x)δyi ⊗ δyj .
In particular, hij(x, y) could be a deformation of gij(x), a case studied by
Anastasiei and Shimada [AS].

In this paper, we consider G when hij(x, y) is the following special de-
formation of gij(x):

(1.3) hij(x, y) = a(L2)gij(x),

where L2 = gij(x)yiyj , yi = gij(x)yj and a : Im(L2) ⊆ [0,∞) → R+ with
a > 0.

We calculate the Levi-Civita connection of G and we show that the
horizontal distribution HTM (resp. vertical distribution V TM) is totally
geodesic if and only if (M, g) is locally flat (K = 0, respectively). We also
study the conformal vector fields on TM with respect to G. We prove that
the complete lift of X ∈ X (M) is conformal on TM if and only if X is
homothetic. Finally, we find the components of the Riemannian curvature
tensor of G and show that if (TM,G) is flat (resp. locally symmetric), then
(M, g) is flat (locally symmetric, respectively).

2. Preliminaries. Let (M, g) be a real n-dimensional Riemannian man-
ifold and (U, x) a local chart on M , where the coordinates of the point p ∈ U
are denoted by x(p) or (xi). Using the coordinates (xi) on M , we have the
local field of frames {∂/∂xi} on TpM . Let ∇ be a Riemannian connection
on M with coefficients Γ kij where the indices a, b, c, h, i, j, k,m, . . . run over
the range 1, . . . , n. The Riemannian curvature tensor is defined by

(2.1) R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, ∀X,Y, Z ∈ X (M).

Locally, we have

R m
ijk = ∂iΓ

m
jk − ∂jΓmik + Γmia Γ

a
jk − ΓmjaΓ aik,

where ∂i := ∂/∂xi and R(∂i, ∂j)∂k := Rijk
m∂m. Let TM be the tangent

bundle of M , and π the natural projection from TM to M . Consider π∗ :
TTM → TM and put

kerπv∗ = {z ∈ TTM | πv∗(z) = 0}, ∀v ∈ TM.

Then the vertical vector bundle on M is defined by V TM =
⋃

v∈TM
kerπv∗ .

A non-linear connection or a horizontal distribution on TM is a comple-
mentary distribution HTM for V TM on TTM . Here, the reason for using
the term “non-linear connection” for HTM is that HTM is completely de-
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termined by the functions N i
j(x, y) which are non-linear with respect to y, in

general. These functions are called coefficients of the non-linear connection.
It is clear that HTM is a horizontal vector bundle. By definition, we have
the decomposition

(2.2) TTM = V TM ⊕HTM.

Using the induced coordinates (xi, yi) on TM , where xi and yi are called
respectively position and direction of a point on TM , we have the local
field of frames {∂/∂xi, ∂/∂yi} on TTM . Let {dxi, dyi} be the dual ba-
sis of {∂/∂xi, ∂/∂yi}. It is well known that we can choose a local field of
frames {δ/δxi, ∂/∂yi} adapted to the above decomposition, namely δ/δxi ∈
X (HTM) and ∂/∂yi ∈ X (V TM) are sections of the horizontal and vertical
subbundles HTM and V TM , defined by

(2.3)
δ

δxi
=

∂

∂xi
−N j

i

∂

∂yj
,

where N j
i (x, y) are functions on TM which have the following transforma-

tion rule in local coordinates (xi, yi) and (xi
′
, yi

′
) on TM :

Nh′
i′ =

∂xh
′

∂xh

(
∂xi

∂xi′
Nh
i +

∂2xh

∂xi′∂xa′
ya

′
)
.

To see a relation between linear and non-linear connections, let Γ kji be the
coefficients of the Riemannian connection of (M, g). Then it is easy to check
that yaΓ kai satisfy the above relation and thus can be regarded as coefficients
of a non-linear connection on TM . Hence we can rewrite (2.3) as follows:

(2.4)
δ

δxi
=

∂

∂xi
− yaΓ jai

∂

∂yj
.

We put δh = δ/δxh and ∂̇h = ∂/∂yh. Then {δh, ∂̇h} is the adapted local
field of frames of TM . Let {dxh, δyh} be the dual basis of {δh, ∂̇h}, where
δyh = dyh + yaΓ h

a idx
i and the indices i, j, h, . . . run over the range 1, . . . , n.

Let ϕ be a transformation on M . Then ϕ is called a conformal transfor-
mation on M if it preserves angles. Let X be a vector field on M and {ϕt}
be the local one-parameter group of local transformations on M generated
by X. Then X is called a conformal vector field on M if each ϕt is a local
conformal transformation of M . It is well known that X is a conformal vec-
tor field on M if and only if there exists a scalar function ρ on M such that
£Xg = 2ρg, where £X denotes Lie derivation with respect to the vector
field X. In particular, X is called homothetic if ρ is constant, and Killing
when ρ vanishes.

Let TM be the tangent bundle of M , and φ be a transformation of
TM . Then φ is called fiber-preserving if it preserves fibres. Let X̃ be a
vector field on TM , and consider the local one-parameter group {φt} of local
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transformations of TM generated by X̃. Then X̃ is called fiber-preserving
if each φt is a local fiber-preserving transformation of TM . Let G be a
(pseudo-) Riemannian metric of TM . A fiber-preserving vector field X̃ on
TM is said to be conformal if there exists a scalar function ρ̃ on TM such
that £ eXG = 2ρ̃G. In particular, X̃ is called inessential if ρ̃ is depends only
on (xh), and essential when ρ̃ depends only on (yh) [HB].

3. The Levi-Civita connection of the metric G. In this section, we
calculate the Levi-Civita connection with respect to the lift metric G and
by using it, we find conditions for the horizontal (or vertical) distribution
to be totally geodesic.

Let (M, g) be a Riemannian space and (TM, π,M) be its tangent bundle.
On a domain U ⊂M of a local chart, g has the components gij(x) (i, j, . . . =
1, . . . , n). On π−1(U) ⊂ TM , we consider

(3.1) τ = L2 = gij(x)yiyj .

Then τ is globally defined and differentiable on TM . With the above nota-
tion, we can rewrite the metric G defined by (1.2) and (1.3) as follows:

(3.2) G = 2a(τ)gij(x)dxi ⊗ δyj + a(τ)gij(x)δyi ⊗ δyj .

It is easy to check that (TM,G) is a pseudo-Riemannian space, depending
only on the metric g. Obviously, if a = 1, then we have (1.1).

Remark. In [AM], Abbassi and Calvaruso introduced the g-natural
metric on TM which is characterized by

G̃(x,u)(X
h, Y h) = (α1 + α3)(τ)gx(X,Y ) + (β1 + β3)(τ)gx(X,u)gx(Y, u),

G̃(x,u)(X
v, Y v) = α1(τ)gx(X,Y ) + β1(τ)gx(X,u)gx(Y, u),

G̃(x,u)(X
h, Y v) = G̃(x,u)(X

v, Y h) = α2(τ)gx(X,Y ) + β2(τ)gx(X,u)gx(Y, u),

where αi, βi : R+ → R, i = 1, 2, 3, are smooth functions and Xh and Xv are
the horizontal lift and the vertical lift of a vector X ∈ TxM , respectively. In
particular:

(i) The Sasaki metric gS is obtained for α1(τ) = 1 and α2(τ) = α3(τ) =
β1(τ) = β2(τ) = β3(τ) = 0.

(ii) The Cheeger–Gromoll metric gCG (see [CG]) is obtained for α2(τ) =
β2(τ) = 0, α1(τ) = β1(τ) = −β3(τ) = 1

1+τ and α3(τ) = τ
1+τ .

Further, if we set α1(τ) = α2(τ) = a(τ), α3(τ) = −a(τ) and β1(τ) = β2(τ) =
β3(τ) = 0 then we obtain the metric G defined by (3.2).

By direct calculation, we obtain the following lemma.
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Lemma 3.1. Let (M, g) be a Riemannian manifold. Then

[δi, δj ] = −yaR k
ija ∂̇k,(3.3)

[∂̇i, ∂̇j ] = 0,(3.4)

[δi, ∂̇j ] = Γ kij ∂̇k.(3.5)

Proposition 3.2. Let (M, g) be a Riemannian manifold and TM be its
tangent bundle equipped with the metric G. Then the corresponding Levi-
Civita connection ∇̃ satisfies the following relations:

∇̃∂̇i
∂̇j = −Kgijykδk +K(δkj yi + δki yj)∂̇k,(3.6)

∇̃δiδj = (Γ kij − 1
2y

aR k
aij − 1

2y
aR k

aji )δk + yaR k
aij ∂̇k,(3.7)

∇̃δi ∂̇j = (Kδki yj −Kgijyk − 1
2y

aR k
aji )δk + (Γ kij + 1

2y
aR k

aji )∂̇k,(3.8)

∇̃∂̇i
δj = (Kδkj yi −Kgijyk − 1

2y
aR k

aij )δk + 1
2y

aR k
aij ∂̇k,(3.9)

where K = a′/a.

Proof. We only prove (3.6). Since the gij only depend on (xh), we obtain

(3.10) ∂̇kτ = ∂̇k(gij(x)yiyj) = gij(x)δiky
j + gij(x)δjky

i = 2yk.

If ∇ is the Levi-Civita connection on (M, g), then

(3.11) 0 = ∇kgij = δkgij − girΓ rkj − gjrΓ rki.
By using (3.1), we obtain

(3.12) δk(gijyiyj) = (δkgij)yiyj + gij(δkyi)yj + gijy
i(δkyj).

But (2.4) gives

(3.13) δky
i = −yaΓ rakδir = −yaΓ iak.

By inserting (3.13) in (3.12) and using (3.11), we infer that

(3.14) δkτ = δk(gijyiyj) = (∇kgij)yiyj = 0.

Now let

(3.15) ∇̃∂̇i
∂̇j = Akijδk +Bk

ij ∂̇k.

Writing the Koszul formula, we have

2G(∇̃∂̇i
∂̇j , δk) = ∂̇iG(∂̇j , δk) + ∂̇jG(δk, ∂̇i)− δkG(∂̇i, ∂̇j)

+G([∂̇i, ∂̇j ], δk)− (G[∂̇j , δk], ∂̇i) +G([δk, ∂̇i], ∂̇j).

Combining (3.4), (3.5) and (3.15) with the above equation and using (3.10),
(3.11) and (3.14), we obtain

agrkB
r
ij = a′(yigjk + yjgik).

Contracting the above equation with gkh implies that

(3.16) Bh
ij = K(yiδhj + yjδ

h
i ).



234 E. Peyghan et al.

In the same way we obtain

(3.17) Ahij = −Kgijyh.
From (3.16), (3.17) and (3.15), we deduce (3.6).

We recall that the vertical distribution V TM is totally geodesic in TTM
if H∇̃∂̇i

∂̇j = 0, where H denotes the horizontal projection. Similarly, if
we denote the vertical projection by V, then we say that the horizontal
distribution HTM is totally geodesic in TTM if V∇̃δiδj = 0. In the following
proposition, we find necessary and sufficient conditions for the vertical or
horizontal distributions in TTM to be totally geodesic.

Proposition 3.3. Let (M, g) be a Riemannian manifold and TM be its
tangent bundle with the metric G. Then

1. The vertical distribution V TM is totally geodesic in TTM if and only
if K = 0.

2. The horizontal distribution HTM is totally geodesic in TTM if and
only if (M, g) is a locally flat manifold.

Proof. By using (3.6) we infer that H∇̃∂̇i
∂̇j = −Kgijykδk. Hence V TM

is a totally geodesic distribution in TTM if and only if K = 0. According
to (3.7) we also have

(3.18) V∇̃δiδj = yaR k
aij ∂̇k.

If (M, g) is a locally flat manifold, then R k
aij = 0. Hence from (3.18), we

deduce V∇̃δiδj = 0, i.e., HTM is a totally geodesic distribution in TTM .
Conversely, if V∇̃δiδj = 0 then by (3.18) we deduce

(3.19) yaR k
aij = 0.

Applying ∂̇h to this equation, we obtain R k
hij = 0. Hence (M, g) is locally

flat.

4. Conformal vector fields on TM . In this section, we study the
conformal vector fields on TM with respect to the metric G. Let us first
recall the following fact.

Lemma 4.1 ([PH]). Let X̃ = X̃iδi+
˙̃
Xi∂̇i be a vector field on TM . Then

X̃ is fiber-preserving vector field on TM if and only if the X̃i are functions
on M .

In the fiber-preserving case, we denote X̃i by Xi. Therefore, every fiber-
preserving vector field X̃ on TM induces a vector field X = Xi∂i on M .

Definition 4.2 ([YI]). Let X be a vector field on M with compo-
nents Xi. The following vector fields on TM are called respectively complete,
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horizontal and vertical lifts of X:

XC = Xiδi + yj(∇jXi)∂̇i,(4.1)

XH = Xiδi,(4.2)

XV = Xi∂̇i.(4.3)

Recall that the Lie derivative of G with respect to X̃ is given by

(4.4) (£ eXG)(Ỹ , Z̃) = G(∇̃eY X̃, Z̃) +G(Ỹ , ∇̃ eZX̃).

By using (3.6) and (3.9), we obtain

G(∇̃
veY X̃, vZ̃) = ˙̃

Y i ˙̃
Zj{G((∂̇iX̃k)δk, ∂̇j) + X̃kG(∇̃∂̇i

δk, ∂̇j)(4.5)

+G((∂̇i
˙̃
Xk)∂̇k, ∂̇j) +G( ˙̃

Xk∇̃∂̇i
∂̇k, ∂̇j)}

= a(τ2) ˙̃
Y i ˙̃
Zj{∂̇i(X̃s)gsj +KX̃k(gkjyi − gikyj)

+ ∂̇i(
˙̃
Xs)gjs +K

˙̃
Xk(yigkj − yjgik + ykgij)},

where vỸ = ˙̃
Y i∂̇i. Similarly,

G(vỸ , ∇̃
v eZX̃) = a(τ2) ˙̃

Y i ˙̃
Zj{∂̇j(X̃s)gsi +KX̃k(gkiyj − gjkyi)(4.6)

+ ∂̇j(
˙̃
Xs)gis +K

˙̃
Xk(yjgki − yigjk + ykgij)}.

From (4.4)–(4.6) we deduce

(£ eXG)(vỸ , vZ̃) = a(τ2) ˙̃
Y i ˙̃
Zj{∂̇i(X̃k)gkj + ∂̇j(X̃k)gik + ∂̇i(

˙̃
Xk)gkj(4.7)

+ ∂̇j(
˙̃
Xk)gki + 2K ˙̃

Xkykgij}.

Similarly, we can prove that

(£ eXG)(hỸ , vZ̃) = a(τ2)Ỹ i ˙̃
Zj{gkj∇iX̃k + X̃kyaRjaik + gkj∇i

˙̃
Xk(4.8)

+ ∂̇j(
˙̃
Xk)gki + 2K ˙̃

Xkykgij},

(£ eXG)(hỸ , hZ̃) = a(τ2)Ỹ iZ̃j{X̃kyaRaikj + X̃kyaRajki + gkj∇i
˙̃
Xk(4.9)

+ gki∇j
˙̃
Xk}.

By using (4.7)–(4.9) we obtain:

Proposition 4.3. Let (M, g) be a Riemannian manifold and G be the

pseudo-Riemannian metric on TM defined by (3.2). Then X̃ = X̃iδi +
˙̃
Xi∂̇i

is a conformal vector field on TM with respect to G if and only if the fol-
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lowing relations hold:

(4.10) ∂̇i(X̃k)gkj + ∂̇j(X̃k)gik+ ∂̇i(
˙̃
Xk)gkj + ∂̇j(

˙̃
Xk)gki+2K ˙̃

Xkykgij = 2ρ̃gij ,

(4.11) gkj∇iX̃k + X̃kyrRjrik + gkj∇i
˙̃
Xk + ∂̇j(

˙̃
Xk)gki + 2K ˙̃

Xkykgij = 2ρ̃gij ,

(4.12) X̃kyrRrikj + X̃kyrRrjki + gkj∇i
˙̃
Xk + gki∇j

˙̃
Xk = 0,

where ρ̃ is a function on TM .

Now, let X̃ = Xiδi+
˙̃
Xi∂̇i be a fiber-preserving conformal vector field on

TM . Then by interchanging i and j in (4.11) and adding the new relation
to (4.11), we infer that

(4.13) gkj∇iXk + gki∇jXk +XkyrRjrik +XkyrRirjk + gkj∇i
˙̃
Xk

+ gki∇j
˙̃
Xk + ∂̇j(

˙̃
Xk)gki + ∂̇i(

˙̃
Xk)gkj + 4K ˙̃

Xkykgij = 4ρ̃gij .

Since ∂̇i(Xk) = 0, by using (4.10) and (4.12) in (4.13) we derive

(4.14) gkj∇iXk + gki∇jXk + 2K ˙̃
Xkykgij = 2ρ̃gij .

If we suppose ϕ̃ = ρ̃−K ˙̃
Xkyk, then (4.14) gives

(4.15) ∇iXj +∇jXi = 2ϕ̃gij ,

where Xj = gkjX
k. It is easy to see that the vector field X = Xi∂i on M

satisfies

(4.16) £Xgij = ∇iXj +∇jXi.

The relations (4.15) and (4.16) imply

(4.17) £Xgij = 2ϕ̃gij .

This shows that the function ϕ̃ on TM depends only on the variables (xh) in
the induced coordinates (xh, yh). Thus we can regard ϕ̃ as a function on M .
In this case, we write ϕ instead of ϕ̃. Therefore, we have the following result.

Proposition 4.4. Let (M, g) be a Riemannian manifold and G be the

pseudo-Riemannian metric on TM defined by (3.2). Then if X̃ = Xiδi+
˙̃
Xi∂̇i

is a fiber-preserving conformal vector field on TM with respect to G then
X = Xi∂i is a conformal vector field on M .

Lemma 4.5. The vertical components ˙̃
Xk of X can be written in the form

(4.18) ˙̃
Xk = yrAkr +Bk,

where Akr and Bk are the components of certain tensor fields A and B on M ,
respectively.
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Proof. From (4.10) we obtain

(4.19) ∂̇i(
˙̃
Xk)gkj + ∂̇j(

˙̃
Xk)gki = 2ϕgij .

Applying ∂̇r to the above equality, we obtain

(4.20) gkj ∂̇r∂̇i(
˙̃
Xk) + gki∂̇r∂̇j(

˙̃
Xk) = 0.

Hence

gki∂̇r∂̇j(
˙̃
Xk) = −gkj ∂̇r∂̇i(

˙̃
Xk) = −∂̇i(gkj ∂̇r(

˙̃
Xk))(4.21)

= −∂̇i(−gkr∂̇j(
˙̃
Xk) + 2ϕgjr) = gkr∂̇i∂̇j(

˙̃
Xk)

= ∂̇j(gkr∂̇i(
˙̃
Xk)) = ∂̇j(−gki∂̇r(

˙̃
Xk) + 2ϕgri)

= −gki∂̇j ∂̇r(
˙̃
Xk) = −gki∂̇r∂̇j(

˙̃
Xk),

which implies that
gki∂̇r∂̇j(

˙̃
Xk) = 0.

This shows that ∂̇j(
˙̃
Xk) depends only on the variables (xk) and consequently

˙̃
Xk can be written as (4.18).

Lemma 4.6. The components Akr and Bk of the tensor fields A and B
satisfy

Aij +Aji = 2ϕgij ,(4.22)

XkRhikj +∇jAhi = 0,(4.23)
∇jBi −∇iXj +Aij = 0,(4.24)

where Xj = gjkX
k, Bi = gikB

k and Aij = gjkA
k
i .

Proof. Inserting (4.18) in (4.19) we get

∂̇i(yrAkr +Bk)gkj + ∂̇j(yrAkr +Bk)gki = 2ϕgij .

Since Akr and Bk are functions of (xk), the above implies

Aki gkj +Akj gki = 2ϕgij .

This yields (4.22). From (4.11), we have

gkj∇iXk +XkyrRjrik + gkj∇i
˙̃
Xk + ∂̇j(

˙̃
Xk)gki = 2ϕgij ,

Applying (4.18) in the above equation yields

(4.25) ∇iXj +XkyrRjrik + yr∇iArj +∇iBj +Aji = 2ϕgij .

Inserting (4.18) in (4.12) we also obtain

(4.26) XkyrRrikj +XkyrRrjki + yr∇iArj +∇iBj + yr∇jAri +∇jBi = 0.

From (4.25) and (4.26), we get

XkyrRrikj + yr∇jAri +∇jBi + 2ϕgij −∇iXj −Aji = 0.
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Using (4.22) in the above equation implies that

(4.27) XkyrRrikj + yr∇jAri +∇jBi −∇iXj +Aij = 0.

Taking the derivatives of both sides with respect to ∂̇h gives (4.23). By
applying (4.23) in (4.27) we deduce (4.24).

By interchanging i and j in (4.24) and adding the new equation to (4.24)
we get

∇iBj +∇jBi −∇iXj −∇jXi +Aij +Aji = 0.

The relations (4.15) and (4.22) now imply that

£Bgij = ∇iBj +∇jBi = 0.

Hence, we have the following result.

Lemma 4.7. The vector field B = Bi∂i is a Killing vector field on M .

By using (4.22) we obtain

∇hAij +∇hAji = 2gij∇hϕ.
The above relation and (4.23) give

XkRijkh +XkRjikh = 2gij∇hϕ.
Since Rijkh = −Rjikh, we infer that ∇hϕ = 0. Consequently, ∂hϕ = 0, i.e.,
ϕ is constant on M . Therefore we have the following result.

Lemma 4.8. The vector field X = Xi∂i is a homothetic vector field
on M .

From Proposition 4.4 and Lemmas 4.7 and 4.8, we have the following.

Theorem 4.9. Let (M, g) be a Riemannian manifold and G be the
pseudo-Riemannian metric on TM defined by (3.2). Then every fiber-pre-
serving conformal vector field on TM with respect to G induces a homothetic
vector field and a Killing vector field on M .

Now, let X = Xi∂i be a homothetic vector field on M with respect to
the constant function ϕ. Then

(4.28) £Xgij = ∇iXj +∇jXi = 2ϕgij .

If £XΓ
h
ij are the components of the tensor field £X∇, then ([F], [K])

£XΓ
h
ij = ∇i∇jXh +R h

rij X
r = 0,

or

(4.29) ∇i∇jXk +RrijkX
r = 0.

We define the vector field X̃ on TM by

(4.30) X̃ = Xiδi + yr(∇rXi)∂̇i.

By using (4.9), (4.29) and (4.30) we obtain
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(4.31) (£ eXG)(δi, δj) = ayr(XkRrikj+XkRrjki+∇i∇rXj+∇j∇rXi) = 0.

The relations (4.8), (4.28), (4.29) and (4.30) give

(£ eXG)(δi, ∂̇j) = 2a(ϕ+Kyr(∇rXk)yk)gij .
Hence,
(4.32) (£ eXG)(δi, ∂̇j) = 2aρ̃gij ,

where ρ̃ = ϕ+Kyr(∇rXk)yk. Using (4.7), (4.28) and (4.30) we also obtain

(4.33) (£ eXG)(∂̇i, ∂̇j) = 2a(ϕ+Kyr(∇rXk)yk)gij = 2ρ̃gij .

By using (4.31), (4.32) and (4.33), we get £ eXG = 2ρ̃G. This yields the
following theorem.

Theorem 4.10. Let M be an n-dimensional Riemannian manifold, and
TM be its tangent bundle with the metric G. Then every infinitesimal ho-
mothetic vector field X on M induces an infinitesimal fiber-preserving con-
formal vector field on TM .

If X is a vector field on M , then its complete lift defined by
XC = Xiδi + yr(∇rXi)∂̇i

is a fiber-preserving vector field on TM . Obviously, the vector field X̃ defined
by (4.30) is the complete lift of X = Xi∂i. Therefore from Theorems 4.9
and 4.10, we deduce the following result.

Theorem 4.11. Let (M, g) be a Riemannian manifold, X a vector field
on M , and XC the complete lift of X to TM . If we endow TM with the
metric G, then XC is a conformal vector field on TM if and only if X is
homothetic on M .

Proposition 4.12. Let M be an n-dimensional Riemannian manifold,
and TM be its tangent bundle with the metric G. Then every infinitesimal
horizontal inessential conformal vector field on TM induces an infinitesimal
conformal vector field on M .

Proof. Let X̃ = X̃iδi be a horizontal inessential conformal vector field
on TM . Then there exists a function ρ(x) on M such that £ eXG = 2ρG. By
using (4.10)–(4.12), we obtain

∂̇i(X̃k)gkj + ∂̇j(X̃k)gki = 2ρgij ,(4.34)
∇iX̃j + X̃kyaRjaik = 2ρgij ,(4.35)
X̃kyaRaikj + X̃kyaRajki = 0.(4.36)

Differentiating (4.34) with respect to ∂̇h and using (4.21), we get

(4.37) ∂̇h∂̇i(X̃k) = 0,
or
(4.38) X̃k = yrAkr +Bk.



240 E. Peyghan et al.

By interchanging i and j in (4.35), and adding the new relation to (4.35)
and using (4.36) we deduce

(4.39) ∇iX̃j +∇jX̃i = 4ρgij ,

where X̃j = gjkX̃
k. Putting (4.38) into (4.39) implies that

(4.40) yr∇iArj + yr∇jAri +∇iBj +∇jBi = 4ρgij .

Since the first two terms depend only on y, we have

(4.41) ∇iAhj +∇jAhi = 0.

From (4.40) and (4.41), we obtain

(4.42) ∇iBj +∇jBi = 4ρgij .

Since ρ is a function on M , B = Bi∂i is a conformal vector field on M .

Proposition 4.13. Let M be an n-dimensional Riemannian manifold,
and TM be its tangent bundle with the metric G. Then every horizontal lift
conformal vector field on TM is a Killing vector field on M and it induces
a Killing vector field on M .

Proof. Let XH = Xiδi be the horizontal lift vector field of X = Xi∂i.
If XH is a conformal vector field on TM , then by using (4.10) we infer
that ρ̃ = 0. Hence XH is Killing on TM . Using (4.39) we also deduce that
X = Xi∂i is a Killing vector field on M .

Proposition 4.14. Let M be an n-dimensional Riemannian manifold,
and TM be its tangent bundle with the metric G. Then every vertical lift
conformal vector field on TM induces a Killing vector field on M .

Proof. Let XV = Xi∂̇i be the vertical lift of X = Xi∂i. If XV is a
conformal vector field on TM , then by using (4.12) we get ∇iXj+∇jXi = 0.
Hence X = Xi∂i is a Killing vector field on M .

5. Riemannian curvature tensor

Lemma 5.1. Let (M, g) be a Riemannian manifold. Then the coefficients
of the Riemannian curvature tensor with respect to the metric G are

R̃(∂̇i, ∂̇j)∂̇k =
[
(2K ′ −K2)(gikyj − gjkyi)ys +K(gikδsj − gjkδsi )(5.1)

+
K

2
ylyrgjkR

s
lir −

K

2
ylyrgikR

s
ljr

]
δs

+
[
(2K ′ −K2)(yiδsj − yjδsi )yk −

K

2
ylyrgjkR

s
lir

+K(gikδsj − gjkδsi ) +
K

2
ylyrgikR

s
ljr

]
∂̇s,
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R̃(∂̇i, ∂̇j)δk =
[
(2K ′ −K2)(gikyj − gjkyi)ys +K(gikδsj − gjkδsi )−R s

ijk

(5.2)

+
K

2
yhyrgjkR

s
hir −

K

2
yhyrgikR

s
hjr +

1
4
ylyhR r

ljk R
s

hir

− 1
4
ylyhR r

lik R s
hjr

]
δs

+
[
−1

4
ylyhR r

ljk R
s

hir +
K

2
yhyrgikR

s
hjr

+R s
ijk +

1
4
ylyhR r

lik R s
hjr +

K

2
ylyrR

r
ljk δ

s
i

− K

2
ylyrR

r
lik δsj −

K

2
yhyrgjkR

s
hir

]
∂̇s,

R̃(δi, ∂̇j)∂̇k =
[
K

2
ylyrgjkR

s
lir +

K

2
ylyrgjkR

s
lri + 2K ′(gikys − ykδsi )yj

(5.3)

+K(gikδsj − gjkδsi ) +
1
2
R s
jki −K2gikyjy

s − K

2
yhyrgikR

s
hjr

− 1
4
ylyhR r

lki R
s

hjr +K2ykyjδ
s
i

]
δs

+
[
−KylyrgjkR s

lir −
1
2
R s
jki

+
K

2
yhyrgikR

s
hjr +

1
4
ylyhR r

lki R
s

hjr −
K

2
ylyrR

r
lki δ

s
j

]
∂̇s,

R̃(δi, ∂̇j)δk =
[
−1

2
yl∇iR s

ljk +
K

2
yhyrgjkR

s
hir +

1
4
ylyhR r

ljk R
s

hir

(5.4)

+
K

2
yhyrgjkR

s
hri +

K

2
ylyrR

r
ljk δ

s
i +

1
2
R s
jik +

1
2
R s
jki

− 1
4
ylyhR r

lik R s
hjr −

1
4
ylyhR r

lki R
s

hjr

]
δs

+
[

1
2
yl∇iR s

ljk −KyhyrR s
hir gjk −

1
2
ylyhR r

ljk R
s

hir

+
1
4
ylyhR r

ljk R
s

hri −R s
jik +

1
4
ylyhR r

lik R s
hjr

+
1
4
ylyhR r

lki R
s

hjr − ylyrR r
lik δsj

]
∂̇s,
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R̃(δi, δj)∂̇k =
[

1
2
yl(∇jR s

lki −∇iR s
lkj ) +

K

2
yhyrgjkR

s
hir −

K

2
yhyrgikR

s
hjr

(5.5)

+
1
4
ylyhR r

lkj R
s

hir −
1
4
ylyhR r

lki R
s

hjr +
K

2
yhyrgjkR

s
hri

− K

2
yhyrgikR

s
hrj +

K

2
ylyrR

r
lkj δ

s
i −

K

2
ylyrR

r
lki δ

s
j

]
δs

+
[

1
2
yl(∇iR s

lkj −∇jR s
lki )−KyhyrgjkR s

hir

+KyhyrgikR
s

hjr

− 1
2
ylyhR r

lkj R
s

hir +
1
2
ylyhR r

lki R
s

hjr +
1
4
ylyhR r

lkj R
s

hri

− 1
4
ylyhR r

lki R
s

hrj +R s
ijk +KylyrR

r
ijl δ

s
k

]
∂̇s,

R̃(δi, δj)δk =
[
R s
ijk +

1
2
yl(∇jR s

lik −∇iR s
ljk ) +

1
2
yl(∇jR s

lki −∇iR s
lkj )

(5.6)

+
1
4
ylyhR r

ljk R
s

hir −
1
4
ylyhR r

lik R s
hjr +

1
4
ylyhR r

lkj R
s

hir

− 1
4
ylyhR r

lki R
s

hjr −
1
4
ylyhR r

kjl R
s

hri +
1
2
ylyhR r

ijl R
s

hrk

+Kylyr(R r
ljk δ

s
i −R r

lik δsj )

−KylyrR r
ijl δ

s
k + 2KylysRijlk

]
δs

+
[
yl(∇iR s

ljk −∇jR s
lik )− 1

2
ylyhR r

ljk R
s

hir

− 1
2
ylyhR r

lkj R
s

hir +
1
2
ylyhR r

lki R
s

hjr +
1
2
ylyhR r

ljk R
s

hri

− 1
2
ylyhR r

lik R s
hrj −

1
2
ylyhR r

ijl R
s

hrk

]
∂̇s.

Proof. We only prove (5.1). Since [∂̇i, ∂̇j ] = 0, by using (2.1) we have

(5.7) R̃(∂̇i, ∂̇j)∂̇k = ∇̃∂̇i
∇̃∂̇j

∂̇k − ∇̃∂̇j
∇̃∂̇i

∂̇k.

From (3.6) and (3.9), we obtain

∇̃∂̇i
∇̃∂̇j

∂̇k = ∇̃∂̇i
(−Kyrgjkδr +K(yjδrk + ykδ

r
j )∂̇r)(5.8)

= ∂̇i(−Kyrgjk)δr + ∂̇i(K(yjδrk + ykδ
r
j ))∂̇r

−Kyrgjk∇̃∂̇i
δr +K(yjδrk + ykδ

r
j )∇̃∂̇i

∂̇r
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=
[
−2K ′gjkyiys −Kgjkδsi +

K

2
ylyrgjkR

s
lir

−K2gikyjy
s −K2gijyky

s

]
δs +

[
K2yiyjδ

s
k

+K2yiykδ
s
j + 2K ′yi(yjδsk + ykδ

s
j ) +K(gijδsk

+ gikδ
s
j )−

K

2
ylyrgjkR

s
lir + 2K2ykyjδ

s
i

]
∂̇s.

Interchanging i and j in the above equation gives

∇̃∂̇j
∇̃∂̇i

∂̇k =
[
−2K ′gikyjys −Kgikδsj +

K

2
ylyrgikR

s
ljr(5.9)

−K2gjkyiy
s −K2gijyky

s

]
δs +

[
K2yiyjδ

s
k

+K2yjykδ
s
i + 2K ′yj(yiδsk + ykδ

s
i ) +K(gijδsk

+ gjkδ
s
i )−

K

2
ylyrgikR

s
ljr + 2K2ykyiδ

s
j

]
∂̇s.

Putting (5.8) and (5.9) in (5.7) implies (5.1).

Now, let R̃ = 0. Then by using (5.6), we obtain

0 = (R̃(δi, δj)δk)(x,0) = R s
ijk δs.

Hence R s
ijk =0, i.e., R = 0. Conversely, if R = 0, then by using Lemma 5.1,

we obtain R̃(δi, ∂̇j)δk = R̃(δi, δj)∂̇k = R̃(δi, δj)δk = 0 and

R̃(∂̇i, ∂̇j)∂̇k = [(2K ′ −K2)(gikyj − gjkyi)ys +K(gikδsj − gjkδsi )]δs(5.10)

+ [(2K ′ −K2)(yiδsj − yjδsi )yk +K(gikδsj − gjkδsi )]∂̇s,

R̃(∂̇i, ∂̇j)δk = [(2K ′ −K2)(gikyj − gjkyi)ys +K(gikδsj − gjkδsi )]δs,(5.11)

R̃(δi, ∂̇j)∂̇k = [K2ykyjδ
s
i + 2K ′yj(gikys − ykδsi )−K2gikyjy

s(5.12)
+K(gikδsj − gjkδsi )]δs.

If K = 0, then from the above equations, we derive that

R̃(∂̇i, ∂̇j)∂̇k = R̃(∂̇i, ∂̇j)δk = R̃(δi, ∂̇j)∂̇k = 0,

and consequently R̃ = 0. But if R̃ = 0, then by considering (5.11) we deduce
that

(2K ′ −K2)(gikyj − gjkyi)ys +K(gikδsj − gjkδsi ) = 0.

By contracting the above equation with yk, we conclude that K = 0. There-
fore we have the following result.

Theorem 5.2. Let (M, g) be a Riemannian manifold and TM be its
tangent bundle with the metric G. Then we have the following assertions:
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(i) If TM is flat then M is flat.
(ii) If M is flat then TM is flat if and only if K = 0.

Remark. In [Ko], it is proved that the tangent bundle of a Riemannian
manifoldM with the Sasaki metric is flat if and only ifM is flat. On the other
hand the tangent bundle of M with the Cheeger–Gromoll metric cannot be
flat [Se].

Next, we assume ∇̃R̃ = 0. Then by Lemma 5.1, we obtain

0 = (∇̃δmR̃)(δi, δj)δk = ∇̃δm(R̃(δi, δj)δk)− R̃(∇̃δmδi, δj)δk(5.13)

− R̃(δi, ∇̃δmδj)δk − R̃(δi, δj)∇̃δmδk.
If we restrict ourselves to the zero section of TM , then by Lemma 5.1 and
(3.6)–(3.9) we get

(∇̃δm(R̃(δi, δj)δk))(x,0) = R s
ijk Γ

l
msδl,(5.14)

(R̃(∇̃δmδi, δj)δk)(x,0) = R l
rjkΓ

r
miδl,(5.15)

(R̃(δi, ∇̃δmδj)δk)(x,0) = R l
rik Γ

r
mjδl,(5.16)

(R̃(δi, δj)∇̃δmδk)(x,0) = R l
ijr Γ

r
mkδl.(5.17)

Applying the above equations in (5.13) yields

0 = (R s
ijk Γ

l
ms −R l

rjkΓ
r
mi −R l

rik Γ
r
mj −R l

ijr Γ
r
mk)∂l = (∇∂mR)(∂i, ∂j)∂k,

that is, ∇R = 0. Hence we have

Theorem 5.3. Let (M, g) be a Riemannian manifold and TM be its
tangent bundle with the metric G. If TM is locally symmetric, then so is M .

It is remarkable that, in [Ko], it is proved that if the tangent bundle
TM of the Riemannian manifold M with the Sasaki metric gS is locally
symmetric, then M is flat and hence TM is also flat. Further, if TM with
the Cheeger–Gromoll metric is locally symmetric, then so is M [AM].
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