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On para-Kähler–Norden structures
on the tangent bundles

by Arif Salimov, Aydin Gezer and Murat Iscan (Erzurum)

Abstract. The main purpose of this article is to investigate the paraholomorphy
property of the Sasaki and Cheeger–Gromoll metrics by using compatible paracomplex
stuctures on the tangent bundle.

1. Introduction. Let M be an n-dimensional Riemannian manifold
with metric g. We denote by =p

q(M) the set of all tensor fields of type (p, q)
on M . Manifolds, tensor fields and connections are always assumed to be
differentiable and of class C∞.

An almost paracomplex manifold is an almost product manifold (M,ϕ),
ϕ2 = id, ϕ 6= ±id, such that the two eigenbundles T+M and T−M associated
to the two eigenvalues +1 and −1 of ϕ, respectively, have the same rank.
Note that the dimension of an almost paracomplex manifold is necessarily
even. Considering the paracomplex structure ϕ, we obtain the following set of
affinors onM2k: {id, ϕ}, ϕ2 = id, which is an isomorphic representation of the
algebra of order 2 over the field R of real numbers, which is called the algebra
of paracomplex (or double) numbers and is denoted by R(j) = {a0 + a1j |
j2 = 1, j 6= ±1; a0, a1 ∈ R}. Obviously, it is associative, commutative and
unital, i.e., it admits principal unit 1. The canonical base of this algebra
{1, j}. The structure constants of this algebra are C1

11 = C2
12 = C2

21 = C1
22

= 1, all the others being zero, with respect to the canonical base {e1, e2} =
{1, j} of R(j), i.e. eiej = Ck

ijek.
Consider R(j) endowed with the usual topology of R2 and a domain U

of R(j). Let
X = x1 + jx2

be a variable in R(j), where xi are real coordinates of a point of U for
i = 1, 2. Using two real-valued functions f i(x1, x2), i = 1, 2, we introduce a
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paracomplex function
F = f1 + jf2

of variable X. It is said to be paraholomorphic if

dF = F ′(X)dX

for the differentials dX = dx1 + jdx2, dF = df1 + jdf2 and the derivative
F ′(X). The paraholomorphy of the function F = f1 + jf2 in the variable
X = x1 + jx2 is equivalent to the fact that the Jacobian matrix D = (∂kf

i)
commutes with the matrix(

C1
21 C1

22

C2
21 C2

22

)
=
(

0 1
1 0

)
(see [30, p. 87]). It follows that F is paraholomorphic if and only if f1 and
f2 satisfy the para-Cauchy–Riemann equations

∂f1

∂x1
=
∂f2

∂x2
,

∂f1

∂x2
=
∂f2

∂x1
.

The integrability of an almost paracomplex structure is equivalent to the
vanishing of the Nijenhuis tensor Nϕ. On the other hand, in order that an
almost paracomplex structure be integrable, it is necessary and sufficient
that we can introduce a torsion free linear connection such that ∇ϕ = 0.
A paracomplex manifold is an almost paracomplex manifold (M2k, ϕ) such
that the G-structure defined by the affinor field ϕ is integrable. We can
give another, equivalent definition of paracomplex manifold in terms of local
homeomorphisms in the space Rk(j) = {(X1, . . . , Xk) | Xi ∈ R(j), i =
1, . . . , k} and paraholomorphic changes of charts in a way similar to [8] (for
more details see [30]), i.e. a manifold M2k with an integrable paracomplex
structure ϕ is a real realization of the paraholomorphic manifold Xk(R(j))
over the algebra R(j).

1.1. Para-Norden metric. Let M2k be an almost paracomplex mani-
fold with the structure ϕ. A Riemannian metric g is a para-Norden metric
(B-metric) if

g(ϕX,ϕY ) = g(X,Y )

or equivalently
g(ϕX, Y ) = g(X,ϕY )

for any X,Y ∈ =1
0(M2k). If (M2k, ϕ) is an almost paracomplex manifold with

a para-Norden metric g, we say that (M2k, ϕ, g) is an almost paracomplex
Norden manifold [12, 24, 22, 29]. If ϕ is integrable, we say that (M2k, ϕ, g)
is a paracomplex Norden manifold.
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1.2. Paraholomorphic (or almost paraholomorphic) tensor fields.

Let
∗
t be a paracomplex tensor field on Xk(R(j)). The real model of such a

tensor field is a tensor field on M2k of the same order that is independent
of whether its vector or covector argument is subject to the action of the
affinor structure ϕ. Such tensor fields are said to be pure with respect to ϕ.
They were studied by many authors (see, e.g., [12, 18, 21, 24, 22, 30, 31]).
In particular, being applied to a (0, q)-tensor field ω, the purity means that
for any X1, . . . , Xq ∈ =1

0(M2k), the following conditions hold:

ω(ϕX1, X2, . . . , Xq) = ω(X1, ϕX2, . . . , Xq) = · · · = ω(X1, X2, . . . , ϕXq).

Consider the operator

Φϕ : =0
q(M2k)→ =0

q+1(M2k)

associated with ϕ and applied to the pure tensor field ω by (see [31])

(Φϕω)(X,Y1, Y2, . . . , Yq) = (ϕX)(ω(Y1, Y2, . . . , Yq))−X(ω(ϕY1, Y2, . . . , Yq))
+ ω((LY1ϕ)X,Y2, . . . , Yq) + · · ·+ ω(Y1, Y2, . . . , (LYqϕ)X),

where LY denotes the Lie differentiation with respect to Y .
When ϕ is a paracomplex structure on M2k and the tensor field Φϕω

vanishes, the paracomplex tensor field
∗
ω on Xk(R(j)) is said to be paraholo-

morphic [18]. Thus a paraholomorphic tensor field
∗
ω on Xk(R(j)) is realized

on M2k in the form of a pure tensor field ω such that

(Φϕω)(X,Y1, . . . , Yq) = 0

for any X,Y1, . . . , Yq ∈ =1
0(M2k). Therefore such a tensor field ω on M2k is

also called paraholomorphic.

1.3. Paraholomorphic Norden (or para-Kähler–Norden) met-
rics. If (M2k, ϕ, g) is an almost paracomplex Norden manifold with Φϕg = 0,
we say that (M2k, ϕ, g) is an almost paraholomorphic Norden manifold. If ϕ
is integrable, we say that (M2k, ϕ, g) is a paraholomorphic Norden manifold.
If ∇ϕ = 0, where ∇ is the Levi-Civita connection of g, then we say that
(M2k, ϕ, g) is a para-Kähler–Norden manifold.

In some respects, paraholomorphic Norden manifolds are similar to para-
Kähler manifolds. The following theorem is an analogue of the known result
that an almost para-Hermitian manifold is para-Kähler if and only if the
almost paracomplex structure is parallel with respect to the Levi-Civita con-
nection.
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Theorem 1.1 ([22, 24]; for a complex version see [12]). For an almost
paracomplex manifold with a para-Norden metric g, the condition Φϕg = 0
is equivalent to ∇ϕ = 0, where ∇ is the Levi-Civita connection of g.

A para-Kähler–Norden manifold can be defined as a triple (M2k, ϕ, g)
which consists of a manifold M2n endowed with an almost paracomplex
structure ϕ and a Riemannian metric g such that ∇ϕ = 0, where ∇ is the
Levi-Civita connection of g and the metric g is assumed to be Nordenian.
Therefore, there exists a one-to-one correspondence between para-Kähler–
Norden manifolds and Norden manifolds with a paraholomorphic metric.

2. Lifts to tangent bundles. Let TM be the tangent bundle over an
n-dimensional manifold M , and π the natural projection π : TM →M . Let
the manifoldM be covered by a system of coordinate neighborhoods (U, xi),
where (xi), i = 1, . . . , n, is a local coordinate system in U . Let (yi) be the
Cartesian coordinates in each tangent space TpM at p ∈M with respect to
the natural base { ∂

∂xi |p}, p being an arbitrary point in U whose coordinates
are (xi). Then we can introduce local coordinates (xi, yi) in the open set
π−1 (U) ⊂ TM . We call them the induced coordinates. The projection π is
represented by (xi, yi) 7→ (xi). The indices I, J, . . . run from 1 to 2n, the
indices ī, j̄, . . . run from n + 1 to 2n. Summation over repeated indices is
always assumed.

Let X = Xi ∂
∂xi be the local expression in U of a vector field X on M .

Then the horizontal lift HX and the vertical lift VX of X are given, in the
induced coordinates, by

VX = Xi∂ī,(2.1)
HX = Xi∂i − yjΓ i

jkX
k∂ī,(2.2)

where Γ i
jk are the coefficients of the Levi-Civita connection ∇ of g (for more

details, see [32]).
In particular, we have the vertical spray Vu and the horizontal spray Hu

on TM defined by

(2.3) Vu = yi V(∂i) = yi∂ī,
Hu = yi H(∂i) = yiδi,

where δi = ∂i − yjΓ s
ji∂s̄.

Vu is also called the canonical or Liouville vector
field on TM .

Now, let r be the norm of a vector u ∈ TM . Then, for any smooth
function f : R→ R, we have

HX(f(r2)) = 0,(2.4)
VX(f(r2)) = 2f ′(r2)g(X,u)(2.5)
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and in particular,
HX(r2) = 0,(2.6)
VX(r2) = 2g(X,u).(2.7)

Let X, Y and Z be any vector fields on M . Then (see [3])
HX(g(Y, u)) = g((∇XY ), u),(2.8)
VX(g(Y, u)) = g(X,Y ),(2.9)

HX(V(g(Y,Z))) = X(g(Y, Z)),(2.10)
VX(V(g(Y,Z))) = 0.(2.11)

Explicit expressions for the Lie bracket [ , ] of the tangent bundle TM are
given by Dombrowski [9]. The bracket operation of vertical and horizontal
vector fields is given by the formulas

(2.12)


[HX,HY ] = H[X,Y ]− V(R(X,Y )u),
[HX, VY ] = V(∇XY ),
[VX, VY ] = 0,

for all vector fields X and Y on M , where R is the Riemannian curvature of
g defined by

R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ].

3. Almost paracomplex structures with para-Norden metrics on
tangent bundles. Let (M, g) be a Riemannian manifold. A Remannian
metric g̃ on the tangent bundle TM of M is said to be natural with respect
to g on M if

g̃(HX,HY ) = g(X,Y ), g̃(HX, VY ) = 0

for all vector fields X,Y ∈ =1
0(M). A natural metric g̃ is constructed in

such a way that the vertical and horizontal subbundles are orthogonal and
the bundle map π : (TM, g̃) → (M, g) is a Riemannian submersion. All
the preceding metrics belong to the wide class of so-called g-natural metrics
on the tangent bundle, initially classified by Kowalski and Sekizawa [15]
and fully characterized by Abbassi and Sarih [1]–[3] (see also [13] for other
presentations of the basic result from [15] and for more details about the
concept of naturality).

3.1. The well-known example of a g-natural metric is the Sasaki metric
Sg introduced in [26]. Its construction is based on a natural splitting of the
tangent bundle TTM of TM into its vertical and horizontal subbundles
by means of the Levi-Civita connection ∇ on (M, g). The Sasaki metric is
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defined by
Sg(HX,HY ) = V(g(X,Y )),(3.1)
Sg(VX,HY ) = Sg(HX, VY ) = 0,(3.2)
Sg(VX, VY ) = V(g(X,Y ))(3.3)

for all X,Y ∈ =1
0(M)(see [32, pp. 155–175]. The Sasaki metric has been

extensively studied by several authors, including Kowalski [14], Musso and
Tricerri [20], and Aso [4]. Kowalski [14] calculated the Levi-Civita connection
S∇ of the Sasaki metric on TM and its Riemannian curvature tensor SR.
With this in hand Kowalski [14], Aso [4], and Musso and Tricerri [20] de-
rived interesting connections between the geometric properties of (M, g) and
(TM, Sg).

Now, define an almost paracomplex structure JS on TM by

(3.4) JS(HX) = VX, JS(VX) = HX,

for all X,Y ∈ =1
0(M) [8]. We put

A(X̃, Ỹ ) = Sg(JSX̃, Ỹ )− Sg(X̃, JSỸ )

for any X̃, Ỹ ∈ =1
0(TM). For all vector fields X̃ and Ỹ which are of the form

VX, VY or HX, HY , from (3.1)–(3.4), we have A(X̃, Ỹ ) = 0, i.e. Sg is pure
with respect to JS . Hence we have the following theorem:

Theorem 3.1. Let (M, g) be a Riemannian manifold and let TM be
its tangent bundle equipped with the Sasaki metric Sg and the paracomplex
structure JS defined by (3.4). Then the triple (TM, JS ,

Sg) is an almost para-
complex Norden manifold.

Having determined both the Sasaki metric Sg and the almost para-
complex structure JS and by using the fact that VXV(g(Y, Z)) = 0 and
HXV(g(Y, Z)) = V(Xg(Y, Z)) we calculate

(ΦJS

Sg)(X̃, Ỹ , Z̃) = (JSX̃)(Sg(Ỹ , Z̃))− X̃(g(JSỸ , Z̃))
+ Sg((LỸ JS)X̃, Z̃) + Sg(Ỹ , (LZ̃JS)X̃)

for all X̃, Ỹ , Z̃ ∈ =1
0(TM). Then we get

(ΦJS

Sg)(VX, VY,HZ) = Sg(H(R(u, Y )X),HZ),
(ΦJS

Sg)(VX, VY, VZ) = 0,
(ΦJS

Sg)(VX,HY, VZ) = Sg(V(R(X,Y )u), VZ),
(ΦJS

Sg)(VX,HY,HZ) = 0,
(ΦJS

Sg)(HX, VY,HZ) = 0,
(ΦJS

Sg)(HX, VY, VZ) = 0,
(ΦJS

Sg)(HX,HY,HZ) = Sg(H(R(Y,X)u−R(u, Y )X),HZ),
(ΦJS

Sg)(HX,HY, VZ) = 0.
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Therefore, from Theorem 1.1 we have

Theorem 3.2. Let (M, g) be a Riemannian manifold and let TM be its
tangent bundle equipped with the Sasaki metric Sg and the paracomplex struc-
ture JS defined by (3.4). The triple (TM, JS ,

Sg) is a para-Kähler–Norden
manifold if and only if M is locally flat.

3.2. Another well-known g-natural Riemannian metric gCG was consid-
ered by Muso and Tricerri [20] who, inspired by the paper [7] of Cheeger
and Gromoll, called it the Cheeger–Gromoll metric. The metric was defined
by Cheeger and Gromoll; yet, it was Musso and Tricerri who wrote down
its expression, constructed it in a more “comprehensible” way, and gave it
the name. The Levi-Civita connection of gCG and its Riemannian curvature
tensor were calculated by Sekizawa [27] (for more details see [10, 11]). In [19],
Munteanu considered a Cheeger–Gromoll type metric on TM , as well as a
compatible complex structure. By direct computations, he obtained some
conditions under which TM is almost Kählerian, locally conformal Kähle-
rian or Kählerian. The geometry of Cheeger–Gromoll metric is well known
and has been intensively studied (see [5, 6, 10, 11, 16, 17, 19, 23, 25]). A
similar metric in theoretical physics has been obtained by Tamm (the 1958
Nobel Laureate in Physics, see [28]).

Let (M, g) be a Riemannian manifold and denote by r the norm of a
vector u = (ui), i.e. r2 = gjiu

jui. The Cheeger–Gromoll metric gCG on the
tangent bundle TM is given by

gCG(HX,HY ) = V(g(X,Y )),(3.5)
gCG(HX, VY ) = 0,(3.6)

gCG(VX, VY ) =
1
α

[ V(g(X,Y )) + g(X,u)g(Y, u)](3.7)

for all vector fields X,Y ∈ =1
0(M), where V(g(X,Y )) = (g(X,Y )) ◦ π and

α = 1 + r2.

Theorem 3.3 ([10, 11]). Let (M, g) be a Riemannian manifold and equip
its tangent bundle TM with the Cheeger–Gromoll metric gCG. Then the cor-
responding Levi-Civita connection CG∇ satisfies the following:

CG∇HX
HY = H(∇XY )− 1

2
V(R(X,Y )u),

CG∇HX
VY =

1
2α

H(R(u, Y )X) + V(∇XY ),

CG∇VX
HY =

1
2α

H(R(u,X)Y ),
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CG∇VX
VY = − 1

α
(gCG(VX, Vu) VY + gCG(VY, Vu) VX

+
1 + α

α
gCG(VX,V Y ) Vu− 1

α
gCG(VX, Vu)g(VY, Vu) Vu

for any X,Y ∈ =1
0(M), where R and Vu denote respectively the curvature

tensor of ∇ and the canonical vector field on TM .

We define another almost paracomplex structure JCG on TM by the
formulas

(3.8)


JCG(HX) =

√
α VX − 1

1 +
√
α
g(X,u) Vu,

JCG(VX) =
1√
α

HX +
1√

α(1 +
√
α)
g(X,u) Hu.

Note that JCG
Vu = Hu and JCG

Hu = Vu. It is easily seen that J2
CG = I. In

fact, by (3.8) we have

J2
CG(HX) = JCG(JCG

HX) = JCG

(√
α VX − 1

1 +
√
α
g(X,u) Vu

)
=
√
αJCG

VX − 1
1 +
√
α
g(X,u)JCG

Vu

=
√
α

(
1√
α

HX +
1√

α(1 +
√
α)
g(X,u) Hu

)
− 1

1 +
√
α
g(X,u) Vu

= HX,

J2
CG(VX) = JCG(JCG

VX) = JCG

(
1√
α

HX +
1√

α(1 +
√
α)
g(X,u) Hu

)
=

1√
α
JCG

HX +
1√

α(1 +
√
α)
g(X,u)JCG

Hu

=
1√
α

(√
α VX − 1

1 +
√
α
g(X,u) Vu

)
+

1√
α(1 +

√
α)
g(X,u) Hu

= VX

for any X ∈ =1
0 (M), which implies J2

CG = I.

Theorem 3.4. Let (M, g) be a Riemannian manifold and let TM be
its tangent bundle equipped with the Cheeger–Gromoll metric gCG and
the almost paracomplex structure JCG defined by (3.8). Then the triple
(TM, JCG, gCG) is an almost paracomplex Norden manifold.

Proof. We put

A(X̃, Ỹ ) = gCG(JCGX̃, Ỹ )− gCG(X̃, JCGỸ )
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for any X̃, Ỹ ∈ =1
0(TM). From (3.5)–(3.8), we get

A(VX, VY ) = gCG(JCG
VX, VY )− gCG(VX,JCG

VY )

= gCG

(
1√
α

HX +
1√

α(1 +
√
α)
g(X,u) Hu, VY

)
− gCG

(
VX,

1√
α

HY +
1√

α(1 +
√
α)
g(Y, u) Hu

)
=

1√
α
gCG(HX, VY ) +

1√
α(1 +

√
α)
g(X,u)gCG(Hu, VY )

− 1√
α
gCG( VX,HY ) +

1√
α(1 +

√
α)
g(Y, u)gCG(VX,Hu)

= 0,

A(VX,HY ) = gCG(JCG
VX,HY )− gCG(VX, JCG

HY )

= gCG

(
1√
α

HX +
1√

α(1 +
√
α)
g(X,u) Hu,HY

)
− gCG(VX,

√
α VY − 1

1 +
√
α
g(Y, u) Vu)

=
1√
α
gCG(HX,HY ) +

1√
α(1 +

√
α)
g(X,u)gCG(Hu,HY )

−
√
α gCG(VX, VY ) +

1
1 +
√
α
g(Y, u)gCG(VX, Vu)

=
1√
α

V(g(X,Y )) +
1√

α(1 +
√
α)
g(X,u)g(Y, u)

− 1√
α

V(g(X,Y ))− 1√
α
g(X,u)g(Y, u) +

1
1+
√
α
g(Y, u)g(X,u)

=
(

1√
α(1 +

√
α)
− 1√

α
+

1
1 +
√
α

)
g(X,u)g(Y, u)

= 0,

A(HX, VY ) = gCG(JCG
HX, VY )− gCG(HX, JCG

VY )

= gCG

(√
α VX − 1

1 +
√
α
g(X,u) Vu, VY

)
− gCG(HX,

1√
α

HY +
1√

α(1 +
√
α)
g(Y, u) Hu)

=
√
α gCG(VX, VY )− 1

1 +
√
α
g(X,u)gCG(Vu, VY )

− 1√
α
gCG(HX,HY )− 1√

α(1 +
√
α)
g(Y, u)gCG(HX,Hu)
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=
1√
α

V(g(X,Y )) +
1√
α
g(X,u)g(Y, u)− 1√

α
V(g(X,Y ))

− 1
1 +
√
α
g(X,u)g(Y, u)− 1√

α (1 +
√
α)
g(X,u)g(Y, u)

= 0,

A(HX,HY ) = gCG(JCG
HX,HY )− gCG(HX, JCG

HY )

= gCG

(√
α VX − 1

1 +
√
α
g(X,u) Vu,HY

)
− gCG

(
HX,
√
α VY − 1

1 +
√
α
g(Y, u) Vu

)
=
√
α gCG(VX,HY )− 1

1 +
√
α
g(X,u)gCG(Vu,HY )

−
√
αgCG(HX, VY )− 1

1 +
√
α
g(Y, u)gCG(HX, Vu)

= 0,

i.e. gCG is pure with respect to JCG. Thus Theorem 3.4 is proved.

We now consider the covariant derivative of JCG. Let us begin with the
following lemma which will be used later on.

Lemma 3.5. Let CG∇ be the Levi-Civita connection of the Cheeger–Gro-
moll metric gCG and Vu and Hu be the vertical spray and horizontal spray
on TM , respectively. Then

CG∇HX
Vu = 0,

CG∇HX
Hu =

1
2

V(R(u,X)u),

CG∇VX
Vu =

1
α

(VX + g(X,u)Vu)

CG∇VX
Hu =

1
2α

H(R(u,X)u).

Proof. The equalities follow directly from the definition of the vertical
and horizontal spray and Theorem 3.3.

Also note that the definition of the Cheeger–Gromoll metric leads to

(3.9) gCG(VX, Vu) =
1
α

(g(X,u) + g(X,u)g(u, u)) = g(X,u).

Using (2.4)–(2.11), (3.8), (3.9), Theorem 3.3 and Lemma 3.5, by direct
computation we obtain the following identities:
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(i) (CG∇HX JCG)(HY ) = CG∇HX(JCG
HY )− JCG(CG∇HX

HY )

= CG∇HX

(√
α VY − 1

1 +
√
α
g(Y, u) Vu

)
− JCG

(
H(∇XY )− 1

2
V(R(X,Y )u)

)
= HX(

√
α) VY +

√
α CG∇HX

VY − HX

(
1

1 +
√
α
g(Y, u)

)
Vu

− 1
1 +
√
α
g(Y, u) CG∇HX

Vu− JCG(H(∇XY )) +
1
2
JCG(V(R(X,Y )u))

=
1

2
√
α

H(R(u, Y )X) +
√
α V(∇XY ))− 1

1 +
√
α
g(∇XY, u) Vu

−
√
α V(∇XY ) +

1
1 +
√
α
g(∇XY, u) Vu

+
1

2
√
α

H(R(X,Y )u) +
1

2
√
α(1 +

√
α)
g(R(X,Y )u, u) Hu

=
1

2
√
α

H(R(u, Y )X +R(X,Y )u);

(ii) (CG∇HX JCG)(VY ) = CG∇HX(JCG
VY )− JCG(CG∇HX

VY )

= CG∇HX

(
1√
α

HY +
1√

α(1 +
√
α)
g(Y, u) Hu

)
− JCG

(
1

2α
H(R(u, Y )X) + V(∇XY )

)
= HX

(
1√
α

)
HY +

1√
α

CG∇HX
HY + HX

(
1√

α(1 +
√
α
g(Y, u)

)
Hu

+
1√

α(1 +
√
α)
g(Y, u) CG∇HX

Hu− 1
2α
JCG(H(R(u, Y )X))

− JCG(V(∇XY ))

=
1√
α

H(∇XY )− 1
2
√
α

V(R(X,Y )u) +
1√

α(1 +
√
α)
g(∇XY, u)Hu

− 1
2
√
α(1 +

√
α)
g(Y, u)V(R(X,u)u)− 1

2
√
α

V(R(u, Y )X)

+
1

2α(1 +
√
α)
g((R(u, Y )X), u) Vu− 1√

α
H(∇XY )

− 1√
α(1 +

√
α)
g(∇XY, u) Hu
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=
−1

2
√
α

V(R(X,Y )u+R(u, Y )X)− 1
2
√
α(1+

√
α)
g(Y, u)V(R(X,u)u)

+
1

2α(1 +
√
α)
g((R(u, Y )X), u) Vu;

(iii) (CG∇VX JCG)(HY ) = CG∇VX(JCG
HY )− JCG(CG∇VX

HY )

= CG∇VX

(√
α VY − 1

1 +
√
α
g(Y, u) Vu

)
− JCG

(
1

2α

H

(R(u,X)Y )
)

= VX(
√
α) VY +

√
α CG∇VX

VY − VX

(
1

1 +
√
α
g(Y, u)

)
Vu

− 1
1 +
√
α
g(Y, u) CG∇VX

Vu− 1
2
√
α

V(R(u,X)Y )

+
1

2α(1 +
√
α)
g(R(u,X)Y, u) Vu

=
1√
α
g(X,u) VY +

√
α

(
− 1
α
g(X,u) VY − 1

α
g(Y, u) VX

+
1 + α

α2
V(g(X,Y )) Vu+

1
α2
g(X,u)g(Y, u) Vu

)
+

1
2
√
α(1 +

√
α)2

g(X,u)g(Y, u) Vu− 1√
α

V(g(X,Y )) Vu

− 1
α(1 +

√
α)
g(Y, u)(VX + g(X,u) Vu)− 1

2
√
α

V(R(u,X)Y )

+
1

2α(1 +
√
α)
g(R(u,X)Y, u) Vu

= −
(

1√
α

+
1

α(1 +
√
α)

)
g(Y, u) VX

+
(√

α(1 + α)
α2

− 1
1 +
√
α

)
V(g(X,Y )) Vu

+
(√

α

α2
+

1
2
√
α(1 +

√
α)2
− 1
α(1 +

√
α)

)
g(X,u)g(Y, u) Vu

− 1
2
√
α

V(R(u,X)Y ) +
1

2α(1 +
√
α)
g(R(u,X)Y, u) Vu;

(iv) (CG∇VX JCG)(VY ) = CG∇VX(JCG
VY )− JCG(CG∇VX

VY )

= CG∇VX

(
1√
α

HY +
1√

α(1 +
√
α)
g(Y, u) Hu

)
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− JCG

(
− 1
α
g(X,u) VY − 1

α
g(Y, u) VX +

1 + α

α2
V(g(X,Y )) Vu

+
1
α2
g(X,u)g(Y, u) Vu

)
= VX

(
1√
α

)
HY +

1√
α

CG∇VX
HY + VX

(
1√

α(1 +
√
α)
g(Y, u)

)
Hu

− 1 + α

α2
V(g(X,Y ))JCG

Vu− 1
α2
g(X,u)JCG

Vu

= − 1
α
√
α
g(X,u) HY +

1
2α
√
α

H(R(u,X)Y )

+
−(1 + 2

√
α)

α
√
α(1 +

√
α)2

g(X,u)g(Y, u) Hu+
1√

α(1 +
√
α)

V(g(X,Y ))Hu

+
1

2α
√
α(1 +

√
α)
g(Y, u) H(R(u,X)u) +

1
α
√
α
g(X,u) HY

+
2

α
√
α(1 +

√
α)
g(X,u)g(Y, u) Hu+

1
α
√
α
g(Y, u) HX

− 1 + α

α2
V(g(X,Y )) Hu− 1

α2
g(X,u) Hu

=
1

α
√
α
g(Y, u) HX − 1

α2
g(X,u) Hu+

1
2α
√
α

(
H(R(u,X)Y )

+
1

1 +
√
α
g(Y, u) H(R(u,X)u)

)
+
(

1√
α(1+

√
α)
− 1+α

α2

)
V(g(X,Y )) Hu

+
1

α
√
α(1 +

√
α)2

g(X,u)g(Y, u) Hu.

Hence, using Theorem 1.1 we deduce:

Theorem 3.6. Let (M, g) be a Riemannian manifold and let TM be
its tangent bundle equipped with the Cheeger–Gromoll metric gCG and the
paracomplex structure JCG defined by (3.8). Then the triple (TM, JCG, gCG)
is never a para-Kähler–Norden manifold.

Acknowledgements. The authors express their gratitude to the ano-
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