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Analytic functions in the unit disc sharing values in a sector

by Hong-Yan Xu (Jingdezhen) and Ting-Bin Cao (Nanchang)

Abstract. We deal with the uniqueness of analytic functions in the unit disc sharing
four distinct values and obtain two theorems improving a previous result given by Mao
and Liu (2009).

1. Introduction. We use C to denote the open complex plane, Ĉ
(= C ∪ {∞}) for the extended complex plane, D = {z : |z| < 1} for the
unit disc, and X (⊆ C) for an angular domain. We will study the unique-
ness of analytic functions and adopt the standard notation of the Nevanlinna
theory of meromorphic functions as explained in [4, 18].

For a ∈ Ĉ, we say that meromorphic functions f and g share the value
a CM (resp. IM) in X (or D) if f(z) − a and g(z) − a have the same zeros
with the same multiplicities (resp. ignoring multiplicities) in X (or D). In
addition, we write f = a 
 g = a in X (or D) to mean that f and g share
the value a CM in X (or D), f = a ⇔ g = a in X (or D) to mean that f
and g share a IM in X (or D), and f = a⇒ g = a in X (or D) to mean that
f = a implies g = a in X (or D).

R. Nevanlinna (see [10]) proved the following well-known theorem.

Theorem 1.1 (see [10]). If f and g are nonconstant meromorphic func-
tions that share five distinct values it in C, then f(z) ≡ g(z).

After his theorem, the uniqueness theory of meromorphic functions shar-
ing values in the whole complex plane attracted many researchers (see [18]).
In [21], Zheng studied the uniqueness problem under the condition that five
values are shared in some angular domain in C. There are many results on
uniqueness with shared values in the complex plane and in angular domains
(see [2, 7–9, 14–17, 20–22]). J. H. Zheng [22], T. B. Cao and H. X. Yi [2],
and J. F. Xu and H. X. Yi [17] continued to investigate the uniqueness of
meromorphic functions sharing five values and four values in an angular
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domain. W. C. Lin, S. Mori and K. Tohge [7] and W. C. Lin, S. Mori and
H. X. Yi [8] investigated the uniqueness of meromorphic and entire functions
sharing sets in an angular domain. Some important results were obtained
by applying Nevanlinna’s theory on angular domains (see [4, 21, 22]).

In 2009, Zhang [20] found a relationship between two characteristic func-
tions and applied it to study the uniqueness of meromorphic functions in an
angular domain. He proved the following theorems:

Theorem 1.2 (see [20]). Let f, g be meromorphic functions of finite
order in C, aj ∈ Ĉ (j = 1, . . . , 5) be five distinct values, and let ∆δ = {z :
|arg z − θ0| ≤ δ} (0 < δ < π) be an angular domain satisfying

(1.1) lim sup
ε→0+

lim sup
r→+∞

log T (r,∆δ−ε, f)
log r

> ω,

where ω = π/2δ and T (r,∆δ−ε, f) denotes the Ahlfors characteristic func-
tion of f in ∆δ−ε. If f and g share aj (j = 1, . . . , 5) IM in ∆δ, then f ≡ g.

Theorem 1.3 (see [20]). Let f, g be meromorphic functions of finite
order in C, aj ∈ Ĉ (j = 1, 2, 3, 4) be four distinct values, and let ∆δ = {z :
|arg z − θ0| ≤ δ} (0 < δ < π) be an angular domain satisfying (1.1). If f
and g share aj (j = 1, 2, 3, 4) CM in ∆δ, then f(z) is a linear fractional
transformation of g(z).

It is also an interesting topic to investigate the uniqueness of meromor-
phic functions in D (see [3, 9, 12]). To state some uniqueness theorems for
meromorphic functions in D, we need the following basic notations and def-
initions.

Definition 1.1 (see [6]). A meromorphic function f in D is called ad-
missible if

lim sup
r→1−

T (r, f)
log 1

1−r
=∞,

and non-admissible if

lim sup
r→1−

T (r, f)
log 1

1−r
<∞.

Let f(z) be a meromorphic function in D and let ∆(θ0, δ) = {z : |z| < 1}
∩ {z : |arg z − θ0| < δ}, where 0 ≤ θ0 ≤ 2π, 0 < δ < π. We use n(r,∆(θ0, δ),
f(z) = a) to denote the number of zeros of f(z)−a in ∆(θ0, δ)∩{z : |z| < r}
counting multiplicities.

Theorem 1.4 (see [12]). If admissible functions f, g share five distinct
values, then f ≡ g.
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Theorem 1.5 (see [9]). Let f, g be meromorphic functions in D, aj ∈ Ĉ
(j = 1, . . . , 5) be five distinct values, and ∆(θ0, δ) (0 < δ < π) be an angular
domain such that for some a ∈ Ĉ,

(1.2) lim sup
r→1−

log n(r,∆(θ0, δ/2), f(z) = a)
log 1

1−r
= τ > 1.

If f and g share aj (j = 1, . . . , 5) IM in ∆(θ0, δ), then f(z) ≡ g(z).

Remark 1.1. Let f be a meromorphic function of finite order in the
unit disc. If for arbitrarily small ε > 0, we have

lim sup
r→1−

log n(r,∆(θ0, ε), f(z) = a)
log 1

1−r
=: τ

for all but at most two a ∈ Ĉ, then eiθ0 is called a Borel point of order τ of
f(z). In [13], G. Valiron proved that every meromorphic function of finite
order ρ in the unit disc must have at least one Borel point of order ρ+ 1.

In this paper, we will investigate the uniqueness of analytic functions in
the unit disc D sharing four distinct values. Relaxing the assumptions of
Theorem 1.5, we obtain the following results.

Theorem 1.6. Let f, g be analytic functions in D, aj ∈ C (j = 1, 2, 3, 4)
be four distinct values, and ∆(θ0, δ) (0 < δ < π) be an angular domain
satisfying (1.2). If f and g share a1, a2 CM in ∆(θ0, δ), and f = a3 ⇒ g = a3

and f = a4 ⇒ g = a4 in ∆(θ0, δ), then f(z) ≡ g(z).

Theorem 1.7. Under the assumptions of Theorem 1.6 with CM replaced
by IM , we have either f(z) ≡ g(z) or

f ≡ a3g − a1a2

g − a4
,

and a1+a2 = a3+a4 and a3, a4 are exceptional values of f and g in ∆(θ0, δ),
respectively.

2. Some lemmas

Lemma 2.1 (see [4]). Let f be an admissible function in D, q a positive
integer and a1, . . . , aq pairwise distinct complex numbers. Then, for r → 1−,
r 6∈ E,

(q − 2)T (r, f) ≤
q∑
j=1

N

(
r,

1
f − aj

)
+ S(r, f),

where E ⊂ (0, 1) is a possible exceptional set with
	
E

dr
1−r < ∞, and the

term N
(
r, 1
f−aj

)
is replaced by N(r, f) when some aj is ∞. We use S(r, f)
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to denote any quantity satisfying

S(r, f) = O

{
log

1
1− r

}
+O{log+ T (r, f)}

as r → 1− possibly outside a set E such that
	
E

dr
1−r <∞. If the order of f

is finite, the remainder S(r, f) is O
(
log 1

1−r
)

without any exceptional set.

Lemma 2.2 (see [5]). Let f(z) be meromorphic in D and k be a positive
integer. Then

m

(
r,
f (k)(z)
f(z)

)
= S(r, f).

If f(z) is of finite order, then

m

(
r,
f (k)(z)
f(z)

)
= O

{
log

1
1− r

}
(r → 1−).

Lemma 2.3 (see [1, 5]). Let h1(r) and h2(r) be increasing, real valued
functions on [0, 1) such that h1(r) ≤ h2(r) possibly outside an exceptional
set E ⊂ [0, 1) for which

	
E

dr
1−r <∞. Then there exists a constant b ∈ (0, 1)

such that if s(r) = 1− b(1− r), then h1(r) ≤ h2(r) for all r ∈ (0, 1).

Lemma 2.4. Let f, g be distinct analytic functions in D, aj ∈ C (j =
1, 2, 3, 4) be distinct. If f is admissible, and f = aj ⇒ g = aj in D for
j = 1, 2, 3, 4, then g is also admissible.

Proof. By the assumption of this lemma and applying Lemma 2.1, we
get

3T (r, f) ≤
4∑
j=1

N

(
r,

1
f − aj

)
+ S(r, f) ≤

4∑
j=1

N

(
r,

1
g − aj

)
+ S(r, f)

≤ 4T (r, g) + S(r, f).

Therefore

T (r, f) ≤ 4T (r, g) +O

{
log

1
1− r

}
as r → 1− possibly outside a set E such that

	
E

dr
1−r < ∞. Then g is

admissible by Lemma 2.3.

Lemma 2.5. Suppose that f is an admissible meromorphic function in D.
Let P (f) = a0f

p + a1f
p−1 + · · · + ap (a0 6= 0) be a polynomial of f with

degree p, where the coefficients aj (j = 0, 1, . . . , p) are constants, and let bj
(j = 1, . . . , q) be q (q ≥ p+ 1) distinct finite complex numbers. Then

m

(
r,

P (f) · f ′

(f − b1) · · · (f − bq)

)
= S(r, f).

Proof. Use the same argument as in Lemma 4.3 of [19].



Analytic functions sharing values in a sector 267

Lemma 2.6. Let f, g be distinct analytic functions in D. Suppose that f
and g share a1, a2 IM in D, and f = a3 ⇒ g = a3 and f = a4 ⇒ g = a4

in D, and aj ∈ C (j = 1, 2, 3, 4) are four distinct finite complex numbers. If
f is an admissible function in D, then g is also admissible, and

(i) T (r, g) = 2T (r, f) + S(r);
(ii) T (r, f − g) = 3T (r, f) + S(r);

(iii) T (r, f) = N
(
r, 1
f−a3

)
+N

(
r, 1
f−a4

)
+ S(r);

(iv) T (r, f) = N
(
r, 1
f−aj

)
+ S(r), j = 1, 2;

(v) T (r, g) = N
(
r, 1
g−aj

)
+ S(r), j = 3, 4;

(vi) T (r, f ′) = T (r, f) + S(r), T (r, g′) = T (r, g) + S(r),

where S(r) := S(r, f) = S(r, g).

Proof. By the assumption of this lemma, and by Lemma 2.1, we have
T (r, f) ≤ 3T (r, g) + S(r, f) and T (r, g) ≤ 3T (r, f) + S(r, g). From [12], we
get S(r, f) = S(r, g).

Let

(2.1) η :=
f ′g′(f − g)

(f − a3)(f − a4)(g − a1)(g − a2)
.

From the assumptions of this lemma, η is analytic in D and η 6≡ 0 unless
f ≡ g. By Lemma 2.3, we have m(r, η) = S(r, f) + S(r, g) = S(r). Thus,
S(r, η) = S(r).

Since f, g are nonconstant analytic functions in D, and share a1, a2 IM
in D, and f = a3 ⇒ g = a3 and f = a4 ⇒ g = a4 in D, again by Lemma 2.1
we have

3T (r, f) ≤
4∑
j=1

N

(
r,

1
f − aj

)
+ S(r, f)(2.2)

≤ N
(
r,

1
f − g

)
+ S(r, f) = T (r, f − g) + S(r, f)(2.3)

≤ T (r, f) + T (r, g) + S(r),(2.4)

and

T (r, g) ≤ N
(
r,

1
g − a1

)
+N

(
r,

1
g − a2

)
+ S(r, g)(2.5)

= N

(
r,

1
f − a1

)
+N

(
r,

1
f − a2

)
+ S(r)(2.6)

≤ 2T (r, f) + S(r).(2.7)

From (2.4) and (2.7), we get (i); from (2.3), (2.4) and (i), we get (ii); and
from (2.2), (2.4), (2.6), (2.7) and (i), we get (iii). Then, we can easily deduce
that (iv) and (v) hold from (2.2)–(2.7) and (i)–(iii). Now, we prove (vi). First,
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we can rewrite (2.1) as

(2.8) f = f ′
g′

η(g − a1)(g − a2)
+

f ′g′(a3f + a4f − a3a4 − fg)
η(f − a3)(f − a4)(g − a1)(g − a2)

.

From (2.8) and Lemma 2.5, we can get m(r, f) ≤ m(r, f ′) + S(r, f). Since
f is analytic in D, we have T (r, f ′) = T (r, f) + S(r, f). Similarly, T (r, g′) =
T (r, g) + S(r, g).

Lemma 2.7. Suppose f, g are analytic in D. Assume f and g share a1, a2

CM in D, and f = a3 ⇒ g = a3 in D and f = a4 ⇒ g = a4 in D, and aj ∈ C
(j = 1, 2, 3, 4) are four distinct finite complex numbers. If f is admissible,
then f ≡ g.

Proof. Suppose f 6≡ g. By the assumption of this lemma, we infer that
g is admissible and the conclusions (i)–(vi) of Lemma 2.6 hold. Set

ψ1 :=
f ′(f − a3)

(f − a1)(f − a2)
− g′(g − a3)

(g − a1)(g − a2)
,

ψ2 :=
f ′(f − a4)

(f − a1)(f − a2)
− g′(g − a4)

(g − a1)(g − a2)
.

By Lemma 2.5, we get

(2.9) m(r, ψi) = S(r, f) + S(r, g) = S(r), i = 1, 2.

Moreover, N(r, ψi) = O(1) (i = 1, 2). In fact, the poles of ψi in D can only
occur at the zeros of f − aj and g − aj (i, j = 1, 2) in D. Since f, g share
a1, a2 CM in D, we see that if z0 ∈ D is a zero of f − aj with multiplicity
m (≥ 1), then it is a zero of g − aj (j = 1, 2) with multiplicity m. Suppose
that

f − aj = (z − z0)mαj(z), g − aj = (z − z0)mβj(z),

where αj(z), βj(z) are analytic functions in D and αj(z0) 6= 0, βj(z0) 6= 0,
(j = 1, 2). By a simple calculation, we have

ψi(z0) = K

(
α′j(z0)
αj(z0)

−
β′j(z0)
βj(z0)

)
(i, j = 1, 2),

where K is a constant. Therefore, ψi (i = 1, 2) are analytic in D. Thus, from
(2.9), we get T (r, ψi) = S(r) (i = 1, 2).

If ψi 6≡ 0, i = 1, 2, then

N

(
r,

1
f − a3

)
≤ N

(
r,

1
ψ1

)
≤ T (r, ψ1) + S(r, f) = S(r),(2.10)

N

(
r,

1
f − a4

)
≤ N

(
r,

1
ψ2

)
≤ T (r, ψ2) + S(r, f) = S(r).(2.11)



Analytic functions sharing values in a sector 269

From (2.10), (2.11) and Lemma 2.6(iv), we have T (r, f) ≤ S(r). Thus, since
f, g are admissible functions, that is, f and g are of unbounded characteris-
tic, and from the definition of S(r), we get a contradiction.

Assume that one of ψ1 and ψ2 is identically zero, say ψ1 ≡ 0. Then

(2.12) N (2

(
r,

1
g − a4

)
= N (2

(
r,

1
f − a4

)
,

where N (2

(
r, 1
f−a
)

is the counting function of the distinct zeros of f − a in
D with multiplicity q ≥ 2.

From (2.1), we see that g(z1) = a4 implies f(z1) = a4 for z1 ∈ D satisfy-
ing η(z1) 6= 0. Since T (r, η) = S(r), we have

(2.13) N1)

(
r,

1
g − a4

)
= N1)

(
r,

1
f − a4

)
+ S(r),

where N1)

(
r, 1
f−a
)

is the counting function of the distinct simple zeros of
f − a in D.

From (2.12) and (2.13), we get

(2.14) N

(
r,

1
g − a4

)
= N

(
r,

1
f − a4

)
+ S(r).

Similarly, when ψ2 ≡ 0, we get

(2.15) N

(
r,

1
g − a3

)
= N

(
r,

1
f − a3

)
+ S(r).

From (2.14), (2.15) and Lemma 2.6(i), (v), we get

2T (r, f) = N

(
r,

1
f − a3

)
+ S(r),

or

2T (r, f) = N

(
r,

1
f − a4

)
+ S(r).

Since f, g are admissible functions in the unit disc, we get a contradiction
again.

Lemma 2.8. Suppose f, g are analytic in D. Assume f and g share two
distinct values a1, a2 IM in D, and f = a3 ⇒ g = a3 and g = a4 ⇒ f = a4

in D. If f is admissible, then so is g; moreover, either f(z) ≡ g(z) or

f ≡ a3g − a1a2

g − a4
,

and a1 + a2 = a3 + a4, and a3, a4 are Picard exceptional values of f and g
in D, respectively.
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Proof. Suppose that f 6≡ g. By Lemma 2.1 and f is admissible, we have

2T (r, f) +N

(
r,

1
g − a4

)
≤ N

(
r,

1
f − a1

)
+N

(
r,

1
f − a2

)
+N

(
r,

1
f − a3

)
+N

(
r,

1
g − a4

)
+ S(r, f)

≤ N
(
r,

1
f − g

)
+ S(r, f) ≤ T (r, f) + T (r, g) + S(r, f) + S(r, g).

Therefore,

(2.16) T (r, f) +N

(
r,

1
g − a4

)
≤ T (r, g) + S(r, f) + S(r, g).

Similarly,

(2.17) T (r, g) +N

(
r,

1
f − a3

)
≤ T (r, f) + S(r, g) + S(r, f).

From (2.16) and (2.17), we see that T (r, f) = T (r, g) +S(r, f) +S(r, g), and

(2.18)

N

(
r,

1
f − a3

)
= S(r, f) + S(r, g), N

(
r,

1
g − a4

)
= S(r, f) + S(r, g),

Thus, from [12], (2.16), (2.17) and the definition of S(r), we deduce that
g is admissible when f is.

From (2.16)–(2.18), we also get

(2.19) 2T (r, f) = N

(
r,

1
f − a1

)
+N

(
r,

1
f − a2

)
+ S(r).

From (2.19), we can see that “almost all” zeros of f − ai (i = 1, 2) in D
are simple. Similarly, “almost all” zeros of g − ai (i = 1, 2) in D are simple.
Let

ϕ1 :=
(a1 − a3)f ′(f − a2)

(f − a1)(f − a3)
− (a1 − a4)g′(g − a2)

(g − a1)(g − a4)
,

ϕ2 :=
(a2 − a3)f ′(f − a1)

(f − a2)(f − a3)
− (a2 − a4)g′(g − a1)

(g − a2)(g − a4)
.

By Lemma 2.5, m(r, ϕi) = S(r) (i = 1, 2). Since f, g share a1, a2 IM in D and
from (2.18), we have N(r, ϕi) = S(r) (i = 1, 2). Therefore, T (r, ϕi) = S(r)
(i = 1, 2).

If ϕ1 6≡ 0, then N(r, 1/(f −a2)) ≤ N(r, 1/ϕ1) = S(r). Thus, from (2.19),
we get a contradiction easily. Similarly, when ϕ2 6≡ 0, we get a contradiction,
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too. Hence, ϕ1, ϕ2 are identically equal to 0. Then ϕ1−ϕ2

a1−a2
≡ 0, i.e.,

f ′

f − a3
− g′

g − a4
− f ′

f − a1
+

g′

g − a1
− f ′

f − a2
+

g′

g − a2
≡ 0,

which implies that

(2.20)
f − a3

g − a4
· (g − a1)(g − a2)

(f − a1)(f − a2)
≡ c,

where c is a nonzero constant. Rewrite (2.20) as

(2.21) g2 −
(
a1 + a2 −

cγ(f)
f − a3

)
g + a1a2 +

ca4γ(f)
f − a3

≡ 0,

where γ(f) := (f − a1)(f − a2). The discriminant of (2.21) is

∆(f) =
(
a1 + a2 −

cγ(f)
f − a3

)2

− 4
(
a1a2 +

ca4γ(f)
f − a3

)
=

Q(f)
(f − a3)2

,

where

Q(z) := ((a1 + a2)(z − a3)− cγ(z))2 − 4a1a2(z − a3)2 − 4ca4γ(z)(z − a3)

is a polynomial of degree 4 in z. If a is a zero of Q(z) in D, obviously a 6= a3.
Then from (2.21), f(z) = a implies that

(2.22) g(z) =
1
2

(
a1 + a2 −

cγ(a)
a− a3

)
=: b.

Set

φ1 :=
f ′g′(f − g)

(f − a1)(g − a2)(f − a3)(g − a4)
,

φ2 :=
f ′g′(f − g)

(f − a2)(g − a1)(f − a3)(g − a4)
,

φ :=
φ2

φ1
=

(f − a1)(g − a2)
(f − a2)(g − a1)

.

By Lemma 2.5, m(r, φi) = S(r) (i = 1, 2), and by a simple calculation,
N(r, φi) = S(r), (i = 1, 2). Then T (r, φi) = S(r) (i = 1, 2), and thus
T (r, φ) = S(r).

Assume that f is not a Möbius transformation of g. Then φ is a non-
constant function. Since

Q(a1) = ((a1 + a2)(a1 − a3))2− 4a1a2(a1 − a3)2 = (a1 − a3)2(a1 − a2)2 6=0,
Q(a2) = ((a1 + a3)(a2 − a3))2− 4a1a2(a2 − a3)2 = (a2 − a3)2(a1 − a2)2 6=0,

from a 6= ai (i = 1, 2) and (2.20), we get

(2.23) N

(
r,

1
f − a

)
≤ N

(
r,

1
φ− ξ

)
≤ T (r, φ) = S(r),
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where ξ = (a−a1)(b−a2)
(a−a2)(b−a1) . Since f is analytic in D, by Lemma 2.1 and (2.18)

we get

T (r, f) ≤ N
(
r,

1
f − a3

)
+N

(
r,

1
f − a

)
+ S(r) = S(r).

Since f, g are admissible, we get a contradiction. Therefore f is a Möbius
transformation of g. Since f, g are analytic functions in D, by a simple cal-
culation we easily get a1 + a2 = a3 + a4 and

f ≡ a3g − a1a2

g − a4
;

furthermore, a3, a4 are Picard exceptional values of f and g in D, respec-
tively.

Lemma 2.9 (see [9]). Set

u = u(z) =
zπ/δ + 2zπ/2δ − 1
zπ/δ − 2zπ/2δ − 1

,

where 0 < δ < π. Then u maps conformally {z : |arg z| < δ, |z| < 1} onto
the unit disc {u : |u| < 1}.

3. Proofs of the main results

3.1. Proof of Theorem 1.6. Without loss of generality, we may as-
sume θ0 = 0. Set

(3.1) u = u(z) =
zπ/δ + 2zπ/2δ − 1
zπ/δ − 2zπ/2δ − 1

.

Let z = z(u) denote its inverse function. By Lemma 2.9 we know that u
maps conformally ∆(0, δ) onto the unit disc D′ := {u : |u| < 1}.

Using the same argument as in [10, Theorem 1.2], we find that f(z(u)
and g(z(u)) are meromorphic functions in D′, and f(z(u)) is admissible in D′.
For the convenience of the reader, we repeat the argument.

Set z0 = peiϑ ∈ ∆(0, δ). By (3.1) we get

1− |u(z0)| = 1−
√
A2 +B2

C2 +D2
=

C2 +D2 −A2 −B2

C2 +D2 +
√

(A2 +B2)(C2 +D2)
(3.2)

=
8pπ/2δ

(
1− pπ/δ

)
cos πϑ2δ

C2 +D2 +
√

(A2 +B2)(C2 +D2)
,

where

A = pπ/δ cos
πϑ

δ
+ 2pπ/2δ cos

πϑ

2δ
− 1, B = pπ/δ sin

πϑ

δ
+ 2pπ/2δ sin

πϑ

2δ
,

C = pπ/δ cos
πϑ

δ
− 2pπ/2δ cos

πϑ

2δ
− 1, D = pπ/δ sin

πϑ

δ
− 2pπ/2δ sin

πϑ

2δ
.
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Since

C2 +D2 = p2π/δ + 2pπ/δ + 1 + 4p2π/δ(1− pπ/δ) cos
πϑ

2δ
+ 2pπ/δ

(
1− cos

πϑ

δ

)
,

we get

(3.3) 1 ≤ C2 +D2 ≤ C2 +D2 +
√

(A2 +B2)(C2 +D2) ≤ 2(C2 +D2) ≤ 20.

Since limp→1−
1−pπ/δ

1−p = π/δ, there exists b ∈ ((1/2)2δ/π, 1) such that for all
p satisfying b < p < 1, we have

(3.4)
1
2
< pπ/2δ < 1,

π

2δ
(1− p) < 1− pπ/δ < 3π

2δ
(1− p).

Therefore, from (3.2)–(3.4), we get

(3.5) min{1− |u(peiϑ)| : b < p < r, |ϑ| < δ/2} > π

20δ
(1− r)

for all r ∈ (b, 1).
We now prove that f(z(u)) is admissible in D′ = {u : |u| < 1}. From

(1.2), there exists a sequence {rn} of positive numbers such that rn → 1 as
n→∞ and

(3.6) n(rn, ∆(0, δ/2), f(z) = a) >
(

1
1− rn

)τ1
for sufficiently large n and τ > τ1 > 1. Then from (3.6) and Theorem 1.3.2
in [6, pp. 16–17], we have

(3.7) lim sup
t→1

T (t, f(z(u)))
log 1

1−t
≥ lim sup

t′n→1

T (t′n, f(z(u)))
log 1

1−t′n

≥ ∞.

Since f(z(u)) is a meromorphic function in D′, from (3.7) we see that
f(z(u)) is admissible in D′.

From the assumption of Theorem 1.6, we infer that f(z(u)) and g(z(u))
share the two distinct values a1, a2 CM in D′, and f = a3 ⇒ g = a3 and f =
a4 ⇒ g = a4 in D′. Then by Lemmas 2.4 and 2.7, we get f(z(u)) ≡ g(z(u)).

This completes the proof of Theorem 1.6.

3.2. Proof of Theorem 1.7. We deduce that f(z(u)) is admissible
in D′, as in Theorem 1.6. Then f(z(u)) and g(z(u)) share the two distinct
values a1, a2 IM in D′, and f = a3 ⇒ g = a3 and g = a4 ⇒ f = a4 in D′.
Thus, by Lemma 2.8, we get the conclusion of Theorem 1.7.
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