Long-time behavior for 2D non-autonomous g-Navier–Stokes equations

by CUNG THE ANH and DAO TRONG QUYET (Hanoi)

Abstract. We study the first initial boundary value problem for the 2D non-autonomous g-Navier–Stokes equations in an arbitrary (bounded or unbounded) domain satisfying the Poincaré inequality. The existence of a weak solution to the problem is proved by using the Galerkin method. We then show the existence of a unique minimal finite-dimensional pullback \mathcal{D}_{σ} -attractor for the process associated to the problem with respect to a large class of non-autonomous forcing terms. Furthermore, when the force is time-independent and "small", the existence, uniqueness and global stability of a stationary solution are also studied.

1. Introduction. Let Ω be a (bounded or unbounded) domain in \mathbb{R}^2 with boundary $\partial \Omega$. In this paper we study the long-time behavior of solutions to the following 2D non-autonomous g-Navier–Stokes equations in Ω :

(1.1)
$$\begin{cases} \partial_t u - \nu \Delta u + (u \cdot \nabla) u + \nabla p = f, & x \in \Omega, \ t > \tau, \\ (1/g) \nabla \cdot (gu) = 0, & x \in \Omega, \ t > \tau, \\ u(x,t) = 0, & (x,t) \in \partial\Omega \times (\tau, +\infty), \\ u(x,\tau) = u_0(x), & x \in \Omega, \end{cases}$$

where $u = u(x,t) = (u_1, u_2)$ is the unknown velocity vector, p = p(x,t) is the unknown pressure, $\nu > 0$ is the kinematic viscosity coefficient, and u_0 is the initial velocity.

The g-Navier–Stokes equations are a variation of the standard Navier–Stokes equations. More precisely, when $g \equiv 1$ we get the usual Navier–Stokes equations. The 2D g-Navier–Stokes equations arise in a natural way when we study the standard 3D problem in thin domains. We refer the reader to [11, 12] for a derivation of the 2D g-Navier–Stokes equations from the 3D Navier–Stokes equations and a relationship between them. As mentioned

²⁰¹⁰ Mathematics Subject Classification: Primary 35B41; Secondary 35Q30, 37L30, 35D05.

Key words and phrases: g-Navier–Stokes equation, weak solution, Galerkin method, pullback attractor, fractal dimension, stationary solution, global stability.

in [6], good properties of the 2D g-Navier–Stokes equations can initiate the study of the Navier–Stokes equations on the thin three-dimensional domain $\Omega_g = \Omega \times (0,g)$. In the last few years, the existence and asymptotic behavior of solutions to g-Navier–Stokes equations have been studied extensively (see e.g. [1, 3–6, 11, 12, 16]).

The aim of this paper is to continue the study of the long-time behavior of weak solutions to problem (1.1). When the external force f is time-dependent, we use the theory of pullback attractors. This theory is a natural generalization of the theory of global attractors for autonomous dynamical systems (cf. [15]) and allows considering a number of different problems of non-autonomous dynamical systems and random dynamical systems for a large class of non-autonomous forcing terms. When the force is time-independent and "small", we prove the existence, uniqueness and global stability of a stationary solution. The results obtained, in particular, recover and extend some existing ones for the 2D Navier–Stokes equations in [2, 7, 14, 15] and for 2D g-Navier–Stokes equations in bounded domains in [4].

In order to study problem (1.1), we assume that:

(H1) Ω is an arbitrary (bounded or unbounded) domain in \mathbb{R}^2 without any regularity assumption on $\partial \Omega$, provided that the Poincaré inequality holds on Ω : There exists $\lambda_1 > 0$ such that

$$\int_{\Omega} \phi^2 g \, dx \leq \frac{1}{\lambda_1} \int_{\Omega} |\nabla \phi|^2 g \, dx, \quad \forall \phi \in H^1_0(\Omega).$$

(H2) $g \in W^{1,\infty}(\Omega)$ such that

 $0 < m_0 \le g(x) \le M_0$ for $x = (x_1, x_2) \in \Omega$, and $|\nabla g|_{\infty} < m_0 \lambda_1^{1/2}$. (H3) $f \in L^2_{\text{loc}}(\mathbb{R}; V'_g)$ such that

$$\int_{-\infty}^{0} e^{\sigma s} \|f(s)\|_{V'_g}^2 ds < +\infty,$$

where $\sigma < 2\nu\lambda_1\gamma_0$ is a fixed positive number with $\gamma_0 = 1 - |\nabla g|_{\infty}/(m_0\lambda_1^{1/2}) > 0$.

The paper is organized as follows. In the next section, we recall some auxilliary results on function spaces and inequalities for the nonlinear terms related to the g-Navier–Stokes equations, and abstract results on the existence and the fractal dimension of pullback attractors. In Sections 3 and 4, following the general lines of the proof in [2, 7], we prove the existence and fractal dimension estimates of a unique minimal pullback \mathcal{D}_{σ} -attractor for the associated process. The existence, uniqueness and global stability of a stationary solution are studied in the last section under some additional conditions.

2. Preliminary results

2.1. Function spaces and inequalities for the nonlinear terms. Let $L^2(\Omega, g) = (L^2(\Omega))^2$ and $H^1_0(\Omega, g) = (H^1_0(\Omega))^2$ endowed, respectively, with the inner products

$$(u,v)_g = \int_{\Omega} u \cdot vg \, dx, \quad u,v \in L^2(\Omega,g),$$

and

$$((u,v))_g = \int_{\Omega} \sum_{j=1}^2 \nabla u_j \cdot \nabla v_j g \, dx, \quad u = (u_1, u_2), \, v = (v_1, v_2) \in H^1_0(\Omega, g),$$

and norms $|u|^2 = (u, u)_g$, $||u||^2 = ((u, u))_g$. Thanks to assumption (H2), the norms $|\cdot|$ and $||\cdot||$ are equivalent to the usual ones in $(L^2(\Omega))^2$ and in $(H_0^1(\Omega))^2$.

Let

$$\mathcal{V} = \{ u \in (C_0^{\infty}(\Omega))^2 : \nabla \cdot (gu) = 0 \}$$

Denote by H_g the closure of \mathcal{V} in $L^2(\Omega, g)$, and by V_g the closure of \mathcal{V} in $H^1_0(\Omega, g)$. It follows that $V_g \subset H_g \equiv H'_g \subset V'_g$, where the injections are dense and continuous. We will use $\|\cdot\|_*$ for the norm in V'_g , and $\langle \cdot, \cdot \rangle$ for the duality pairing between V_g and V'_g .

We now define the trilinear form b by

$$b(u, v, w) = \sum_{i,j=1}^{2} \int_{\Omega} u_i \frac{\partial v_j}{\partial x_i} w_j g \, dx,$$

whenever the integrals make sense. It is easy to check that if $u, v, w \in V_g$, then

(2.1)
$$b(u, v, w) = -b(u, w, v).$$

Hence

(2.2)
$$b(u, v, v) = 0, \quad \forall u, v \in V_a.$$

Define $A: V_g \to V'_g$ by $\langle Au, v \rangle = ((u, v))_g$, $B: V_g \times V_g \to V'_g$ by $\langle B(u, v), w \rangle = b(u, v, w)$, Bu = B(u, u). Then $D(A) = H^2(\Omega, g) \cap V$ and $Au = -P_g \Delta u$ for all $u \in D(A)$, where P_g is the ortho-projector from $L^2(\Omega, g)$ onto H_g .

Using Hölder's inequality, the Ladyzhenskaya inequality (when n = 2):

$$|u|_{L^4} \le c|u|^{1/2} |\nabla u|^{1/2}, \quad \forall u \in H^1_0(\Omega),$$

and the interpolation inequalities, as in [13, 14], one can prove the following

LEMMA 2.1. If n = 2, then

$$(2.3) |b(u, v, w)| \\ \leq \begin{cases} c_1 |u|^{1/2} ||u||^{1/2} ||v|| |w|^{1/2} ||w||^{1/2}, & \forall u, v, w \in V_g, \\ c_2 |u|^{1/2} ||u||^{1/2} ||v||^{1/2} |Av|^{1/2} |w|, & \forall u \in V_g, v \in D(A), w \in H_g, \\ c_3 |u|^{1/2} |Au|^{1/2} ||v|| |w|, & \forall u \in D(A), v \in V_g, w \in H_g, \\ c_4 |u| ||v|| |w|^{1/2} |Aw|^{1/2}, & \forall u \in H_g, v \in V_g, w \in D(A), \end{cases}$$

where $c_i, i = 1, \ldots, 4$, are appropriate constants.

LEMMA 2.2 ([1]). Let $u \in L^2(\tau, T; V_q)$. Then the function Bu defined by $(Bu(t), v)_g = b(u(t), u(t), v), \quad \forall u \in V_g, \ a.e. \ t \in [\tau, T],$

belongs to $L^2(\tau, T; V'_a)$.

LEMMA 2.3 ([1]). Let $u \in L^2(\tau, T; V_q)$. Then the function Cu defined by $(Cu(t), v)_g = \left(\left(\frac{\nabla g}{g} \cdot \nabla\right)u, v\right)_g = b\left(\frac{\nabla g}{g}, u, v\right), \quad \forall v \in V_g,$

belongs to $L^2(\tau, T; H_g)$, and hence to $L^2(\tau, T; V'_g)$. Moreover,

$$\|Cu(t)\|_{*} \leq \frac{|\nabla g|_{\infty}}{m_{0}\lambda_{1}^{1/2}} \|u(t)\| \quad \text{for a.e. } t \in (\tau, T).$$

Since

$$-\frac{1}{g}(\nabla \cdot g\nabla)u = -\Delta u - \left(\frac{\nabla g}{g} \cdot \nabla\right)u,$$

we have

$$(-\Delta u, v)_g = ((u, v))_g + \left(\left(\frac{\nabla g}{g} \cdot \nabla\right)u, v\right)_g$$
$$= (Au, v)_g + \left(\left(\frac{\nabla g}{g} \cdot \nabla\right)u, v\right)_g, \quad \forall u, v \in V_g.$$

2.2. Pullback attractors. Let (X, d) be a metric space. For $A, B \subset X$, we define the Hausdorff semi-distance between A and B by

$$\operatorname{dist}(A,B) = \sup_{x \in A} \inf_{y \in B} d(x,y).$$

A process on X is a two-parameter family of mappings $\{U(t,\tau)\}$ in X having the following properties:

$$U(t,r)U(r,\tau) = U(t,\tau) \quad \text{for all } t \ge r \ge \tau,$$
$$U(\tau,\tau) = \text{Id} \quad \text{for all } \tau \in \mathbb{R}.$$

The process $\{U(t,\tau)\}$ is said to be norm-to-weak continuous if $U(t,\tau)x_n \rightarrow$ $U(t,\tau)x$ as $x_n \to x$ in X, for all $t \ge \tau, \tau \in \mathbb{R}$.

Suppose that $\mathcal{B}(X)$ is the family of all non-empty bounded subsets of X, and \mathcal{D} is a non-empty class of parameterized sets $\hat{\mathcal{D}} = \{D(t) : t \in \mathbb{R}\} \subset \mathcal{B}(X)$.

DEFINITION 2.4. The process $\{U(t, \tau)\}$ is said to be *pullback* \mathcal{D} -asymptotically compact if for any $t \in \mathbb{R}$, any $\hat{\mathcal{D}} \in \mathcal{D}$, any sequence $\tau_n \to -\infty$, and any sequence $x_n \in D(\tau_n)$, the sequence $\{U(t, \tau_n)x_n\}$ is relatively compact in X.

DEFINITION 2.5. The family of bounded sets $\hat{\mathcal{B}} = \{B(t) : t \in \mathbb{R}\} \in \mathcal{D}$ is called *pullback* \mathcal{D} -absorbing for the process $U(t, \tau)$ if for any $t \in \mathbb{R}$, any $\hat{\mathcal{D}} \in \mathcal{D}$, there exists $\tau_0 = \tau_0(\hat{\mathcal{D}}, t) \leq t$ such that

$$\bigcup_{\tau \le \tau_0} U(t,\tau) D(\tau) \subset B(t).$$

DEFINITION 2.6. A family $\hat{\mathcal{A}} = \{A(t) : t \in \mathbb{R}\} \subset \mathcal{B}(X)$ is said to be a *pullback* \mathcal{D} -attractor for $\{U(t,\tau)\}$ if

- (1) A(t) is compact for all $t \in \mathbb{R}$;
- (2) \mathcal{A} is invariant, i.e.,

$$U(t,\tau)A(\tau) = A(t)$$
, for all $t \ge \tau$;

- (3) $\hat{\mathcal{A}}$ is pullback \mathcal{D} -attracting, i.e., $\lim_{\tau \to -\infty} \operatorname{dist}(U(t,\tau)D(\tau), A(t)) = 0 \quad \text{ for all } \hat{\mathcal{D}} \in \mathcal{D} \text{ and all } t \in \mathbb{R};$
- (4) If $\{C(t) : t \in \mathbb{R}\}$ is another family of closed attracting sets then $A(t) \subset C(t)$ for all $t \in \mathbb{R}$.

THEOREM 2.7 ([8]). Let $\{U(t,\tau)\}$ be a norm-to-weak continuous process such that $\{U(t,\tau)\}$ is pullback \mathcal{D} -asymptotically compact. If there exists a family of pullback \mathcal{D} -absorbing sets $\hat{\mathcal{B}} = \{B(t) : t \in \mathbb{R}\} \in \mathcal{D}$, then $\{U(t,\tau)\}$ has a unique pullback \mathcal{D} -attractor $\hat{\mathcal{A}} = \{A(t) : t \in \mathbb{R}\}$ and

$$A(t) = \bigcap_{s \le t} \overline{\bigcup_{\tau \le s} U(t,\tau)B(\tau)}.$$

We now recall some results on the estimates of the fractal dimension of pullback attractors in [7].

Let H be a separable real Hilbert space H. Given a compact set $K \subset H$, and $\varepsilon > 0$, we denote by $N_{\varepsilon}(K)$ the minimum number of open balls in Hwith radii ε that are necessary to cover K.

DEFINITION 2.8. For any non-empty compact set $K \subset H$, the *fractal* dimension of K is the number

$$d_{\mathrm{F}}(K) = \limsup_{\varepsilon \downarrow 0} \frac{\log(N_{\varepsilon}(K))}{\log(1/\varepsilon)}.$$

Consider a separable real Hilbert space $V \subset H$ such that the injection of V in H is continuous, and V is dense in H. We identify H with its topological dual H', and we consider V as a subspace of H', identifying $v \in V$ with the element $f_v \in H'$, defined by

$$f_v(h) = (v, h), \quad h \in H.$$

Let $F: V \times \mathbb{R} \to V'$ be a given family of non-linear operators such that, for all $\tau \in \mathbb{R}$ and any $u_0 \in H$, there exists a unique function $u(t) = u(t; \tau, u_0)$ satisfying

(2.4)

$$\begin{cases}
u \in L^{2}(\tau, T; V) \cap C([\tau, T]; H), & F(u(t), t) \in L^{1}(\tau, T; V') \text{ for all } T > \tau, \\
du/dt = F(u(t), t), & t > \tau, \\
u(\tau) = u_{0}.
\end{cases}$$

Let us define

$$U(t,\tau)u_0 = u(t;\tau,u_0), \quad \tau \le t, \, u_0 \in H$$

Fix $T^* \in \mathbb{R}$. We assume that there exists a family $\{A(t) : t \leq T^*\}$ of non-empty compact subsets of H with the invariance property

$$U(t,\tau)A(\tau) = A(t)$$
 for all $\tau \le t \le T$

and such that, for all $\tau \leq t \leq T^*$ and any $u_0 \in A(\tau)$, there exists a continuous linear operator $L(t; \tau, u_0) \in \mathcal{L}(H)$ such that

$$(2.5) \quad |U(t,\tau)\overline{u}_0 - U(t,\tau)u_0 - L(t;\tau,u_0)(\overline{u}_0 - u_0)| \le \gamma(t-\tau,|\overline{u}_0 - u_0|)|\overline{u}_0 - u_0|$$

for all $\overline{u}_0 \in A(\tau)$, where $\gamma : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$ is a function such that $\gamma(s, \cdot)$ is non-decreasing for all $s \ge 0$, and

(2.6)
$$\lim_{r \to 0} \gamma(s, r) = 0 \quad \text{ for any } s \ge 0.$$

We assume that, for all $t \leq T^*$, the mapping $F(\cdot, t)$ is Gateaux differentiable in V, i.e., for any $u \in V$ there exists a continuous linear operator $F'(u, t) \in \mathcal{L}(V; V')$ such that

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} [F(u+\epsilon v,t) - F(u,t) - \epsilon F'(u,t)v] = 0 \in V'.$$

Moreover, we suppose that the mapping

$$F': (u,t) \in V \times (-\infty, T^*] \mapsto F'(u,t) \in \mathcal{L}(V;V')$$

is continuous (thus, in particular, for each $t \leq T^*$, the mapping $F(\cdot, t)$ is continuously Fréchet differentiable in V).

Then, for all $\tau \leq T^*$ and $u_0, v_0 \in H$, there exists a unique $v(t) = v(t; \tau, u_0, v_0)$ which is a solution of

$$\begin{cases} v \in L^{2}(\tau, T; V) \cap C([\tau, T]; H) & \text{for all } \tau < T \le T^{*}, \\ dv/dt = F'(U(t, \tau)u_{0}, t)v, & \tau < t < T^{*}, \\ v(\tau) = v_{0}. \end{cases}$$

We make the assumption that

(2.7)
$$v(t; \tau, u_0, v_0) = L(t; \tau, u_0)v_0$$
 for all $\tau \le t \le T^*, u_0, v_0 \in A(\tau)$.
Let us write, for $j = 1, 2, ...,$

$$\widetilde{q}_j = \lim_{T \to +\infty} \sup_{\tau \le T^*} \sup_{u_0 \in A(\tau - T)} \left(\frac{1}{T} \int_{\tau - T}^{\tau} \operatorname{Tr}_j(F'(U(s, \tau - T)u_0, s)) \, ds \right),$$

where

$$\operatorname{Tr}_{j}(F'(U(s,\tau)u_{0},s)) = \sup_{v_{0}^{i} \in H, \, |v_{0}^{i}| \leq 1, \, i \leq j} \left(\sum_{i=1}^{j} \langle F'(U(s,\tau)u_{0},s)e_{i}, e_{i} \rangle \right),$$

 e_1, \ldots, e_j being an orthonormal basis of the subspace in H spanned by

$$v(s; \tau, u_0, v_0^1), \dots, v(s; \tau, u_0, v_0^j).$$

THEOREM 2.9 ([7, Theorem 2.2]). Under the assumptions above, suppose that

$$\bigcup_{\tau \leq T^*} A(\tau) \text{ is relatively compact in } H,$$

and there exist q_j , $j = 1, 2, \ldots$, such that

$$\begin{aligned} \widetilde{q}_{j} &\leq q_{j} \quad \text{for any } j \geq 1, \\ q_{n_{0}} &\geq 0, \quad q_{n_{0}+1} < 0 \quad \text{for some } n_{0} \geq 1, \\ q_{j} &\leq q_{n_{0}} + (q_{n_{0}} - q_{n_{0}+1})(n_{0} - j) \quad \text{for all } j = 1, 2, \dots. \end{aligned}$$

Then

$$d_{\mathcal{F}}(A(\tau)) \le d_0 := n_0 + \frac{q_{n_0}}{q_{n_0} - q_{n_0+1}} \quad \text{for all } \tau \le T^*.$$

3. Existence of pullback attractors. We first prove a result on the existence and uniqueness of a weak solution to problem (1.1).

DEFINITION 3.1. A function u is called a *weak solution* to problem (1.1) on the interval (τ, T) if

$$\begin{cases} u \in L^{\infty}(\tau, T; H_g) \cap L^2(\tau, T; V_g), \\ \frac{d}{dt}u(t) + \nu Au(t) + B(u(t), u(t)) + \nu Cu(t) = f(t) \text{ in } V'_g & \text{for a.e. } t \in (\tau, T), \\ u(\tau) = u_0. \end{cases}$$

THEOREM 3.2. Suppose $u_0 \in H_g$ is given and assumptions (H1)–(H3) hold. Then, for any $\tau \in \mathbb{R}$, $T > \tau$ given, problem (1.1) has a unique weak solution u on (τ, T) . Moreover,

(3.1)
$$|u(t)|^{2} \leq e^{-\sigma(t-\tau)}|u_{0}|^{2} + \frac{e^{-\sigma t}}{2\epsilon\nu} \int_{-\infty}^{t} e^{\sigma s} ||f(s)||_{*}^{2} ds,$$

where ϵ is the positive number such that $\sigma = 2\nu\lambda_1(\gamma_0 - \epsilon)$.

Proof. (i) *Existence*. The existence part is based on Galerkin appoximations, a priori estimates, and the compactness method [9]. As it is standard and similar to the case of the Navier–Stokes equations [13], we provide only some basic a priori estimates used frequently later. From (1.1), we have

(3.2)
$$\frac{d}{dt}|u(t)|^2 + 2\nu ||u(t)||^2 = 2\langle f(t), u(t) \rangle - 2\nu b\left(\frac{\nabla g}{g}, u(t), u(t)\right).$$

Using Lemma 2.3 and the Cauchy inequality, we get

$$\frac{d}{dt}|u(t)|^2 + 2\nu \|u(t)\|^2 \le 2\epsilon\nu \|u(t)\|^2 + \frac{1}{2\epsilon\nu} \|f(t)\|_*^2 + 2\nu \frac{|\nabla g|_{\infty}}{m_0\lambda_1^{1/2}} \|u(t)\|^2,$$

and hence

$$\frac{d}{dt}|u(t)|^2 + 2\nu(\gamma_0 - \epsilon)||u(t)||^2 \le \frac{1}{2\epsilon\nu}||f(t)||_*^2$$

where $\gamma_0 = 1 - |\nabla g|_{\infty} / (m_0 \lambda_1^{1/2})$, and $\epsilon > 0$ is chosen such that $\gamma_0 - \epsilon > 0$. Integrating the last inequality on $[\tau, t], \tau \leq t \leq T$, we get

(3.3)
$$|u(t)|^{2} + 2\nu(\gamma_{0} - \epsilon) \int_{\tau}^{t} ||u(s)||^{2} ds \leq |u(\tau)|^{2} + \frac{1}{2\epsilon\nu} \int_{\tau}^{t} ||f(s)||_{*}^{2} ds \\ \leq |u_{0}|^{2} + \frac{1}{2\epsilon\nu} ||f||_{L^{2}(\tau,T;V'_{g})}^{2}.$$

This inequality implies the estimates of u in the function space $L^2(\tau, T; V_g) \cap L^{\infty}(\tau, T; H_g)$. By rewriting the equation as

(3.4)
$$\frac{du(t)}{dt} = -\nu A u(t) - B(u(t)) - \nu C u(t) + f(t),$$

we get the estimate of du/dt in $L^2(\tau, T; V'_g)$.

(ii) Uniqueness and continuous dependence. Assume that $u = u(t; \tau, u_0)$ and $v = v(t; \tau, v_0)$ are two weak solutions of (1.1) with initial data u_0, v_0 . Set w = u - v. Then

$$w \in L^2(\tau, T; V_g) \cap L^\infty(\tau, T; H_g),$$

and w satisfies

$$\frac{d}{dt}w + \nu Aw + \nu Cw = Bv - Bu,$$
$$w(\tau) = u_0 - v_0.$$

Hence we have

$$\begin{aligned} \frac{d}{dt} |w(t)|^2 &+ 2\nu ||w(t)||^2 + 2\nu b \left(\frac{\nabla g}{g}, w(t), w(t)\right) \\ &= 2b(v(t), v(t), w(t)) - 2b(u(t), u(t), w(t)) = -2b(w(t), v(t), w(t)). \end{aligned}$$

By Lemma 2.1, we have

 $|2b(w(t), v(t), w(t))| \le 2c|w(t)| \|w(t)\| \|v(t)\| \le \nu \|w(t)\|^2 + \frac{c^2}{\nu} |w(t)|^2 \|v(t)\|^2,$

and

$$\left| 2\nu b \left(\frac{\nabla g}{g}, w(t), w(t) \right) \right| \leq 2 \frac{|\nabla g|_{\infty}}{m_0} \|w(t)\| \, |w(t)| \leq \nu \|w(t)\|^2 + \frac{\nu |\nabla g|_{\infty}^2}{m_0^2} |w(t)|^2.$$

Therefore

Therefore,

$$\frac{d}{dt}|w(t)|^2 \le \left(\frac{c^2}{\nu}\|v(t)\|^2 + \frac{\nu|\nabla g|_{\infty}^2}{m_0^2}\right)|w(t)|^2$$

Thus,

$$|w(t)|^{2} \leq |w(\tau)|^{2} \exp\left(\int_{\tau}^{t} \left(\frac{c^{2}}{\nu} \|v(s)\|^{2} + \frac{\nu |\nabla g|_{\infty}^{2}}{m_{0}^{2}}\right) ds\right).$$

The last estimate implies the uniqueness (if $u_0 = v_0$) and the continuous dependence of solutions on the initial data.

(iii) The a priori estimate (3.1). Choose $\epsilon > 0$ in inequality (3.3) such that $\sigma = 2\nu\lambda_1(\gamma_0 - \epsilon)$, where $\gamma_0 = 1 - |\nabla g|_{\infty}/(m_0\lambda_1^{1/2}) > 0$. Applying the Gronwall lemma in (3.3), we get (3.1). Hence it follows that the solution u can be extended to $[\tau, +\infty)$.

Thanks to Theorem 3.2, we can define a process $U(t,\tau)$ in H_q by

$$U(t,\tau)u_0 = u(t;\tau,u_0), \quad \tau \le t, \, u_0 \in H_g,$$

where $u(t) = u(t; \tau, u_0)$ is the unique weak solution of problem (1.1) with the initial datum $u(\tau) = u_0$.

We first prove the weak continuity of the process.

LEMMA 3.3. Let $\{u_{0n}\}$ be a sequence in H_g converging weakly in H_g to an element $u_0 \in H_g$. Then

(3.5) $U(t,\tau)u_{0n} \rightharpoonup U(t,\tau)u_0$ weakly in H_q , for all $\tau \leq t$,

(3.6) $U(t,\tau)u_{0n} \rightarrow U(t,\tau)u_0$ weakly in $L^2(\tau,T;V_q)$, for all $\tau < T$.

Proof. Let $u_n(t) = U(t,\tau)u_{0n}$ and $u(t) = U(t,\tau)u_0$. As in the proof of Theorem 3.1, for all $T > \tau$,

(3.7)
$$\{u_n\} \text{ is bounded in } L^{\infty}(\tau, T; H_g) \cap L^2(\tau, T; V_g),$$

and

 $\{u'_n\}$ is bounded in $L^2(\tau, T; V'_q)$.

Then, for all $v \in V_g$, and $\tau \leq t \leq t + a \leq T$ with $T > \tau$,

(3.8)
$$(u_n(t+a) - u_n(t), v)_g = \int_t^{t+a} \langle u'_n(s), v \rangle \, ds$$
$$\leq \|v\| a^{1/2} \|u'_n\|_{L^2(\tau, T; V'_g)} \leq C_T \|v\| a^{1/2},$$

where C_T is positive and independent of n. Then, for $v = u_n(t+a) - u_n(t)$, which belongs to V_g for almost every t, from (3.8) we have

$$|u_n(t+a) - u_n(t)|^2 \le C_T a^{1/2} ||u_n(t+a) - u_n(t)||.$$

Hence

(3.9)
$$\int_{\tau}^{T-a} |u_n(t+a) - u_n(t)|^2 \, ds \le C_T a^{1/2} \int_{\tau}^{T-a} ||u_n(t+a) - u_n(t)|| \, dt.$$

Using the Cauchy inequality and (3.7), we deduce from (3.9) that

$$\int_{\tau}^{T-a} |u_n(t+a) - u_n(t)|^2 \, dt \le \widetilde{C}_T a^{1/2}$$

for another positive constant \widetilde{C}_T independent of n. Therefore

(3.10)
$$\lim_{a \to 0} \sup_{n} \int_{\tau}^{T-a} \|u_n(t+a) - u_n(t)\|_{L^2(\Omega_r,g)}^2 dt = 0$$

for all r > 0, where $\Omega_r = \{x \in \Omega : |x| < r\}$. Moreover, from (3.7),

 $\{u_n|_{\Omega_r}\}$ is bounded in $L^{\infty}(\tau,T;L^2(\Omega_r,g)) \cap L^2(\tau,T;H^1(\Omega_r,g))$

for all r > 0. Consider now a truncation function $\rho \in C^1(\mathbb{R}^+)$ with $\rho(s) = 1$ in [0, 1], and $\rho(s) = 0$ in $[2, +\infty)$. For each r > 0, define $v_{n,r}(x) = \rho(|x|^2/r^2)u_n(x)$ for $x \in \Omega_{2r}$. Then, from (3.10), we have

$$\lim_{a \to 0} \sup_{n} \int_{\tau}^{T-a} \|u_n(t+a) - u_n(t)\|_{L^2(\Omega_{2r},g)}^2 dt = 0, \quad \forall T > \tau, \, \forall r > 0,$$

and $\{v_{n,r}\}$ is bounded in $L^{\infty}(\tau, T; L^2(\Omega_{2r}, g)) \cap L^2(\tau, T; H^1_0(\Omega_{2r}, g))$ for all $T > \tau, r > 0$. Thus, by the Aubin–Lions lemma [9],

 $\{v_{n,r}\} \text{ is relatively compact in } L^2(\tau,T;L^2(\varOmega_{2r},g), \quad \forall T>\tau,\,r>0.$ It follows that

$$\{u_n|_{\Omega_r}\}$$
 is relatively compact in $L^2(\tau, T; L^2(\Omega_{2r}, g)), \quad \forall T > \tau, r > 0.$

Then, by a diagonal process, we can extract a subsequence $\{u_{n'}\}$ such that

$$(3.11) \qquad \begin{array}{l} u_{n'} \to \widetilde{u} \quad \text{weakly}^* \text{ in } L^{\infty}_{\text{loc}}(\mathbb{R}; H_g), \\ u_{n'} \to \widetilde{u} \quad \text{weakly in } L^2_{\text{loc}}(\mathbb{R}; V_g), \\ u_{n'} \to \widetilde{u} \quad \text{strongly in } L^2_{\text{loc}}(\mathbb{R}; L^2(\Omega_r, g)), r > 0, \end{array}$$

for some $\widetilde{u} \in L^{\infty}_{\text{loc}}(\mathbb{R}; H_g) \cap L^2_{\text{loc}}(\mathbb{R}; V_g).$

The convergences (3.11) allows us to pass to the limit in the equation for $u_{n'}$ to find that \tilde{u} is a weak solution of (1.1) with $\tilde{u}(\tau) = u_0$. By the uniqueness of the solutions we must have $\tilde{u} = u$. Then by a contradiction argument we deduce that the whole sequence $\{u_n\}$ converges to u in the sense of (3.11). This proves (3.6).

Now, from the strong convergence in (3.11) we also infer that $u_n(t)$ converges strongly in $L^2(\Omega_r, g)$ to u(t) for a.e. $t \ge \tau$ and all r > 0. Hence for all $v \in \mathcal{V}$,

$$(u_n(t), v)_g \to (u(t), v)_g$$
 for a.e. $t \in \mathbb{R}$.

Moveover, from (3.9) and (3.10), we see that $\{(u_n(t), v)\}$ is equibounded and equicontinuous on $[\tau, T]$ for all T > 0. Therefore

$$(u_n(t), v)_g \to (u(t), v)_g, \quad \forall t \in \mathbb{R}, \, \forall v \in \mathcal{V}.$$

Finally, (3.5) follows from the fact that \mathcal{V} is dense in H_q .

Let \mathcal{R}_{σ} be the set of all functions $r : \mathbb{R} \to (0, +\infty)$ such that

(3.12)
$$\lim_{t \to -\infty} e^{\sigma t} r^2(t) = 0,$$

and denote by \mathcal{D}_{σ} the class of all families $\hat{\mathcal{D}} = \{D(t) : t \in \mathbb{R}\} \subset \mathcal{B}(H_g)$ such that $D(t) \subset B(0, \hat{r}(t))$ for some $\hat{r}(t) \in \mathcal{R}_{\sigma}$, where B(0, r) denotes the close ball in H_g , centered at zero with radius r.

Now, we can prove one of the main results of the paper.

THEOREM 3.4. Suppose that conditions (H1)–(H3) hold. Then there exists a unique pullback \mathcal{D}_{σ} -attractor $\hat{\mathcal{A}} = \{A(t) : t \in \mathbb{R}\}$ for the process $\{U(t, \tau)\}$ associated to problem (1.1).

Proof. Let $\tau \in \mathbb{R}$ and $u_0 \in H_q$ be fixed, and denote

$$u(t) = u(t; \tau, u_0) = U(t, \tau)u_0 \quad \text{for all } t \ge \tau.$$

In order to apply Theorem 2.7, we will check the conditions in the abstract theorem.

(i) The process $U(t,\tau)$ has a family \hat{B} of pullback \mathcal{D}_{σ} -absorbing sets. Let $\hat{\mathcal{D}} \in \mathcal{D}_{\sigma}$ be given. From (3.1), we get

(3.13)
$$|U(t,\tau)u_0|^2 \le e^{-\sigma(t-\tau)}\hat{r}(\tau) + \frac{e^{-\sigma t}}{2\epsilon\nu} \int_{-\infty}^t e^{\sigma s} ||f(s)||_*^2 ds$$

for all $u_0 \in D(\tau)$ and all $t \ge \tau$.

Define $R_{\sigma}(t) \in \mathcal{R}_{\sigma}$ by

(3.14)
$$R_{\sigma}^{2}(t) = \frac{e^{-\sigma t}}{\epsilon \nu} \int_{-\infty}^{t} e^{\sigma s} \|f(s)\|_{*}^{2} ds,$$

and consider the family $\hat{\mathcal{B}}_{\sigma}$ of closed balls in H_g defined by $B_{\sigma}(t) = B(0, R_{\sigma}(t))$. It is straightforward to check that $\hat{\mathcal{B}}_{\sigma} \in \mathcal{D}_{\sigma}$, and moreover, by (3.12) and (3.13), the family $\hat{\mathcal{B}}_{\sigma}$ is pullback \mathcal{D}_{σ} -absorbing for the process $U(t, \tau)$.

(ii) $U(t,\tau)$ is pullback \mathcal{D}_{σ} -asymptotically compact. Fix $\hat{\mathcal{D}} \in \mathcal{D}_{\sigma}$, a sequence $\tau_n \to -\infty$, a sequence $u_{0n} \in D(\tau_n)$ and $t \in \mathbb{R}$. We must prove that from the sequence $\{U(t,\tau_n)u_{0n}\}$ we can extract a subsequence that converges in H_g .

As the family $\hat{\mathcal{B}}_{\sigma}$ is pullback \mathcal{D}_{σ} -absorbing, for each integer $k \geq 0$, there exists a $\tau_{\hat{D}}(k) \leq t - k$ such that

(3.15)
$$U(t-k,\tau)D(\tau) \subset B_{\sigma}(t-k) \quad \text{for all } \tau \leq \tau_{\hat{D}}(k),$$

so that for $\tau_n \leq \tau_{\hat{D}}(k)$,

$$U(t-k,\tau_n)u_{0n} \subset B_{\sigma}(t-k).$$

Thus, $\{U(t-k,\tau_n)u_{0n}\}$ is weakly precompact in H_g and since $B_{\sigma}(t-k)$ is closed and convex, there exist a subsequence $\{(\tau_{n'}, u_{0n'})\} \subset \{(\tau_n, u_{0n})\}$ and a sequence $\{w_k : k \ge 0\} \subset H_g$ such that for all $k \ge 0, w_k \in B_{\sigma}(t-k)$, and

(3.16)
$$U(t-k,\tau_{n'})u_{0n'} \rightharpoonup w_k \quad \text{weakly in } H_g$$

Note that from the weak continuity of $U(t, \tau)$ established in Lemma 3.3, we have

$$w_{0} = \underset{n' \to \infty}{\text{w-lim}} U(t, \tau_{n'}) u_{0n'} = \underset{n' \to \infty}{\text{w-lim}} U(t, t-k) U(t-k, \tau_{n'}) u_{0n'}$$
$$= U(t, t-k) \underset{n' \to \infty}{\text{w-lim}} U(t-k, \tau_{n'}) u_{0n'} = U(t, t-k) w_{k},$$

where w-lim denotes the limit taken in the weak topology of H_g . Thus

$$(3.17) U(t,t-k)w_k = w_0 for all k \ge 0.$$

Now, from (3.16), by the lower semicontinuity of the norm, we have

$$|w_0| \le \liminf_{n' \to \infty} |U(t, \tau_{n'})u_{0n'}|.$$

If we now prove that also

(3.18)
$$\limsup_{n' \to \infty} |U(t, \tau_{n'})u_{0n'}| \le |w_0|,$$

then we will have

$$\lim_{n' \to \infty} |U(t, \tau_{n'})u_{0n'}| = |w_0|,$$

and this, together with the weak convergence, will imply the strong convergence in H_g of $U(t, \tau_{n'})u_{0n'}$ to w_0 .

In order to prove (3.18), define $[\cdot, \cdot]_g : V_g \times V_g \to \mathbb{R}$ by (3.19)

$$[u,v]_g = \nu((u,v))_g + \frac{\nu}{2} \left(\left(\frac{\nabla g}{g} \cdot \nabla \right) u, v \right) + \frac{\nu}{2} \left(\left(\frac{\nabla g}{g} \cdot \nabla \right) v, u \right) - \frac{\sigma}{2} (u,v)_g,$$

for all $u, v \in V_g$. Clearly, $[\cdot, \cdot]_g$ is bilinear and symmetric. Moreover, from the fact that $||u||^2 \ge \lambda_1 |u|^2$, we have

$$\begin{split} [u]^2 &\equiv [u, u]_g = \nu \|u\|^2 + \nu \left(\left(\frac{\nabla g}{g} \cdot \nabla \right) u, u \right) - \frac{\sigma}{2} |u|^2 \\ &\geq \nu \|u\|^2 - \nu \left(\frac{|\nabla g|_\infty}{m_0 \lambda_1^{1/2}} + \frac{\gamma_0}{2} \right) \|u\|^2 = \epsilon \nu \|u\|^2 \end{split}$$

where we have used Lemma 2.3 and the facts that $\sigma = 2\nu\lambda_1(\gamma_0 - \epsilon)$ and $\gamma_0 = 1 - |\nabla g|_{\infty}/(m_0\lambda_1^{1/2})$. Hence

(3.20)
$$\frac{\epsilon}{\nu} \|u\|^2 \le [u]^2 \le \nu \|u\|^2, \quad \forall u \in V_g.$$

Thus, $[\cdot, \cdot]_g$ defines an inner product in V_g with the norm $[\cdot] = [\cdot, \cdot]_g^{1/2}$, which is equivalent to the norm $\|\cdot\|$ in V_g .

Now, from (3.2), we get

$$\frac{d}{dt}|u(t)|^{2} + \sigma|u(t)|^{2} + 2[u(t)]^{2} \le 2\langle f(t), u(t) \rangle.$$

Hence

$$|u(t)|^{2} \leq |u_{0}|^{2} e^{-\sigma(t-\tau)} + 2 \int_{\tau}^{t} \left(\langle f(s), u(s) \rangle - [u(s)]^{2} \right) ds$$

which can be rewritten as

(3.21)
$$|U(t,\tau)u_0|^2 \le |u_0|^2 e^{\sigma(\tau-t)} + 2\int_{\tau}^{t} e^{\sigma(s-t)} (\langle f(s), U(s,\tau)u_0 \rangle - [U(s,\tau)u_0]^2) \, ds$$

for all $\tau \leq t$, and all $u_0 \in H_g$. Thus, for all $k \geq 0$ and all $\tau_{n'} \leq t - k$, (3.22) $|U(t, \tau_{n'})u_{0n'}|^2 = |U(t, t - k)U(t - k, \tau_{n'})u_{0n'}|^2$ $\leq e^{-\sigma k}|U(t - k, \tau_{n'})u_{0n'}|^2$ $+ 2\int_{\substack{t-k\\t}}^{t} e^{\sigma(s-t)} \langle f(s), U(s, t-k)U(t - k, \tau_{n'})u_{0n'} \rangle ds$

$$-2\int_{t-k}e^{\sigma(s-t)}[U(s,t-k)U(t-k,\tau_{n'})u_{0n'}]^2\,ds.$$

By (3.15), $U(t - k, \tau_{n'})u_{0n'} \in B_{\sigma}(t - k)$ for all $\tau_{n'} \leq \tau_{\hat{D}}(k), k \geq 0$, we have

C. T. Anh and D. T. Quyet

(3.23)
$$\limsup_{n' \to \infty} e^{-\sigma k} |U(t-k, \tau_{n'})u_{0n'}|^2 \le e^{-\sigma k} R_{\sigma}^2(t-k), \quad k \ge 0$$

As $U(t-k,\tau_{n'})u_{0n'} \rightharpoonup w_k$ weakly in H_g , from Lemma 3.3 we have

 $(3.24) \quad U(\cdot, t-k)U(t-k, \tau_{n'})u_{0n'} \rightharpoonup U(\cdot, t-k)w_k \text{ weakly in } L^2(t-k, t; V_g).$

Taking into account that, in particular, $e^{\sigma(s-t)}f(s) \in L^2(t-k,t;V'_g)$, from (3.24) we obtain

(3.25)
$$\lim_{n' \to \infty} \int_{t-k}^{t} e^{\sigma(s-t)} \langle f(s), U(s,t-k)U(t-k,\tau_{n'})u_{0n'} \rangle ds$$
$$= \int_{t-k}^{t} e^{\sigma(s-t)} \langle f(s), U(s,t-k)w_k \rangle ds.$$

Moreover, since $[\cdot]$ is a norm in V_g equivalent to $\|\cdot\|$ and

$$0 < e^{-\sigma k} \le e^{\sigma(s-t)} \le 1$$
 for all $s \in [t-k, t]$,

we see that

$$\left(\int\limits_{t-k}^{t} e^{-\sigma(t-s)} [\cdot]^2 \, ds\right)^{1/2}$$

is a norm in $L^2(t-k,t;V_g)$ equivalent to the usual norm. Hence from (3.24) we deduce that

$$\int_{t-k}^{t} e^{\sigma(s-t)} [U(s,t-k)w_k]^2 \, ds \le \liminf_{n' \to \infty} \int_{t-k}^{t} e^{\sigma(s-t)} [U(s,t-k)U(t-k,\tau_{n'})u_{0n'}]^2 \, ds.$$

Hence

(3.26)
$$\limsup_{n' \to \infty} -2 \int_{t-k}^{t} e^{\sigma(s-t)} [U(s,t-k)U(t-k,\tau_{n'})u_{0n'}]^2 ds$$
$$= -\liminf_{n' \to \infty} 2 \int_{t-k}^{t} e^{\sigma(s-t)} [U(s,t-k)U(t-k,\tau_{n'})u_{0n'}]^2 ds$$
$$\leq -2 \int_{t-k}^{t} e^{\sigma(s-t)} [U(s,t-k)w_k]^2 ds.$$

We can now pass to the lim sup as n' goes to ∞ in (3.22), and take (3.23), (3.25) and (3.26) into account to obtain

(3.27)
$$\limsup_{n' \to \infty} |U(t, \tau_{n'})u_{0n'}|^2 \leq e^{-\sigma k} R_{\sigma}^2(t-k) + 2 \int_{t-k}^t e^{\sigma(s-t)} \left(\langle f(s), U(s,t-k)w_k \rangle - [U(s,t-k)w_k]^2 \right) ds.$$

290

On the other hand, from (3.21) applied to (3.17) we find that

(3.28)
$$|w_0| = |U(t,t-k)w_k|^2 = |w_k|^2 e^{-\sigma k}$$

 $+ 2 \int_{t-k}^t e^{\sigma(s-t)} \left(\langle f(s), U(s,t-k)w_k \rangle - [U(s,t-k)w_k]^2 \right) ds.$

From (3.27) and (3.28), we have

$$\begin{split} \limsup_{n' \to \infty} |U(t, \tau_{n'}) u_{0n'}|^2 &\leq e^{-\sigma k} R_{\sigma}^2(t-k) + |w_0|^2 - |w_k|^2 e^{-\sigma k} \\ &\leq e^{-\sigma k} R_{\sigma}^2(t-k) + |w_0|^2, \end{split}$$

and thus, taking into account that

$$e^{-\sigma k}R_{\sigma}^{2}(t-k) = \frac{e^{-\sigma t}}{\epsilon\nu} \int_{-\infty}^{t-k} e^{\sigma s} \|f(s)\|_{*}^{2} ds \to 0 \quad \text{as } k \to +\infty,$$

we easily obtain (3.18) from the last inequality.

REMARK 3.5. When $g \equiv \text{const} > 0$, we formally get the results for the 2D non-autonomous Navier–Stokes equations. Notice that the result of Theorem 3.4 improves the existing one for the Navier–Stokes equations in the sense that the external force $f \in L^2_{\text{loc}}(\mathbb{R}; V'_q)$ only need satisfy

$$\int_{-\infty}^{0} e^{\sigma s} \|f(s)\|_*^2 \, ds < +\infty, \quad \text{where } \sigma < 2\nu\lambda_1,$$

compared with the condition $\sigma = \nu \lambda_1$ for the Navier–Stokes equations [2] (this condition is recovered if we take $g \equiv 1$ and $\epsilon = 1/2$).

4. Fractal dimension estimates of the pullback attractor. Observe that problem (1.1) can be written in the form (2.4) by taking

$$F(u,t) = -\nu Au(t) - Bu(t) - \nu Cu(t) + f(t).$$

Then it follows immediately that for all $t \in \mathbb{R}$, the mapping $F(\cdot, t)$ is Gateaux differentiable in V_g with

$$F'(u,t)v = -\nu Av - B(u,v) - B(v,u) - \nu Cv, \quad u,v \in V_g,$$

and the mapping $F': (u,t) \in V_g \times \mathbb{R} \mapsto F'(u,t) \in \mathcal{L}(V_g;V'_g)$ is continuous.

Evidently, for any $\tau \in \mathbb{R}$, $u_0, v_0 \in H_g$, there exists a unique solution $v(t) = v(t; \tau, u_0, v_0)$ of the problem

$$\begin{cases} (4.1) \\ \begin{cases} v \in L^2(\tau, T; V_g) \cap C([\tau, T]; H_g), \\ \frac{dv}{dt} = -\nu Av(t) - B(U(t, \tau)u_0, v(t)) - B(v(t), U(t, \tau)u_0) - \nu Cv(t), \ \tau < t, \\ v(\tau) = v_0. \end{cases}$$

From now on we suppose that

(4.2)
$$f \in L^{\infty}(-\infty, T^*; V'_g)$$
 for some $T^* \in \mathbb{R}$.

LEMMA 4.1. Suppose that conditions (H1)–(H3) and (4.2) hold. Then the pullback \mathcal{D}_{σ} -attractor $\hat{\mathcal{A}}$ obtained in Theorem 3.4 satisfies

(4.3)
$$\bigcup_{\tau \leq T*} A(\tau) \text{ is relatively compact in } H_g.$$

Proof. Denoting $M = ||f||_{L^{\infty}(-\infty,T^*;V'_g)}$, from (3.14) we have

$$R_{\sigma}^{2}(t) \leq \frac{Me^{-\sigma t}}{\epsilon \nu} \int_{-\infty}^{t} e^{\sigma \xi} d\xi = \frac{M}{\epsilon \nu \sigma}$$

and consequently

$$B^* := \bigcup_{\tau \leq T^*} B_{\sigma}(\tau)$$
 is bounded in H_g ,

where $B_{\sigma}(\tau) = B(0, R_{\sigma}(\tau)).$

Denote by \mathcal{M} the set of all $y \in H_g$ such that there exist a sequence $\{(t_n, \tau_n)\} \subset \mathbb{R}^2$ satisfying

$$\tau_n \le t_n \le T^*, \quad n \ge 1, \quad \lim_{n \to \infty} (t_n - \tau_n) = +\infty,$$

and a sequence $\{u_{0n}\} \subset B^*$ such that $\lim_{n\to\infty} |U(t,\tau_n)u_{0n} - y| = 0$.

It is easy to see that $A(t) \subset \mathcal{M}$ for all $t \leq T^*$. If we prove that \mathcal{M} is relatively compact in H_g , then (4.3) follows immediately.

Let $\{y_k\} \subset \mathcal{M}$. For each $k \geq 1$, we can take $(t_k, \tau_k) \in \mathbb{R}^2$ and an element $u_{0k} \in B^*$ such that $t_k \leq T^*, t_k - \tau_k \geq k$ and $|U(t_k, \tau_k)u_{0k} - y_k| \leq 1/k$. Using (4.2), by arguments as in Proposition 3.4 in [7], we can extract from $\{y_k\}$ a subsequence that converges in H_g .

LEMMA 4.2. Suppose that conditions (H1)–(H3) and (4.2) hold. Then the process $U(t,\tau)$ associated to problem (1.1) has the quasidifferentiability properties (2.5)–(2.7), with $v(t) = v(t;\tau,u_0,v_0)$ defined by (4.1).

Proof. By (4.2) and Lemma 4.1, there exists a constant C > 1 such that

(4.4)
$$||f||^2_{L^{\infty}(-\infty,T^*;V'_g)} \le C\nu^3, \quad |u_0|^2 \le C\nu^2 \quad \text{for all } u_0 \in \bigcup_{\tau \le T^*} A(\tau).$$

Fix $\tau \leq T^*$, $u_0, \overline{u}_0 \in A(\tau)$, denote $u(t) = U(t, \tau)u_0$, $\overline{u}(t) = U(t, \tau)\overline{u}_0$ and let v(t) be the solution of (4.1) with $v_0 = \overline{u}_0 - u_0$.

It is easy to see that

(4.5)
$$|u(t)|^2 + 2\nu(\gamma_0 - \epsilon) \int_{\tau}^t ||u(s)||^2 \, ds \le |u_0|^2 + \frac{1}{2\epsilon\nu} \int_{\tau}^t ||f(s)||_*^2 \, ds,$$

where $\gamma_0 = 1 - |\nabla g|_{\infty} / (m_0 \lambda_1^{1/2})$, and $\epsilon > 0$ is chosen such that $\gamma_0 - \epsilon > 0$.

Taking into account (4.4), we easily deduce from (4.5) that

(4.6)
$$\int_{\tau}^{t} \|u(s)\|^2 \, ds \le \frac{C\nu}{2(\gamma_0 - \epsilon)} (1 + t - \tau) \quad \text{for all } \tau \le t \le T^*.$$

Denoting

$$w(t) = \overline{u}(t) - u(t), \quad \tau \le t,$$

we have

$$\begin{aligned} \frac{d}{dt}|w(t)|^2 + 2\nu \|w(t)\|^2 + 2\left(\frac{\nu}{g}(\nabla g \cdot \nabla)w(t), w(t)\right) \\ &= -2b(\overline{u}(t), \overline{u}(t), w(t)) + 2b(u(t), u(t), w(t)) \\ &= 2b(w(t), u(t), w(t)). \end{aligned}$$

Since

$$\begin{aligned} |2b(w(t), u(t), w(t))| &\leq 2c |w(t)| \, \|w(t)\| \, \|u(t)\| \\ &\leq \frac{\nu}{2} \|w(t)\|^2 + \frac{2c^2}{\nu} |w(t)|^2 \|u(t)\|^2, \end{aligned}$$

and

$$\begin{split} \left| 2 \left(\frac{\nu}{g} (\nabla g \cdot \nabla) w(t), w(t) \right) \right| &\leq 2\nu \frac{|\nabla g|_{\infty}}{m_0} \|w(t)\| \|w(t)\| \\ &\leq \frac{\nu}{2} \|w(t)\|^2 + \frac{2\nu |\nabla g|_{\infty}^2}{m_0^2} |w(t)|^2, \end{split}$$

we have

(4.7)
$$\frac{d}{dt}|w(t)|^2 + \nu \|w(t)\|^2 \le \left(\frac{2c^2}{\nu}\|u(t)\|^2 + \frac{2\nu|\nabla g|_{\infty}^2}{m_0^2}\right)|w(t)|^2.$$

In particular,

$$|w(t)|^{2} \leq |w(\tau)|^{2} \exp\left(\int_{\tau}^{t} \left(\frac{2c^{2}}{\nu} ||u(s)||^{2} + \frac{2\nu|\nabla g|_{\infty}^{2}}{m_{0}^{2}}\right) ds\right).$$

Thus, by using (4.6),

(4.8)
$$|w(t)|^2 \le |w(\tau)|^2 \exp(C_1(1+t-\tau))$$
 for all $\tau \le t \le T^*$,

where $C_1 = \max\{Cc^2/(\gamma_0 - \epsilon) + 2\nu|\nabla g|_{\infty}^2/m_0^2, 1\}.$

Now, from (4.7) and (4.8), we have

$$\begin{split} \nu \int_{\tau}^{t} \|w(s)\|^{2} \, ds &\leq |w(\tau)|^{2} + \int_{\tau}^{t} \left(\frac{2c^{2}}{\nu} \|u(s)\|^{2} + \frac{2\nu |\nabla g|_{\infty}^{2}}{m_{0}^{2}}\right) |w(s)|^{2} \, ds \\ &\leq |w(\tau)|^{2} + \int_{\tau}^{t} \left(\frac{2c^{2}}{\nu} \|u(s)\|^{2} + \frac{2\nu |\nabla g|_{\infty}^{2}}{m_{0}^{2}}\right) |w(\tau)|^{2} \exp(C_{1}(1+s-\tau)) \, ds \\ &\leq |w(\tau)|^{2} \left[1 + \exp(C_{1}(1+t-\tau)) \int_{\tau}^{t} \left(\frac{2c^{2}}{\nu} \|u(s)\|^{2} + \frac{2\nu |\nabla g|_{\infty}^{2}}{m_{0}^{2}}\right) \, ds\right], \end{split}$$

and thus, by (4.4), we have

(4.9)
$$\nu \int_{\tau}^{t} ||w(s)||^2 ds \le |w(\tau)|^2 [1 + \exp(C_1(1+t-\tau))C_1(1+t-\tau)] \\\le |w(\tau)|^2 [1 + C_1(1+t-\tau)] \exp(C_1(1+t-\tau)) \\\le |w(\tau)|^2 \exp(2C_1(1+t-\tau)).$$

Let z(t) be defined by

$$z(t) = \overline{u}(t) - u(t) - v(t) = w(t) - v(t), \quad t \ge \tau.$$

Evidently, z(t) satisfies

.

$$\begin{cases} z \in L^{2}(\tau, T; V_{g}) \cap L^{\infty}(\tau, T; H_{g}) \cap C([\tau, T]; H_{g}) & \text{for all } t > \tau, \\ \frac{dz}{dt} = -\nu Az(t) - B(\overline{u}(t), \overline{u}(t)) + B(u(t), u(t)) + B(u(t), v(t)) \\ &+ B(v(t), u(t)) - \nu Cz(t), \quad t > \tau, \\ z(\tau) = 0. \end{cases}$$

It is easy to see that

$$-B(\overline{u}(t),\overline{u}(t)) + B(u(t),u(t)) + B(u(t),v(t)) + B(v(t),u(t)) = -B(u(t),z(t)) - B(z(t),u(t)) - B(w(t),w(t)),$$

and consequently, for all $t > \tau$,

$$\begin{aligned} (4.10) \quad & \frac{d}{dt}|z|^2 + 2\nu \|z\|^2 = -2b(z,u,z) - 2b(w,w,z) - 2\left(\frac{\nu}{g}(\nabla g \cdot \nabla)z,z\right) \\ & \leq -2b(z,u,z) - 2b(w,w,z) + 2\nu \frac{|\nabla g|_{\infty}}{m_0} \|z\| \, |z| \\ & \leq \frac{\nu}{2} \|z\|^2 + \frac{2c^2}{\nu} \|u\|^2 |z|^2 + \frac{\nu}{2} \|z\|^2 + \frac{2c^2}{\nu} \|w\|^2 |w|^2 + \nu \|z\|^2 + \frac{\nu |\nabla g|_{\infty}^2}{m_0^2} |z|^2 \\ & = 2\nu \|z\|^2 + \frac{2c^2}{\nu} \|u\|^2 |z|^2 + \frac{2c^2}{\nu} \|w\|^2 |w|^2 + \frac{\nu |\nabla g|_{\infty}^2}{m_0^2} |z|^2. \end{aligned}$$

Integrating (4.10) from τ to t, and using the fact that $z(\tau) = 0$, we have

$$|z(t)|^{2} \leq \frac{2c^{2}}{\nu} \int_{\tau}^{t} ||w||^{2} |w|^{2} ds + \int_{\tau}^{t} \left(\frac{2c^{2}}{\nu} ||u||^{2} + \frac{\nu |\nabla g|_{\infty}^{2}}{m_{0}^{2}}\right) |z|^{2} ds, \quad \forall t \geq \tau,$$

and consequently, by Gronwall's lemma,

$$|z(t)|^{2} \leq \frac{2c^{2}}{\nu} \int_{\tau}^{t} ||w||^{2} |w|^{2} ds \exp\left[\int_{\tau}^{t} \left(\frac{2c^{2}}{\nu} ||u||^{2} + \frac{\nu |\nabla g|_{\infty}^{2}}{m_{0}^{2}}\right) ds\right].$$

From (4.8) we obtain

$$|z(t)|^{2} \leq \frac{2c^{2}}{\nu} |w(\tau)|^{2} \exp(2C_{1}(1+t-\tau)) \int_{\tau}^{t} ||w(s)||^{2} ds.$$

Plugging (4.9) into the last estimate, we obtain

$$|z(t)|^{2} \leq \frac{2c^{2}}{\nu^{2}}|w(\tau)|^{4}\exp(4C_{1}(1+t-\tau)),$$

i.e., (2.5)-(2.7) hold with

$$\gamma(s,r) = \frac{\sqrt{2}\,cr}{\nu}\exp(2C_1(1+s)),$$

where $C_1 > 1$.

We now prove the main result in this section.

THEOREM 4.3. Suppose that conditions (H1)–(H3) and (4.2) hold. Then the pullback \mathcal{D}_{σ} -attractor $\hat{\mathcal{A}} = \{A(t) : t \in \mathbb{R}\}$ satisfies

$$d_{\mathcal{F}}(A(\tau)) \le \max\left(1, \frac{\kappa \|f\|_{L^{\infty}(-\infty, T^*; V'_g)}}{16\nu^4(\gamma_0 - \epsilon)^2 \epsilon^2 \lambda_1}\right) \quad \text{for all } \tau \in \mathbb{R},$$

where $\gamma_0 = 1 - |\nabla g|_{\infty}^2 / (m_0 \lambda_1^2) > 0$, and $\epsilon > 0$ is the number such that $\sigma = 2\nu \lambda_1 (\gamma_0 - \epsilon)$.

Proof. For $u_0, \xi_1, \ldots, \xi_m \in H_g$, we suppose $v_j(t) = L(t, \tau; u_0)\xi_j$. Let $\{e_1(t), \ldots, e_m(t)\}$ be an orthonormal basis in H_g of the subspace spanned by $\{v_1(t), \ldots, v_m(t)\}$. Since $v_j(t) \in V_g$ for a.e. $t \ge \tau$, we can assume $e_j(t) \in V_g$ for a.e. $t \ge \tau$. Then it is not difficult to see that

(4.11)
$$\operatorname{Tr}_{m}(F'(U(s,\tau)u_{0},s) = \sum_{i=1}^{m} \langle F'(U(s,\tau)u_{0},s)e_{i},e_{i} \rangle$$
$$= -\nu \sum_{i=1}^{m} \|e_{i}\|^{2} - \sum_{i=1}^{m} b(e_{i},U(s,\tau)u_{0},e_{i}) - \sum_{i=1}^{m} \left(\frac{\nu}{g}(\nabla g \cdot \nabla)e_{i},e_{i}\right)$$

for a.e. $s \geq \tau$.

Using the explicit expression for b, we have

$$\left|\sum_{i=1}^{m} b(e_i, u, e_i)\right| = \left|\sum_{i=1}^{m} \int_{\Omega} \sum_{k,l=1}^{2} e_{ik}(x) D_l u_k(x) e_{il}(x) g(x) \, dx\right|$$
$$\leq \int_{\Omega} |\operatorname{grad} u(x)| \rho(x) g(x) \, dx,$$

where

$$|\operatorname{grad} u(x)| = \left\{ \sum_{l,k=1}^{2} |D_l u_k(x)|^2 \right\}^{1/2}, \quad \rho(x) = \sum_{i=1}^{m} \sum_{k=1}^{2} (e_{ik}(x))^2.$$

Therefore,

(4.12)
$$\left|\sum_{i=1}^{m} b(e_i, u, e_i)\right| \leq \int_{\Omega} |\operatorname{grad} u(x)| \rho(x) g(x) \, dx \leq ||u|| \, |\rho|$$

by the Schwarz inequality. Also, we obtain

(4.13)
$$\left|\sum_{i=1}^{m} \left(\frac{\nu}{g} (\nabla g \cdot \nabla) e_i, e_i\right)\right| \le \sum_{i=1}^{m} \frac{\nu |\nabla g|_{\infty}}{m_0 \lambda_1^{1/2}} \|e_i\|^2.$$

We recall that the dependence on s has been omitted and in fact u = u(s, x), $\rho = \rho(s, x)$, etc. From (4.11)–(4.13), we get

$$\operatorname{Tr}_{m}(F'(U(s,\tau)u_{0},s) \leq -\nu \left(1 - \frac{|\nabla g|_{\infty}}{m_{0}\lambda_{1}^{1/2}}\right) \sum_{i=1}^{m} \|e_{i}\| + \|U(t,\tau)u_{0}\| \|\rho\|$$
$$= -\nu \gamma_{0} \sum_{i=1}^{m} \|e_{i}\| + \|U(t,\tau)u_{0}\| \|\rho\|.$$

Since $\{e_i\}$ are orthonormal in H_g , hence in $L^2(\Omega, g)$, and belong to $V_g \hookrightarrow H_0^1(\Omega, g)$, by the Lieb–Thirring inequality (see [15, Theorem A.3.1] with n = 2, p = 2, m = 1 and in particular [15, Example A5.1]), there exists a constant κ depending only on the shape of Ω such that

$$|\rho(s)|^{2} = \int_{\Omega} \rho(s, x)^{2} g(x) \, dx \le \kappa \sum_{i=1}^{m} \|e_{i}\|^{2}.$$

Hence,

$$\begin{aligned} \operatorname{Tr}_{m}(F'(U(s,\tau)u_{0},s) &\leq -\nu\gamma_{0}\sum_{i=1}^{m}\|e_{i}\| + \|U(t,\tau)u_{0}\||\rho| \\ &\leq -\nu\gamma_{0}\sum_{i=1}^{m}\|e_{i}\|^{2} + \|U(t,\tau)u_{0}\|\left(\kappa\sum_{i=1}^{m}\|e_{i}\|^{2}\right)^{1/2} \\ &\leq -\nu(\gamma_{0}-\epsilon)\sum_{i=1}^{m}\|e_{i}\|^{2} + \frac{\kappa}{4\nu\epsilon}\|U(t,\tau)u_{0}\|^{2} \end{aligned}$$

296

$$\leq -\nu(\gamma_0 - \epsilon)\lambda_1 \sum_{i=1}^m |e_i|^2 + \frac{\kappa}{4\nu\epsilon} ||U(t,\tau)u_0||^2$$
$$= -\nu(\gamma_0 - \epsilon)\lambda_1 m + \frac{\kappa}{4\nu\epsilon} ||U(t,\tau)u_0||^2,$$

where we have used the fact that $|e_i| = 1$. On the other hand,

$$\frac{d}{dt}|U(s,\tau)u_0|^2 + 2\nu(\gamma_0 - \epsilon)||U(s,\tau)u_0||^2 \le \frac{||f(s)||_*^2}{2\nu\epsilon},$$

and if we denote $M = ||f||_{L^{\infty}(-\infty,T^*;V'_g)}^2$ we have

$$\int_{\tau-T}^{\tau} \|U(s,\tau)u_0\|^2 \, ds \le \left(\frac{MT}{4\nu^2\epsilon} + \frac{|u_0|^2}{2\nu}\right)(\gamma_0 - \epsilon)^{-1}, \quad t \ge \tau.$$

Using Theorem 2.9, we obtain

$$\widetilde{q}_m \leq \limsup_{T \to +\infty} \sup_{u_0 \in A(\tau - T)} \frac{1}{T} \int_{\tau - T}^{\tau} \operatorname{Tr}_m(F'(U(s, \tau - T)u_0, s)) \, ds$$

$$\leq -\nu(\gamma_0 - \epsilon)\lambda_1 m + \frac{\kappa}{4\nu\epsilon} \limsup_{T \to +\infty} \sup_{u_0 \in A(\tau - T)} \left(\frac{M}{4\nu^2\epsilon} + \frac{|u_0|^2}{2\nu T}\right)(\gamma_0 - \epsilon)^{-1}$$

$$\leq -\nu(\gamma_0 - \epsilon)\lambda_1 m + \frac{\kappa M}{16\nu^3\epsilon^2(\gamma_0 - \epsilon)}.$$

We now consider two cases: if $\kappa M < 16\nu^4(\gamma_0 - \epsilon)^2\epsilon^2\lambda_1$, then taking

$$q_m = -\nu(\gamma_0 - \epsilon)\lambda_1(m-1), \quad m = 1, 2, \dots,$$

and $n_0 = 1$, we can apply Theorem 2.9 to obtain

$$d_{\mathrm{F}}(A(\tau)) \leq 1$$
 for all $\tau \leq T^*$;

if $\kappa M \ge 16\nu^4(\gamma_0 - \epsilon)^2\epsilon^2\lambda_1$, then taking

$$q_m = -\nu(\gamma_0 - \epsilon)\lambda_1 m + \frac{\kappa M}{16\nu^3\epsilon^2(\gamma_0 - \epsilon)}, \quad m = 1, 2, \dots,$$

and

$$n_0 = 1 + \left[\frac{\kappa M}{16\nu^4(\gamma_0 - \epsilon)^2\epsilon^2\lambda_1} - 1\right],$$

where [r] denotes the integer part of a real number r, we obtain

$$d_{\mathcal{F}}(A(\tau)) \leq \frac{\kappa \|f\|_{L^{\infty}(-\infty,T^*;V'_g)}^2}{16\nu^4(\gamma_0 - \epsilon)^2\epsilon^2\lambda_1} \quad \text{for all } \tau \leq T^*.$$

Finally, since $U(t,\tau)$ is Lipschitz in $A(\tau)$, it follows from [10, Proposition 13.9] that $d_{\rm F}(A(t))$ is bounded for every $t \geq \tau$ with the same bound.

REMARK 4.4. When $g \equiv 1$ and $\epsilon = 1/2$, we recover the result in [7] for the usual 2D non-autonomous Navier–Stokes equations:

$$d_{\mathbf{F}}(A(\tau)) \le \max\left(1, \frac{\kappa \|f\|_{L^{\infty}(-\infty, T^*; V'_g)}^2}{\nu^4 \lambda_1}\right) \quad \text{for all } \tau \in \mathbb{R}.$$

5. Global stability of stationary solutions. Assuming now that the external force f is independent of time t, in this section we are looking for solutions of the following problem:

(5.1)
$$\begin{cases} -\nu\Delta u + (u\cdot\nabla)u + \nabla p = f, & x \in \Omega, \\ (1/g)\nabla \cdot (gu) = 0, & x \in \Omega, \\ u(x) = 0, & x \in \partial\Omega. \end{cases}$$

Given $f \in V'_g$, a weak solution to stationary problem (5.1) is a function $u \in V_g$ satisfying

$$\nu((u, v))_g + b(u, u, v) = \langle f, v \rangle$$
 for all test functions $v \in V_g$.

THEOREM 5.1. For every $f \in V'_g$, there exists at least one weak solution of problem (5.1). Moreover, if f belongs to H_g , all weak solutions belong to D(A). Finally, if

(5.2)
$$\nu^2 \left(1 - \frac{|\nabla g|_{\infty}}{m_0 \lambda_1^{1/2}}\right)^2 > \frac{c_1}{\lambda_1^{1/2}} \|f\|_*,$$

where c_1 is the constant in (2.3), then the weak solution of problem (5.1) is unique.

Proof. Let us consider an orthonormal basis $\{w_j\} \subset V$ of H_g consisting of eigenfunctions of the Stokes problem in Ω with the homogeneous Dirichlet condition. The subspace of V_g spanned by w_1, \ldots, w_m will be denoted V_m . Consider the projector $P_m : H_g \to V_m$ given by

$$P_m u = \sum_{i=1}^m (u, w_i)_g w_i,$$

and define

$$u^m = \sum_{i=1}^m \gamma_{mi} w_i,$$

where

(5.3)
$$\nu((u^m, w_i)) + \nu b\left(\frac{\nabla g}{g}, u^m, w_i\right) + b(u^m, u^m, w_i) = \langle f, w_i \rangle$$

for every v in V_m . Equation (5.3) is also equivalent to

(5.4)
$$\nu Au^m + P_m Bu^m + \nu P_m Cu^m = P_m f.$$

The existence of a solution u^m of (5.3) follows from the Brouwer fixed point theorem as in the case of stationary Navier–Stokes equations (for details, see [13, p. 164]). Taking $v = u^m$ in (5.3) and taking into account (2.2), we get

$$\nu \|u^m(t)\|^2 = \langle f, u^m \rangle - \nu b \left(\frac{\nabla g}{g}, u^m, u^m\right) \le \|f\|_* \|u^m\| + \nu \frac{|\nabla g|_\infty}{m_0 \lambda_1^{1/2}} \|u^m\|^2.$$

Hence

(5.5)
$$\nu \left(1 - \frac{|\nabla g|_{\infty}}{m_0 \lambda_1^{1/2}}\right) \|u^m\| \le \|f\|_*.$$

We extract from $\{u^m\}$ a sequence $\{u^{m'}\}$ which converges weakly in V_g to some limit u. If Ω is bounded, then the injection of V_g into H_g is compact. Thus, this convergence holds also in the norm of H_g :

 $u^{m'} \to u$ weakly in V_g , and strongly in H_g ,

up to a subsequence. Passing to the limit in (5.3) with the sequence m', we find that u is a weak solution of (5.1). If Ω is unbounded, the injection of V_g into H_g is no longer compact. However, this difficulty can be overcome by using arguments as in [13, pp. 168–171].

To prove the second statement, we note that if $u \in V_g$, then $Bu \in V_g^{-1/2}$ and $Cu \in V_g^{-1/2}$. Hence $u = (1/\nu)A^{-1}(f - Bu - \nu Cu) \in V_g^{3/2}$ since $f \in H_g$. Therefore, $Bu \in H_g$ and $Cu \in H_g$, and thus u is in D(A).

For the uniqueness of solutions, let us assume that u_1 and u_2 are two solutions of (5.3). Setting $u = u_1 - u_2$, we have

$$\nu \|u\|^2 + \nu b\left(\frac{\nabla g}{g}, u, u\right) = b(u_2, u_2, u) - b(u_1, u_1, u) = -b(u, u_2, u).$$

By Lemma 2.1,

$$\begin{aligned} |b(u, u_2, u)| &\leq c_1 |u| \, \|u\| \, \|u_2\| \leq \frac{c_1}{\lambda_1^{1/2}} \|u\|^2 \|u_2\| \\ &\leq \frac{c_1}{\lambda_1^{1/2}} \frac{1}{\nu \left(1 - \frac{|\nabla g|_{\infty}}{m_0 \lambda_1^{1/2}}\right)} \|f\|_* \|u\|^2, \end{aligned}$$

where we have used the fact that $||u||^2 \ge \lambda_1 |u|^2$ and inequality (5.5) for the solution u_2 . By Lemma 2.3,

$$\left| b\left(\frac{\nabla g}{g}, u, u\right) \right| \le \frac{|\nabla g|_{\infty}}{m_0 \lambda_1^{1/2}} \|u\|^2.$$

Therefore,

$$\left(\nu\left(1-\frac{|\nabla g|_{\infty}}{m_{0}\lambda_{1}^{1/2}}\right)-\frac{c_{1}}{\lambda_{1}^{1/2}}\frac{1}{\nu\left(1-\frac{|\nabla g|_{\infty}}{m_{0}\lambda_{1}^{1/2}}\right)}\|f\|_{*}\right)\|u\|^{2}\leq0,$$

and u = 0, i.e. $u_1 = u_2$, if (5.2) holds.

THEOREM 5.2. Given $f \in H_g$, assume that

$$(5.6) \qquad \nu \left(\frac{\lambda_1 \left(1 - \frac{|\nabla g|_{\infty}^2}{m_0^2 \lambda_1}\right)}{c_2'}\right)^{3/4} > \frac{2}{\nu} \left(1 + \frac{|\nabla g|_{\infty}}{m_0 \lambda_1^{1/2} \left(1 - \frac{|\nabla g|_{\infty}}{m_0 \lambda_1^{1/2}}\right)}\right) |f| + \frac{c_2^2}{2\nu^5 \lambda_1^{3/2} \left(1 - \frac{|\nabla g|_{\infty}}{m_0 \lambda_1^{1/2}}\right)^3} |f|^3,$$

where c_2 is the constant in Lemma 2.1 and $c'_2 = \frac{3}{4}(c_2/\lambda_1^{1/2})^{4/3}$. Then the weak solution of (5.1) (denoted by u_{∞}) is unique. If u is any weak solution of problem (1.1) with $u_0 \in H_g$ arbitrary and $f(t) \equiv f$ for all t, then

$$u(t) \to u_{\infty}$$
 in H_g as $t \to \infty$.

Proof. Let $w(t) = u(t) - u_{\infty}$. We have

$$\frac{dw(t)}{dt} + \nu Aw(t) + \nu Cw(t) + Bu(t) - Bu_{\infty} = 0,$$

and, taking the scalar product with w(t),

$$\frac{1}{2} \frac{d}{dt} |w(t)|^2 + \nu ||w(t)||^2 + \nu b \left(\frac{\nabla g}{g}, w(t), w(t)\right) + b(u(t), u(t), w(t)) - b(u_{\infty}, u_{\infty}, w(t)) = 0.$$

Hence

$$\begin{aligned} \frac{1}{2} \frac{d}{dt} |w(t)|^2 + \nu ||w(t)||^2 \\ &= -b(w(t), u_{\infty}, w(t)) - \nu b \left(\frac{\nabla g}{g}, w(t), w(t)\right) \\ &\leq \frac{c_2}{\lambda_1^{1/2}} |w(t)|^{3/2} ||w(t)|^{1/2} |Au_{\infty}| + \nu \frac{|\nabla g|_{\infty}}{m_0} ||w(t)|| |w(t)| \\ &\leq \frac{\nu}{4} ||w(t)||^2 + \frac{c'_2}{\nu^{1/3}} |w(t)|^2 |Au_{\infty}|^{4/3} + \frac{\nu}{4} ||w(t)||^2 + \nu \frac{|\nabla g|_{\infty}^2}{m_0^2} |w(t)|^2, \end{aligned}$$

where we have used (2.3), the inequality $|Au_{\infty}| \geq \lambda_1^{1/2} ||u_{\infty}||$, the Young inequality, and $c'_2 = \frac{3}{4} (c_2/\lambda_1^{1/2})^{4/3}$. Therefore,

(5.7)
$$\frac{d}{dt}|w(t)|^2 + \left(\nu\lambda_1 - \frac{c_2'}{\nu^{1/3}}|Au_{\infty}|^{4/3} - \nu\frac{|\nabla g|_{\infty}^2}{m_0^2}\right)|w(t)|^2 \le 0.$$

If

(5.8)
$$\bar{\nu} = \nu \lambda_1 - \frac{c_2'}{\nu^{1/3}} |Au_{\infty}|^{4/3} - \nu \frac{|\nabla g|_{\infty}^2}{m_0^2} > 0,$$

300

then (5.7) shows that |w(t)| decays exponentially to 0 as $t \to \infty$: $|w(t)|^2 \le |w(0)|e^{-\bar{\nu}t}, \quad w(0) = u_0 - u_\infty.$

Since $u_{\infty} \in D(A)$, we have

ν

$$\begin{aligned} |Au_{\infty}| &\leq |f| + |Bu_{\infty}| + \nu |Cu_{\infty}| \\ &\leq |f| + c_{2} ||u_{\infty}||^{3/2} |Au_{\infty}|^{1/2} + \frac{\nu |\nabla g|_{\infty}}{m_{0}} ||u_{\infty}|| \\ &\leq |f| + \frac{\nu}{2} |Au_{\infty}| + \frac{c_{2}^{2}}{2\nu} ||u_{\infty}||^{3} + \frac{\nu |\nabla g|_{\infty}}{m_{0}} ||u_{\infty}|| \\ &\leq |f| + \frac{\nu}{2} |Au_{\infty}| + \frac{c_{2}^{2}}{2\nu^{4}\lambda_{1}^{3/2}} \frac{1}{\left(1 - \frac{|\nabla g|_{\infty}}{m_{0}\lambda_{1}^{1/2}}\right)^{3}} |f|^{3} \\ &+ \frac{|\nabla g|_{\infty}}{m_{0}\lambda_{1}^{1/2}} \frac{1}{\left(1 - \frac{|\nabla g|_{\infty}}{m_{0}\lambda_{1}^{1/2}}\right)} |f|, \end{aligned}$$

where we have used (5.5) and the fact that $||f||_* \leq \frac{1}{\lambda_1^{1/2}} |f|$. Hence (5.9)

$$|Au_{\infty}| \leq \frac{2}{\nu} \left(1 + \frac{|\nabla g|_{\infty}}{m_0 \lambda_1^{1/2}} \frac{1}{\left(1 - \frac{|\nabla g|_{\infty}}{m_0 \lambda_1^{1/2}}\right)} \right) |f| + \frac{c_2^2}{2\nu^5 \lambda_1^{3/2}} \frac{1}{\left(1 - \frac{|\nabla g|_{\infty}}{m_0 \lambda_1^{1/2}}\right)^3} |f|^3.$$

Using (5.9), we obtain a sufficient condition for (5.8), which is exactly (5.6).

If we replace u(t) by another stationary solution u_{∞}^* of (5.1) in the computations leading to (5.7), we obtain instead of (5.7),

$$\bar{\nu}|u_{\infty} - u_{\infty}^*|^2 \le 0.$$

This implies the uniqueness of the stationary solution if (5.6) holds.

Acknowledgements. This work was supported by Vietnam's National Foundation for Science and Technology Development (NAFOSTED), Project 101.01-2010.05.

References

- H. Bae and J. Roh, Existence of solutions of the g-Navier-Stokes equations, Taiwanese J. Math. 8 (2004), 85–102.
- [2] T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal. 64 (2006), 484–498.
- [3] J. Jiang and Y. Hou, The global attractor of g-Navier-Stokes equations with linear dampness on ℝ², Appl. Math. Comput. 215 (2009), 1068–1076.
- [4] —, —, Pullback attractor of 2D non-autonomous g-Navier-Stokes equations on some bounded domains, Appl. Math. Mech. (Engl. Ed.) 31 (2010), 697–708.

- [5] M. Kwak, H. Kwean and J. Roh, The dimension of attractor of the 2D g-Navier-Stokes equations, J. Math. Anal. Appl. 315 (2006), 436–461.
- [6] H. Kwean and J. Roh, The global attractor of the 2D g-Navier–Stokes equations on some unbounded domains, Comm. Korean Math. Soc. 20 (2005), 731–749.
- [7] J. A. Langa, G. Łukaszewicz and J. Real, Finite fractal dimension of pullback attractors for non-autonomous 2D Navier–Stokes equations in some unbounded domains, Nonlinear Anal. 66 (2007), 735–749.
- Y. Li and C. K. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations, Appl. Math. Comput. 190 (2007), 1020–1029.
- J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod and Gauthier-Villars, Paris, 1969.
- [10] J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Univ. Press, 2001.
- J. Roh, Dynamics of the g-Navier-Stokes equations, J. Differential Equations 211 (2005), 452–484.
- [12] —, Derivation of the g-Navier-Stokes equations, J. Chungcheon Math. Soc. 19 (2006), 213–218.
- [13] R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, 2nd ed., North-Holland, Amsterdam, 1979.
- [14] —, Navier–Stokes Equations and Nonlinear Functional Analysis, 2nd ed., SIAM, 1995.
- [15] —, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed., Springer, 1997.
- [16] D. Wu, The finite-dimensional uniform attractors for the non-autonomous g-Navier-Stokes equations, J. Appl. Math. 2009, art. ID 150420, 17 pp.

Cung The Anh Department of Mathematics Hanoi National University of Education 136 Xuan Thuy, Cau Giay Hanoi, Vietnam E-mail: anhctmath@hnue.edu.vn Dao Trong Quyet Faculty of Information Technology Le Qui Don Technical University 100 Hoang Quoc Viet, Cau Giay Hanoi, Vietnam E-mail: dtq107800@gmail.com

Received 15.3.2011 and in final form 29.5.2011

(2411)