Long-time behavior for 2D non-autonomous g-Navier-Stokes equations

by Cung The Anh and Dao Trong Quyet (Hanoi)

Abstract

We study the first initial boundary value problem for the 2D non-autonomous g-Navier-Stokes equations in an arbitrary (bounded or unbounded) domain satisfying the Poincaré inequality. The existence of a weak solution to the problem is proved by using the Galerkin method. We then show the existence of a unique minimal finite-dimensional pullback \mathcal{D}_{σ}-attractor for the process associated to the problem with respect to a large class of non-autonomous forcing terms. Furthermore, when the force is time-independent and "small", the existence, uniqueness and global stability of a stationary solution are also studied.

1. Introduction. Let Ω be a (bounded or unbounded) domain in \mathbb{R}^{2} with boundary $\partial \Omega$. In this paper we study the long-time behavior of solutions to the following 2D non-autonomous g-Navier-Stokes equations in Ω :

$$
\begin{cases}\partial_{t} u-\nu \Delta u+(u \cdot \nabla) u+\nabla p=f, & x \in \Omega, t>\tau \tag{1.1}\\ (1 / g) \nabla \cdot(g u)=0, & x \in \Omega, t>\tau \\ u(x, t)=0, & (x, t) \in \partial \Omega \times(\tau,+\infty) \\ u(x, \tau)=u_{0}(x), & x \in \Omega\end{cases}
$$

where $u=u(x, t)=\left(u_{1}, u_{2}\right)$ is the unknown velocity vector, $p=p(x, t)$ is the unknown pressure, $\nu>0$ is the kinematic viscosity coefficient, and u_{0} is the initial velocity.

The g-Navier-Stokes equations are a variation of the standard NavierStokes equations. More precisely, when $g \equiv 1$ we get the usual Navier-Stokes equations. The 2D g-Navier-Stokes equations arise in a natural way when we study the standard 3D problem in thin domains. We refer the reader to [11, 12] for a derivation of the 2D g-Navier-Stokes equations from the 3D Navier-Stokes equations and a relationship between them. As mentioned

[^0]in [6], good properties of the 2D g-Navier-Stokes equations can initiate the study of the Navier-Stokes equations on the thin three-dimensional domain $\Omega_{g}=\Omega \times(0, g)$. In the last few years, the existence and asymptotic behavior of solutions to g-Navier-Stokes equations have been studied extensively (see e.g. [1, 3-6, 11, 12, 16]).

The aim of this paper is to continue the study of the long-time behavior of weak solutions to problem (1.1). When the external force f is time-dependent, we use the theory of pullback attractors. This theory is a natural generalization of the theory of global attractors for autonomous dynamical systems (cf. [15]) and allows considering a number of different problems of non-autonomous dynamical systems and random dynamical systems for a large class of non-autonomous forcing terms. When the force is time-independent and "small", we prove the existence, uniqueness and global stability of a stationary solution. The results obtained, in particular, recover and extend some existing ones for the 2D Navier-Stokes equations in [2, 7, 14, 15] and for 2D g-Navier-Stokes equations in bounded domains in [4].

In order to study problem (1.1), we assume that:
(H1) Ω is an arbitrary (bounded or unbounded) domain in \mathbb{R}^{2} without any regularity assumption on $\partial \Omega$, provided that the Poincaré inequality holds on Ω : There exists $\lambda_{1}>0$ such that

$$
\int_{\Omega} \phi^{2} g d x \leq \frac{1}{\lambda_{1}} \int_{\Omega}|\nabla \phi|^{2} g d x, \quad \forall \phi \in H_{0}^{1}(\Omega)
$$

(H2) $g \in W^{1, \infty}(\Omega)$ such that
$0<m_{0} \leq g(x) \leq M_{0}$ for $x=\left(x_{1}, x_{2}\right) \in \Omega$, and $|\nabla g|_{\infty}<m_{0} \lambda_{1}^{1 / 2}$.
(H3) $f \in L_{\text {loc }}^{2}\left(\mathbb{R} ; V_{g}^{\prime}\right)$ such that

$$
\int_{-\infty}^{0} e^{\sigma s}\|f(s)\|_{V_{g}^{\prime}}^{2} d s<+\infty
$$

where $\sigma<2 \nu \lambda_{1} \gamma_{0}$ is a fixed positive number with $\gamma_{0}=1-$ $|\nabla g|_{\infty} /\left(m_{0} \lambda_{1}^{1 / 2}\right)>0$.
The paper is organized as follows. In the next section, we recall some auxilliary results on function spaces and inequalities for the nonlinear terms related to the g-Navier-Stokes equations, and abstract results on the existence and the fractal dimension of pullback attractors. In Sections 3 and 4, following the general lines of the proof in [2, 7], we prove the existence and fractal dimension estimates of a unique minimal pullback \mathcal{D}_{σ}-attractor for the associated process. The existence, uniqueness and global stability of a stationary solution are studied in the last section under some additional conditions.

2. Preliminary results

2.1. Function spaces and inequalities for the nonlinear terms.

 Let $L^{2}(\Omega, g)=\left(L^{2}(\Omega)\right)^{2}$ and $H_{0}^{1}(\Omega, g)=\left(H_{0}^{1}(\Omega)\right)^{2}$ endowed, respectively, with the inner products$$
(u, v)_{g}=\int_{\Omega} u \cdot v g d x, \quad u, v \in L^{2}(\Omega, g)
$$

and

$$
((u, v))_{g}=\int_{\Omega} \sum_{j=1}^{2} \nabla u_{j} \cdot \nabla v_{j} g d x, \quad u=\left(u_{1}, u_{2}\right), v=\left(v_{1}, v_{2}\right) \in H_{0}^{1}(\Omega, g)
$$

and norms $|u|^{2}=(u, u)_{g},\|u\|^{2}=((u, u))_{g}$. Thanks to assumption (H2), the norms $|\cdot|$ and $\|\cdot\|$ are equivalent to the usual ones in $\left(L^{2}(\Omega)\right)^{2}$ and in $\left(H_{0}^{1}(\Omega)\right)^{2}$.

Let

$$
\mathcal{V}=\left\{u \in\left(C_{0}^{\infty}(\Omega)\right)^{2}: \nabla \cdot(g u)=0\right\}
$$

Denote by H_{g} the closure of \mathcal{V} in $L^{2}(\Omega, g)$, and by V_{g} the closure of \mathcal{V} in $H_{0}^{1}(\Omega, g)$. It follows that $V_{g} \subset H_{g} \equiv H_{g}^{\prime} \subset V_{g}^{\prime}$, where the injections are dense and continuous. We will use $\|\cdot\|_{*}$ for the norm in V_{g}^{\prime}, and $\langle\cdot, \cdot\rangle$ for the duality pairing between V_{g} and V_{g}^{\prime}.

We now define the trilinear form b by

$$
b(u, v, w)=\sum_{i, j=1}^{2} \int_{\Omega} u_{i} \frac{\partial v_{j}}{\partial x_{i}} w_{j} g d x
$$

whenever the integrals make sense. It is easy to check that if $u, v, w \in V_{g}$, then

$$
\begin{equation*}
b(u, v, w)=-b(u, w, v) \tag{2.1}
\end{equation*}
$$

Hence

$$
\begin{equation*}
b(u, v, v)=0, \quad \forall u, v \in V_{g} \tag{2.2}
\end{equation*}
$$

Define $A: V_{g} \rightarrow V_{g}^{\prime}$ by $\langle A u, v\rangle=((u, v))_{g}, B: V_{g} \times V_{g} \rightarrow V_{g}^{\prime}$ by $\langle B(u, v), w\rangle=$ $b(u, v, w), B u=B(u, u)$. Then $D(A)=H^{2}(\Omega, g) \cap V$ and $A u=-P_{g} \Delta u$ for all $u \in D(A)$, where P_{g} is the ortho-projector from $L^{2}(\Omega, g)$ onto H_{g}.

Using Hölder's inequality, the Ladyzhenskaya inequality (when $n=2$):

$$
|u|_{L^{4}} \leq c|u|^{1 / 2}|\nabla u|^{1 / 2}, \quad \forall u \in H_{0}^{1}(\Omega)
$$

and the interpolation inequalities, as in [13, 14], one can prove the following

Lemma 2.1. If $n=2$, then

$$
\begin{align*}
& |b(u, v, w)| \tag{2.3}\\
& \leq \begin{cases}c_{1}|u|^{1 / 2}\|u\|^{1 / 2}\|v\||w|^{1 / 2}\|w\|^{1 / 2}, & \forall u, v, w \in V_{g} \\
c_{2}|u|^{1 / 2}\|u\|^{1 / 2}\|v\|^{1 / 2}|A v|^{1 / 2}|w|, & \forall u \in V_{g}, v \in D(A), w \in H_{g} \\
c_{3}|u|^{1 / 2}|A u|^{1 / 2}\|v\||w|, & \forall u \in D(A), v \in V_{g}, w \in H_{g} \\
c_{4}|u|\|v\||w|^{1 / 2}|A w|^{1 / 2}, & \forall u \in H_{g}, v \in V_{g}, w \in D(A)\end{cases}
\end{align*}
$$

where $c_{i}, i=1, \ldots, 4$, are appropriate constants.
Lemma 2.2 ([1]). Let $u \in L^{2}\left(\tau, T ; V_{g}\right)$. Then the function $B u$ defined by

$$
(B u(t), v)_{g}=b(u(t), u(t), v), \quad \forall u \in V_{g}, \text { a.e. } t \in[\tau, T]
$$

belongs to $L^{2}\left(\tau, T ; V_{g}^{\prime}\right)$.
Lemma 2.3 ([1]). Let $u \in L^{2}\left(\tau, T ; V_{g}\right)$. Then the function $C u$ defined by

$$
(C u(t), v)_{g}=\left(\left(\frac{\nabla g}{g} \cdot \nabla\right) u, v\right)_{g}=b\left(\frac{\nabla g}{g}, u, v\right), \quad \forall v \in V_{g},
$$

belongs to $L^{2}\left(\tau, T ; H_{g}\right)$, and hence to $L^{2}\left(\tau, T ; V_{g}^{\prime}\right)$. Moreover,

$$
\|C u(t)\|_{*} \leq \frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\|u(t)\| \quad \text { for a.e. } t \in(\tau, T)
$$

Since

$$
-\frac{1}{g}(\nabla \cdot g \nabla) u=-\Delta u-\left(\frac{\nabla g}{g} \cdot \nabla\right) u
$$

we have

$$
\begin{aligned}
(-\Delta u, v)_{g} & =((u, v))_{g}+\left(\left(\frac{\nabla g}{g} \cdot \nabla\right) u, v\right)_{g} \\
& =(A u, v)_{g}+\left(\left(\frac{\nabla g}{g} \cdot \nabla\right) u, v\right)_{g}, \quad \forall u, v \in V_{g}
\end{aligned}
$$

2.2. Pullback attractors. Let (X, d) be a metric space. For $A, B \subset X$, we define the Hausdorff semi-distance between A and B by

$$
\operatorname{dist}(A, B)=\sup _{x \in A} \inf _{y \in B} d(x, y)
$$

A process on X is a two-parameter family of mappings $\{U(t, \tau)\}$ in X having the following properties:

$$
\begin{aligned}
U(t, r) U(r, \tau) & =U(t, \tau) \quad \text { for all } t \geq r \geq \tau \\
U(\tau, \tau) & =\mathrm{Id} \quad \text { for all } \tau \in \mathbb{R}
\end{aligned}
$$

The process $\{U(t, \tau)\}$ is said to be norm-to-weak continuous if $U(t, \tau) x_{n} \rightharpoonup$ $U(t, \tau) x$ as $x_{n} \rightarrow x$ in X, for all $t \geq \tau, \tau \in \mathbb{R}$.

Suppose that $\mathcal{B}(X)$ is the family of all non-empty bounded subsets of X, and \mathcal{D} is a non-empty class of parameterized sets $\hat{\mathcal{D}}=\{D(t): t \in \mathbb{R}\} \subset$ $\mathcal{B}(X)$.

Definition 2.4. The process $\{U(t, \tau)\}$ is said to be pullback \mathcal{D}-asymptotically compact if for any $t \in \mathbb{R}$, any $\hat{\mathcal{D}} \in \mathcal{D}$, any sequence $\tau_{n} \rightarrow-\infty$, and any sequence $x_{n} \in D\left(\tau_{n}\right)$, the sequence $\left\{U\left(t, \tau_{n}\right) x_{n}\right\}$ is relatively compact in X.

Definition 2.5. The family of bounded sets $\hat{\mathcal{B}}=\{B(t): t \in \mathbb{R}\} \in \mathcal{D}$ is called pullback \mathcal{D}-absorbing for the process $U(t, \tau)$ if for any $t \in \mathbb{R}$, any $\hat{\mathcal{D}} \in \mathcal{D}$, there exists $\tau_{0}=\tau_{0}(\hat{\mathcal{D}}, t) \leq t$ such that

$$
\bigcup_{\tau \leq \tau_{0}} U(t, \tau) D(\tau) \subset B(t) .
$$

Definition 2.6. A family $\hat{\mathcal{A}}=\{A(t): t \in \mathbb{R}\} \subset \mathcal{B}(X)$ is said to be a pullback \mathcal{D}-attractor for $\{U(t, \tau)\}$ if
(1) $A(t)$ is compact for all $t \in \mathbb{R}$;
(2) $\hat{\mathcal{A}}$ is invariant, i.e.,

$$
U(t, \tau) A(\tau)=A(t), \text { for all } t \geq \tau ;
$$

(3) $\hat{\mathcal{A}}$ is pullback \mathcal{D}-attracting, i.e.,

$$
\lim _{\tau \rightarrow-\infty} \operatorname{dist}(U(t, \tau) D(\tau), A(t))=0 \quad \text { for all } \hat{\mathcal{D}} \in \mathcal{D} \text { and all } t \in \mathbb{R} ;
$$

(4) If $\{C(t): t \in \mathbb{R}\}$ is another family of closed attracting sets then $A(t) \subset C(t)$ for all $t \in \mathbb{R}$.

Theorem 2.7 ([8]). Let $\{U(t, \tau)\}$ be a norm-to-weak continuous process such that $\{U(t, \tau)\}$ is pullback \mathcal{D}-asymptotically compact. If there exists a family of pullback \mathcal{D}-absorbing sets $\mathcal{B}=\{B(t): t \in \mathbb{R}\} \in \mathcal{D}$, then $\{U(t, \tau)\}$ has a unique pullback \mathcal{D}-attractor $\hat{\mathcal{A}}=\{A(t): t \in \mathbb{R}\}$ and

$$
A(t)=\bigcap_{s \leq t \tau \leq s} \overline{\bigcup U(t, \tau) B(\tau)} .
$$

We now recall some results on the estimates of the fractal dimension of pullback attractors in [7].

Let H be a separable real Hilbert space H. Given a compact set $K \subset H$, and $\varepsilon>0$, we denote by $N_{\varepsilon}(K)$ the minimum number of open balls in H with radii ε that are necessary to cover K.

Definition 2.8. For any non-empty compact set $K \subset H$, the fractal dimension of K is the number

$$
d_{\mathrm{F}}(K)=\underset{\varepsilon \downarrow 0}{\limsup } \frac{\log \left(N_{\varepsilon}(K)\right)}{\log (1 / \varepsilon)} .
$$

Consider a separable real Hilbert space $V \subset H$ such that the injection of V in H is continuous, and V is dense in H. We identify H with its topological dual H^{\prime}, and we consider V as a subspace of H^{\prime}, identifying $v \in V$ with the element $f_{v} \in H^{\prime}$, defined by

$$
f_{v}(h)=(v, h), \quad h \in H
$$

Let $F: V \times \mathbb{R} \rightarrow V^{\prime}$ be a given family of non-linear operators such that, for all $\tau \in \mathbb{R}$ and any $u_{0} \in H$, there exists a unique function $u(t)=u\left(t ; \tau, u_{0}\right)$ satisfying

$$
\left\{\begin{array}{l}
u \in L^{2}(\tau, T ; V) \cap C([\tau, T] ; H), \quad F(u(t), t) \in L^{1}\left(\tau, T ; V^{\prime}\right) \quad \text { for all } T>\tau \tag{2.4}\\
d u / d t=F(u(t), t), \quad t>\tau \\
u(\tau)=u_{0}
\end{array}\right.
$$

Let us define

$$
U(t, \tau) u_{0}=u\left(t ; \tau, u_{0}\right), \quad \tau \leq t, u_{0} \in H
$$

Fix $T^{*} \in \mathbb{R}$. We assume that there exists a family $\left\{A(t): t \leq T^{*}\right\}$ of non-empty compact subsets of H with the invariance property

$$
U(t, \tau) A(\tau)=A(t) \quad \text { for all } \tau \leq t \leq T^{*}
$$

and such that, for all $\tau \leq t \leq T^{*}$ and any $u_{0} \in A(\tau)$, there exists a continuous linear operator $L\left(t ; \tau, u_{0}\right) \in \mathcal{L}(H)$ such that

$$
\begin{equation*}
\left|U(t, \tau) \bar{u}_{0}-U(t, \tau) u_{0}-L\left(t ; \tau, u_{0}\right)\left(\bar{u}_{0}-u_{0}\right)\right| \leq \gamma\left(t-\tau,\left|\bar{u}_{0}-u_{0}\right|\right)\left|\bar{u}_{0}-u_{0}\right| \tag{2.5}
\end{equation*}
$$ for all $\bar{u}_{0} \in A(\tau)$, where $\gamma: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a function such that $\gamma(s, \cdot)$ is non-decreasing for all $s \geq 0$, and

$$
\begin{equation*}
\lim _{r \rightarrow 0} \gamma(s, r)=0 \quad \text { for any } s \geq 0 \tag{2.6}
\end{equation*}
$$

We assume that, for all $t \leq T^{*}$, the mapping $F(\cdot, t)$ is Gateaux differentiable in V, i.e., for any $u \in V$ there exists a continuous linear operator $F^{\prime}(u, t) \in \mathcal{L}\left(V ; V^{\prime}\right)$ such that

$$
\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}\left[F(u+\epsilon v, t)-F(u, t)-\epsilon F^{\prime}(u, t) v\right]=0 \in V^{\prime}
$$

Moreover, we suppose that the mapping

$$
F^{\prime}:(u, t) \in V \times\left(-\infty, T^{*}\right] \mapsto F^{\prime}(u, t) \in \mathcal{L}\left(V ; V^{\prime}\right)
$$

is continuous (thus, in particular, for each $t \leq T^{*}$, the mapping $F(\cdot, t)$ is continuously Fréchet differentiable in V).

Then, for all $\tau \leq T^{*}$ and $u_{0}, v_{0} \in H$, there exists a unique $v(t)=$ $v\left(t ; \tau, u_{0}, v_{0}\right)$ which is a solution of

$$
\left\{\begin{array}{l}
v \in L^{2}(\tau, T ; V) \cap C([\tau, T] ; H) \quad \text { for all } \tau<T \leq T^{*} \\
d v / d t=F^{\prime}\left(U(t, \tau) u_{0}, t\right) v, \quad \tau<t<T^{*} \\
v(\tau)=v_{0}
\end{array}\right.
$$

We make the assumption that

$$
\begin{equation*}
v\left(t ; \tau, u_{0}, v_{0}\right)=L\left(t ; \tau, u_{0}\right) v_{0} \quad \text { for all } \tau \leq t \leq T^{*}, u_{0}, v_{0} \in A(\tau) \tag{2.7}
\end{equation*}
$$

Let us write, for $j=1,2, \ldots$,

$$
\widetilde{q}_{j}=\lim _{T \rightarrow+\infty} \sup _{\tau \leq T^{*}} \sup _{u_{0} \in A(\tau-T)}\left(\frac{1}{T} \int_{\tau-T}^{\tau} \operatorname{Tr}_{j}\left(F^{\prime}\left(U(s, \tau-T) u_{0}, s\right)\right) d s\right)
$$

where

$$
\operatorname{Tr}_{j}\left(F^{\prime}\left(U(s, \tau) u_{0}, s\right)\right)=\sup _{v_{0}^{i} \in H,\left|v_{0}^{i}\right| \leq 1, i \leq j}\left(\sum_{i=1}^{j}\left\langle F^{\prime}\left(U(s, \tau) u_{0}, s\right) e_{i}, e_{i}\right\rangle\right),
$$

e_{1}, \ldots, e_{j} being an orthonormal basis of the subspace in H spanned by

$$
v\left(s ; \tau, u_{0}, v_{0}^{1}\right), \ldots, v\left(s ; \tau, u_{0}, v_{0}^{j}\right)
$$

TheOrem 2.9 ([7, Theorem 2.2]). Under the assumptions above, suppose that

$$
\bigcup_{\tau \leq T^{*}} A(\tau) \text { is relatively compact in } H
$$

and there exist $q_{j}, j=1,2, \ldots$, such that

$$
\begin{aligned}
\widetilde{q}_{j} & \leq q_{j} \quad \text { for any } j \geq 1, \\
q_{n_{0}} & \geq 0, \quad q_{n_{0}+1}<0 \quad \text { for some } n_{0} \geq 1 \\
q_{j} & \leq q_{n_{0}}+\left(q_{n_{0}}-q_{n_{0}+1}\right)\left(n_{0}-j\right) \quad \text { for all } j=1,2, \ldots
\end{aligned}
$$

Then

$$
d_{\mathrm{F}}(A(\tau)) \leq d_{0}:=n_{0}+\frac{q_{n_{0}}}{q_{n_{0}}-q_{n_{0}+1}} \quad \text { for all } \tau \leq T^{*}
$$

3. Existence of pullback attractors. We first prove a result on the existence and uniqueness of a weak solution to problem (1.1).

Definition 3.1. A function u is called a weak solution to problem 1.1) on the interval (τ, T) if

$$
\left\{\begin{array}{l}
u \in L^{\infty}\left(\tau, T ; H_{g}\right) \cap L^{2}\left(\tau, T ; V_{g}\right) \\
\frac{d}{d t} u(t)+\nu A u(t)+B(u(t), u(t))+\nu C u(t)=f(t) \text { in } V_{g}^{\prime} \quad \text { for a.e. } t \in(\tau, T), \\
u(\tau)=u_{0}
\end{array}\right.
$$

TheOrem 3.2. Suppose $u_{0} \in H_{g}$ is given and assumptions (H1)-(H3) hold. Then, for any $\tau \in \mathbb{R}, T>\tau$ given, problem (1.1) has a unique weak
solution u on (τ, T). Moreover,

$$
\begin{equation*}
|u(t)|^{2} \leq e^{-\sigma(t-\tau)}\left|u_{0}\right|^{2}+\frac{e^{-\sigma t}}{2 \epsilon \nu} \int_{-\infty}^{t} e^{\sigma s}\|f(s)\|_{*}^{2} d s, \tag{3.1}
\end{equation*}
$$

where ϵ is the positive number such that $\sigma=2 \nu \lambda_{1}\left(\gamma_{0}-\epsilon\right)$.
Proof. (i) Existence. The existence part is based on Galerkin appoximations, a priori estimates, and the compactness method [9]. As it is standard and similar to the case of the Navier-Stokes equations [13], we provide only some basic a priori estimates used frequently later. From (1.1), we have

$$
\begin{equation*}
\frac{d}{d t}|u(t)|^{2}+2 \nu\|u(t)\|^{2}=2\langle f(t), u(t)\rangle-2 \nu b\left(\frac{\nabla g}{g}, u(t), u(t)\right) . \tag{3.2}
\end{equation*}
$$

Using Lemma 2.3 and the Cauchy inequality, we get

$$
\frac{d}{d t}|u(t)|^{2}+2 \nu\|u(t)\|^{2} \leq 2 \epsilon \nu\|u(t)\|^{2}+\frac{1}{2 \epsilon \nu}\|f(t)\|_{*}^{2}+2 \nu \frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\|u(t)\|^{2},
$$

and hence

$$
\frac{d}{d t}|u(t)|^{2}+2 \nu\left(\gamma_{0}-\epsilon\right)\|u(t)\|^{2} \leq \frac{1}{2 \epsilon \nu}\|f(t)\|_{*}^{2},
$$

where $\gamma_{0}=1-|\nabla g|_{\infty} /\left(m_{0} \lambda_{1}^{1 / 2}\right)$, and $\epsilon>0$ is chosen such that $\gamma_{0}-\epsilon>0$. Integrating the last inequality on $[\tau, t], \tau \leq t \leq T$, we get

$$
\begin{align*}
|u(t)|^{2}+2 \nu\left(\gamma_{0}-\epsilon\right) \int_{\tau}^{t}\|u(s)\|^{2} d s & \leq|u(\tau)|^{2}+\frac{1}{2 \epsilon \nu} \int_{\tau}^{t}\|f(s)\|_{*}^{2} d s \tag{3.3}\\
& \leq\left|u_{0}\right|^{2}+\frac{1}{2 \epsilon \nu}\|f\|_{L^{2}\left(\tau, T ; V^{\prime}\right)}^{2} .
\end{align*}
$$

This inequality implies the estimates of u in the function space $L^{2}\left(\tau, T ; V_{g}\right) \cap$ $L^{\infty}\left(\tau, T ; H_{g}\right)$. By rewriting the equation as

$$
\begin{equation*}
\frac{d u(t)}{d t}=-\nu A u(t)-B(u(t))-\nu C u(t)+f(t), \tag{3.4}
\end{equation*}
$$

we get the estimate of $d u / d t$ in $L^{2}\left(\tau, T ; V_{g}^{\prime}\right)$.
(ii) Uniqueness and continuous dependence. Assume that $u=u\left(t ; \tau, u_{0}\right)$ and $v=v\left(t ; \tau, v_{0}\right)$ are two weak solutions of (1.1) with initial data u_{0}, v_{0}. Set $w=u-v$. Then

$$
w \in L^{2}\left(\tau, T ; V_{g}\right) \cap L^{\infty}\left(\tau, T ; H_{g}\right),
$$

and w satisfies

$$
\begin{aligned}
\frac{d}{d t} w+\nu A w+\nu C w & =B v-B u \\
w(\tau) & =u_{0}-v_{0} .
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
& \frac{d}{d t}|w(t)|^{2}+2 \nu\|w(t)\|^{2}+2 \nu b\left(\frac{\nabla g}{g}, w(t), w(t)\right) \\
& \quad=2 b(v(t), v(t), w(t))-2 b(u(t), u(t), w(t))=-2 b(w(t), v(t), w(t))
\end{aligned}
$$

By Lemma 2.1, we have

$$
|2 b(w(t), v(t), w(t))| \leq 2 c|w(t)|\|w(t)\|\|v(t)\| \leq \nu\|w(t)\|^{2}+\frac{c^{2}}{\nu}|w(t)|^{2}\|v(t)\|^{2}
$$

and

$$
\left|2 \nu b\left(\frac{\nabla g}{g}, w(t), w(t)\right)\right| \leq 2 \frac{|\nabla g|_{\infty}}{m_{0}}\|w(t)\||w(t)| \leq \nu\|w(t)\|^{2}+\frac{\nu|\nabla g|_{\infty}^{2}}{m_{0}^{2}}|w(t)|^{2}
$$

Therefore,

$$
\frac{d}{d t}|w(t)|^{2} \leq\left(\frac{c^{2}}{\nu}\|v(t)\|^{2}+\frac{\nu|\nabla g|_{\infty}^{2}}{m_{0}^{2}}\right)|w(t)|^{2}
$$

Thus,

$$
|w(t)|^{2} \leq|w(\tau)|^{2} \exp \left(\int_{\tau}^{t}\left(\frac{c^{2}}{\nu}\|v(s)\|^{2}+\frac{\nu|\nabla g|_{\infty}^{2}}{m_{0}^{2}}\right) d s\right)
$$

The last estimate implies the uniqueness (if $u_{0}=v_{0}$) and the continuous dependence of solutions on the initial data.
(iii) The a priori estimate (3.1). Choose $\epsilon>0$ in inequality (3.3) such that $\sigma=2 \nu \lambda_{1}\left(\gamma_{0}-\epsilon\right)$, where $\gamma_{0}=1-|\nabla g|_{\infty} /\left(m_{0} \lambda_{1}^{1 / 2}\right)>0$. Applying the Gronwall lemma in (3.3), we get (3.1). Hence it follows that the solution u can be extended to $[\tau,+\infty)$.

Thanks to Theorem 3.2, we can define a process $U(t, \tau)$ in H_{g} by

$$
U(t, \tau) u_{0}=u\left(t ; \tau, u_{0}\right), \quad \tau \leq t, u_{0} \in H_{g}
$$

where $u(t)=u\left(t ; \tau, u_{0}\right)$ is the unique weak solution of problem 1.1 with the initial datum $u(\tau)=u_{0}$.

We first prove the weak continuity of the process.
Lemma 3.3. Let $\left\{u_{0 n}\right\}$ be a sequence in H_{g} converging weakly in H_{g} to an element $u_{0} \in H_{g}$. Then

$$
\begin{array}{ll}
U(t, \tau) u_{0 n} \rightharpoonup U(t, \tau) u_{0} & \text { weakly in } H_{g}, \text { for all } \tau \leq t \\
U(t, \tau) u_{0 n} \rightharpoonup U(t, \tau) u_{0} & \text { weakly in } L^{2}\left(\tau, T ; V_{g}\right), \text { for all } \tau<T \tag{3.6}
\end{array}
$$

Proof. Let $u_{n}(t)=U(t, \tau) u_{0 n}$ and $u(t)=U(t, \tau) u_{0}$. As in the proof of Theorem 3.1, for all $T>\tau$,

$$
\begin{equation*}
\left\{u_{n}\right\} \text { is bounded in } L^{\infty}\left(\tau, T ; H_{g}\right) \cap L^{2}\left(\tau, T ; V_{g}\right) \tag{3.7}
\end{equation*}
$$

and

$$
\left\{u_{n}^{\prime}\right\} \text { is bounded in } L^{2}\left(\tau, T ; V_{g}^{\prime}\right)
$$

Then, for all $v \in V_{g}$, and $\tau \leq t \leq t+a \leq T$ with $T>\tau$,

$$
\begin{align*}
\left(u_{n}(t+a)-u_{n}(t), v\right)_{g} & =\int_{t}^{t+a}\left\langle u_{n}^{\prime}(s), v\right\rangle d s \tag{3.8}\\
& \leq\|v\| a^{1 / 2}\left\|u_{n}^{\prime}\right\|_{L^{2}\left(\tau, T ; V_{g}^{\prime}\right)} \leq C_{T}\|v\| a^{1 / 2}
\end{align*}
$$

where C_{T} is positive and independent of n. Then, for $v=u_{n}(t+a)-u_{n}(t)$, which belongs to V_{g} for almost every t, from (3.8) we have

$$
\left|u_{n}(t+a)-u_{n}(t)\right|^{2} \leq C_{T} a^{1 / 2}\left\|u_{n}(t+a)-u_{n}(t)\right\|
$$

Hence

$$
\begin{equation*}
\int_{\tau}^{T-a}\left|u_{n}(t+a)-u_{n}(t)\right|^{2} d s \leq C_{T} a^{1 / 2} \int_{\tau}^{T-a}\left\|u_{n}(t+a)-u_{n}(t)\right\| d t \tag{3.9}
\end{equation*}
$$

Using the Cauchy inequality and (3.7), we deduce from (3.9) that

$$
\int_{\tau}^{T-a}\left|u_{n}(t+a)-u_{n}(t)\right|^{2} d t \leq \widetilde{C}_{T} a^{1 / 2}
$$

for another positive constant \widetilde{C}_{T} independent of n. Therefore

$$
\begin{equation*}
\lim _{a \rightarrow 0} \sup _{n} \int_{\tau}^{T-a}\left\|u_{n}(t+a)-u_{n}(t)\right\|_{L^{2}\left(\Omega_{r}, g\right)}^{2} d t=0 \tag{3.10}
\end{equation*}
$$

for all $r>0$, where $\Omega_{r}=\{x \in \Omega:|x|<r\}$. Moreover, from (3.7),

$$
\left\{\left.u_{n}\right|_{\Omega_{r}}\right\} \text { is bounded in } L^{\infty}\left(\tau, T ; L^{2}\left(\Omega_{r}, g\right)\right) \cap L^{2}\left(\tau, T ; H^{1}\left(\Omega_{r}, g\right)\right)
$$

for all $r>0$. Consider now a truncation function $\rho \in C^{1}\left(\mathbb{R}^{+}\right)$with $\rho(s)$ $=1$ in $[0,1]$, and $\rho(s)=0$ in $[2,+\infty)$. For each $r>0$, define $v_{n, r}(x)=$ $\rho\left(|x|^{2} / r^{2}\right) u_{n}(x)$ for $x \in \Omega_{2 r}$. Then, from 3.10, we have

$$
\lim _{a \rightarrow 0} \sup _{n} \int_{\tau}^{T-a}\left\|u_{n}(t+a)-u_{n}(t)\right\|_{L^{2}\left(\Omega_{2 r}, g\right)}^{2} d t=0, \quad \forall T>\tau, \forall r>0
$$

and $\left\{v_{n, r}\right\}$ is bounded in $L^{\infty}\left(\tau, T ; L^{2}\left(\Omega_{2 r}, g\right)\right) \cap L^{2}\left(\tau, T ; H_{0}^{1}\left(\Omega_{2 r}, g\right)\right)$ for all $T>\tau, r>0$. Thus, by the Aubin-Lions lemma [9],
$\left\{v_{n, r}\right\}$ is relatively compact in $L^{2}\left(\tau, T ; L^{2}\left(\Omega_{2 r}, g\right), \quad \forall T>\tau, r>0\right.$.
It follows that
$\left\{\left.u_{n}\right|_{\Omega_{r}}\right\}$ is relatively compact in $L^{2}\left(\tau, T ; L^{2}\left(\Omega_{2 r}, g\right), \quad \forall T>\tau, r>0\right.$.

Then, by a diagonal process, we can extract a subsequence $\left\{u_{n^{\prime}}\right\}$ such that

$$
\begin{array}{ll}
u_{n^{\prime}} \rightarrow \widetilde{u} & \text { weakly* in } L_{\mathrm{loc}}^{\infty}\left(\mathbb{R} ; H_{g}\right) \\
u_{n^{\prime}} \rightarrow \widetilde{u} & \text { weakly in } L_{\mathrm{loc}}^{2}\left(\mathbb{R} ; V_{g}\right) \tag{3.11}\\
u_{n^{\prime}} \rightarrow \widetilde{u} & \text { strongly in } L_{\mathrm{loc}}^{2}\left(\mathbb{R} ; L^{2}\left(\Omega_{r}, g\right)\right), r>0
\end{array}
$$

for some $\widetilde{u} \in L_{\text {loc }}^{\infty}\left(\mathbb{R} ; H_{g}\right) \cap L_{\text {loc }}^{2}\left(\mathbb{R} ; V_{g}\right)$.
The convergences (3.11) allows us to pass to the limit in the equation for $u_{n^{\prime}}$ to find that \widetilde{u} is a weak solution of 1.1 with $\widetilde{u}(\tau)=u_{0}$. By the uniqueness of the solutions we must have $\widetilde{u}=u$. Then by a contradiction argument we deduce that the whole sequence $\left\{u_{n}\right\}$ converges to u in the sense of (3.11). This proves (3.6).

Now, from the strong convergence in (3.11) we also infer that $u_{n}(t)$ converges strongly in $L^{2}\left(\Omega_{r}, g\right)$ to $u(t)$ for a.e. $t \geq \tau$ and all $r>0$. Hence for all $v \in \mathcal{V}$,

$$
\left(u_{n}(t), v\right)_{g} \rightarrow(u(t), v)_{g} \quad \text { for a.e. } t \in \mathbb{R}
$$

Moveover, from (3.9) and 3.10), we see that $\left\{\left(u_{n}(t), v\right)\right\}$ is equibounded and equicontinuous on $[\tau, T]$ for all $T>0$. Therefore

$$
\left(u_{n}(t), v\right)_{g} \rightarrow(u(t), v)_{g}, \quad \forall t \in \mathbb{R}, \forall v \in \mathcal{V}
$$

Finally, 3.5 follows from the fact that \mathcal{V} is dense in H_{g}.
Let \mathcal{R}_{σ} be the set of all functions $r: \mathbb{R} \rightarrow(0,+\infty)$ such that

$$
\begin{equation*}
\lim _{t \rightarrow-\infty} e^{\sigma t} r^{2}(t)=0 \tag{3.12}
\end{equation*}
$$

and denote by \mathcal{D}_{σ} the class of all families $\hat{\mathcal{D}}=\{D(t): t \in \mathbb{R}\} \subset \mathcal{B}\left(H_{g}\right)$ such that $D(t) \subset B(0, \hat{r}(t))$ for some $\hat{r}(t) \in \mathcal{R}_{\sigma}$, where $B(0, r)$ denotes the close ball in H_{g}, centered at zero with radius r.

Now, we can prove one of the main results of the paper.
Theorem 3.4. Suppose that conditions (H1)-(H3) hold. Then there exists a unique pullback \mathcal{D}_{σ}-attractor $\hat{\mathcal{A}}=\{A(t): t \in \mathbb{R}\}$ for the process $\{U(t, \tau)\}$ associated to problem (1.1).

Proof. Let $\tau \in \mathbb{R}$ and $u_{0} \in H_{g}$ be fixed, and denote

$$
u(t)=u\left(t ; \tau, u_{0}\right)=U(t, \tau) u_{0} \quad \text { for all } t \geq \tau
$$

In order to apply Theorem 2.7, we will check the conditions in the abstract theorem.
(i) The process $U(t, \tau)$ has a family \hat{B} of pullback \mathcal{D}_{σ}-absorbing sets. Let $\hat{\mathcal{D}} \in \mathcal{D}_{\sigma}$ be given. From (3.1), we get

$$
\begin{equation*}
\left|U(t, \tau) u_{0}\right|^{2} \leq e^{-\sigma(t-\tau)} \hat{r}(\tau)+\frac{e^{-\sigma t}}{2 \epsilon \nu} \int_{-\infty}^{t} e^{\sigma s}\|f(s)\|_{*}^{2} d s \tag{3.13}
\end{equation*}
$$

for all $u_{0} \in D(\tau)$ and all $t \geq \tau$.

Define $R_{\sigma}(t) \in \mathcal{R}_{\sigma}$ by

$$
\begin{equation*}
R_{\sigma}^{2}(t)=\frac{e^{-\sigma t}}{\epsilon \nu} \int_{-\infty}^{t} e^{\sigma s}\|f(s)\|_{*}^{2} d s \tag{3.14}
\end{equation*}
$$

and consider the family $\hat{\mathcal{B}}_{\sigma}$ of closed balls in H_{g} defined by $B_{\sigma}(t)=B\left(0, R_{\sigma}(t)\right)$. It is straightforward to check that $\hat{\mathcal{B}}_{\sigma} \in \mathcal{D}_{\sigma}$, and moreover, by (3.12) and (3.13), the family $\hat{\mathcal{B}}_{\sigma}$ is pullback \mathcal{D}_{σ}-absorbing for the process $U(t, \tau)$.
(ii) $U(t, \tau)$ is pullback \mathcal{D}_{σ}-asymptotically compact. Fix $\hat{\mathcal{D}} \in \mathcal{D}_{\sigma}$, a sequence $\tau_{n} \rightarrow-\infty$, a sequence $u_{0 n} \in D\left(\tau_{n}\right)$ and $t \in \mathbb{R}$. We must prove that from the sequence $\left\{U\left(t, \tau_{n}\right) u_{0 n}\right\}$ we can extract a subsequence that converges in H_{g}.

As the family $\hat{\mathcal{B}}_{\sigma}$ is pullback \mathcal{D}_{σ}-absorbing, for each integer $k \geq 0$, there exists a $\tau_{\hat{D}}(k) \leq t-k$ such that

$$
\begin{equation*}
U(t-k, \tau) D(\tau) \subset B_{\sigma}(t-k) \quad \text { for all } \tau \leq \tau_{\hat{D}}(k) \tag{3.15}
\end{equation*}
$$

so that for $\tau_{n} \leq \tau_{\hat{D}}(k)$,

$$
U\left(t-k, \tau_{n}\right) u_{0 n} \subset B_{\sigma}(t-k) .
$$

Thus, $\left\{U\left(t-k, \tau_{n}\right) u_{0 n}\right\}$ is weakly precompact in H_{g} and since $B_{\sigma}(t-k)$ is closed and convex, there exist a subsequence $\left\{\left(\tau_{n^{\prime}}, u_{0 n^{\prime}}\right)\right\} \subset\left\{\left(\tau_{n}, u_{0 n}\right)\right\}$ and a sequence $\left\{w_{k}: k \geq 0\right\} \subset H_{g}$ such that for all $k \geq 0, w_{k} \in B_{\sigma}(t-k)$, and

$$
\begin{equation*}
U\left(t-k, \tau_{n^{\prime}}\right) u_{0 n^{\prime}} \rightharpoonup w_{k} \quad \text { weakly in } H_{g} . \tag{3.16}
\end{equation*}
$$

Note that from the weak continuity of $U(t, \tau)$ established in Lemma 3.3, we have

$$
\begin{aligned}
w_{0} & =\underset{n^{\prime} \rightarrow \infty}{w-\lim } U\left(t, \tau_{n^{\prime}}\right) u_{0 n^{\prime}}=\underset{n^{\prime} \rightarrow \infty}{w-\lim } U(t, t-k) U\left(t-k, \tau_{n^{\prime}}\right) u_{0 n^{\prime}} \\
& =U(t, t-k) \underset{n^{\prime} \rightarrow \infty}{w-\lim _{\infty}} U\left(t-k, \tau_{n^{\prime}}\right) u_{0 n^{\prime}}=U(t, t-k) w_{k},
\end{aligned}
$$

where w-lim denotes the limit taken in the weak topology of H_{g}. Thus

$$
\begin{equation*}
U(t, t-k) w_{k}=w_{0} \quad \text { for all } k \geq 0 \tag{3.17}
\end{equation*}
$$

Now, from 3.16, by the lower semicontinuity of the norm, we have

$$
\left|w_{0}\right| \leq \liminf _{n^{\prime} \rightarrow \infty}\left|U\left(t, \tau_{n^{\prime}}\right) u_{0 n^{\prime}}\right| .
$$

If we now prove that also

$$
\begin{equation*}
\limsup _{n^{\prime} \rightarrow \infty}\left|U\left(t, \tau_{n^{\prime}}\right) u_{0 n^{\prime}}\right| \leq\left|w_{0}\right|, \tag{3.18}
\end{equation*}
$$

then we will have

$$
\lim _{n^{\prime} \rightarrow \infty}\left|U\left(t, \tau_{n^{\prime}}\right) u_{0 n^{\prime}}\right|=\left|w_{0}\right|,
$$

and this, together with the weak convergence, will imply the strong convergence in H_{g} of $U\left(t, \tau_{n^{\prime}}\right) u_{0 n^{\prime}}$ to w_{0}.

In order to prove (3.18), define $[\cdot, \cdot]_{g}: V_{g} \times V_{g} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
[u, v]_{g}=\nu((u, v))_{g}+\frac{\nu}{2}\left(\left(\frac{\nabla g}{g} \cdot \nabla\right) u, v\right)+\frac{\nu}{2}\left(\left(\frac{\nabla g}{g} \cdot \nabla\right) v, u\right)-\frac{\sigma}{2}(u, v)_{g} \tag{3.19}
\end{equation*}
$$

for all $u, v \in V_{g}$. Clearly, $[\cdot, \cdot]_{g}$ is bilinear and symmetric. Moreover, from the fact that $\|u\|^{2} \geq \lambda_{1}|u|^{2}$, we have

$$
\begin{aligned}
{[u]^{2} \equiv[u, u]_{g} } & =\nu\|u\|^{2}+\nu\left(\left(\frac{\nabla g}{g} \cdot \nabla\right) u, u\right)-\frac{\sigma}{2}|u|^{2} \\
& \geq \nu\|u\|^{2}-\nu\left(\frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}+\frac{\gamma_{0}}{2}\right)\|u\|^{2}=\epsilon \nu\|u\|^{2},
\end{aligned}
$$

where we have used Lemma 2.3 and the facts that $\sigma=2 \nu \lambda_{1}\left(\gamma_{0}-\epsilon\right)$ and $\gamma_{0}=1-|\nabla g|_{\infty} /\left(m_{0} \lambda_{1}^{1 / 2}\right)$. Hence

$$
\begin{equation*}
\frac{\epsilon}{\nu}\|u\|^{2} \leq[u]^{2} \leq \nu\|u\|^{2}, \quad \forall u \in V_{g} . \tag{3.20}
\end{equation*}
$$

Thus, $[\cdot, \cdot]_{g}$ defines an inner product in V_{g} with the norm $[\cdot]=[\cdot, \cdot]_{g}^{1 / 2}$, which is equivalent to the norm $\|\cdot\|$ in V_{g}.

Now, from (3.2), we get

$$
\frac{d}{d t}|u(t)|^{2}+\sigma|u(t)|^{2}+2[u(t)]^{2} \leq 2\langle f(t), u(t)\rangle .
$$

Hence

$$
|u(t)|^{2} \leq\left|u_{0}\right|^{2} e^{-\sigma(t-\tau)}+2 \int_{\tau}^{t}\left(\langle f(s), u(s)\rangle-[u(s)]^{2}\right) d s
$$

which can be rewritten as

$$
\begin{align*}
\left|U(t, \tau) u_{0}\right|^{2} \leq & \left|u_{0}\right|^{2} e^{\sigma(\tau-t)} \tag{3.21}\\
& +2 \int_{\tau}^{t} e^{\sigma(s-t)}\left(\left\langle f(s), U(s, \tau) u_{0}\right\rangle-\left[U(s, \tau) u_{0}\right]^{2}\right) d s
\end{align*}
$$

for all $\tau \leq t$, and all $u_{0} \in H_{g}$. Thus, for all $k \geq 0$ and all $\tau_{n^{\prime}} \leq t-k$,

$$
\begin{align*}
\left|U\left(t, \tau_{n^{\prime}}\right) u_{0 n^{\prime}}\right|^{2}= & \left|U(t, t-k) U\left(t-k, \tau_{n^{\prime}}\right) u_{0 n^{\prime}}\right|^{2} \tag{3.22}\\
\leq & e^{-\sigma k}\left|U\left(t-k, \tau_{n^{\prime}}\right) u_{0 n^{\prime}}\right|^{2} \\
& +2 \int_{t-k}^{t} e^{\sigma(s-t)}\left\langle f(s), U(s, t-k) U\left(t-k, \tau_{n^{\prime}}\right) u_{0 n^{\prime}}\right\rangle d s \\
& -2 \int_{t-k}^{t} e^{\sigma(s-t)}\left[U(s, t-k) U\left(t-k, \tau_{n^{\prime}}\right) u_{0 n^{\prime}}\right]^{2} d s
\end{align*}
$$

By (3.15), $U\left(t-k, \tau_{n^{\prime}}\right) u_{0 n^{\prime}} \in B_{\sigma}(t-k)$ for all $\tau_{n^{\prime}} \leq \tau_{\hat{D}}(k), k \geq 0$, we have

$$
\begin{equation*}
\limsup _{n^{\prime} \rightarrow \infty} e^{-\sigma k}\left|U\left(t-k, \tau_{n^{\prime}}\right) u_{0 n^{\prime}}\right|^{2} \leq e^{-\sigma k} R_{\sigma}^{2}(t-k), \quad k \geq 0 . \tag{3.23}
\end{equation*}
$$

As $U\left(t-k, \tau_{n^{\prime}}\right) u_{0 n^{\prime}} \rightharpoonup w_{k}$ weakly in H_{g}, from Lemma 3.3 we have (3.24) $U(\cdot, t-k) U\left(t-k, \tau_{n^{\prime}}\right) u_{0 n^{\prime}} \rightharpoonup U(\cdot, t-k) w_{k}$ weakly in $L^{2}\left(t-k, t ; V_{g}\right)$.

Taking into account that, in particular, $e^{\sigma(s-t)} f(s) \in L^{2}\left(t-k, t ; V_{g}^{\prime}\right)$, from (3.24) we obtain

$$
\begin{align*}
\lim _{n^{\prime} \rightarrow \infty} \int_{t-k}^{t} e^{\sigma(s-t)}\langle f(s), U(s, & \left.t-k) U\left(t-k, \tau_{n^{\prime}}\right) u_{0 n^{\prime}}\right\rangle d s \tag{3.25}\\
& =\int_{t-k}^{t} e^{\sigma(s-t)}\left\langle f(s), U(s, t-k) w_{k}\right\rangle d s
\end{align*}
$$

Moreover, since [•] is a norm in V_{g} equivalent to $\|\cdot\|$ and

$$
0<e^{-\sigma k} \leq e^{\sigma(s-t)} \leq 1 \quad \text { for all } s \in[t-k, t]
$$

we see that

$$
\left(\int_{t-k}^{t} e^{-\sigma(t-s)}[\cdot]^{2} d s\right)^{1 / 2}
$$

is a norm in $L^{2}\left(t-k, t ; V_{g}\right)$ equivalent to the usual norm. Hence from 3.24) we deduce that

$$
\int_{t-k}^{t} e^{\sigma(s-t)}\left[U(s, t-k) w_{k}\right]^{2} d s \leq \liminf _{n^{\prime} \rightarrow \infty} \int_{t-k}^{t} e^{\sigma(s-t)}\left[U(s, t-k) U\left(t-k, \tau_{n^{\prime}}\right) u_{0 n^{\prime}}\right]^{2} d s
$$

Hence

$$
\begin{align*}
\limsup _{n^{\prime} \rightarrow \infty} & -2 \int_{t-k}^{t} e^{\sigma(s-t)}\left[U(s, t-k) U\left(t-k, \tau_{n^{\prime}}\right) u_{0 n^{\prime}}\right]^{2} d s \tag{3.26}\\
& =-\liminf _{n^{\prime} \rightarrow \infty} 2 \int_{t-k}^{t} e^{\sigma(s-t)}\left[U(s, t-k) U\left(t-k, \tau_{n^{\prime}}\right) u_{0 n^{\prime}}\right]^{2} d s \\
& \leq-2 \int_{t-k}^{t} e^{\sigma(s-t)}\left[U(s, t-k) w_{k}\right]^{2} d s
\end{align*}
$$

We can now pass to the limsup as n^{\prime} goes to ∞ in (3.22), and take (3.23), 3.25 and 3.26 into account to obtain

$$
\begin{align*}
& \limsup _{n^{\prime} \rightarrow \infty}\left|U\left(t, \tau_{n^{\prime}}\right) u_{0 n^{\prime}}\right|^{2} \leq e^{-\sigma k} R_{\sigma}^{2}(t-k) \tag{3.27}\\
& \quad+2 \int_{t-k}^{t} e^{\sigma(s-t)}\left(\left\langle f(s), U(s, t-k) w_{k}\right\rangle-\left[U(s, t-k) w_{k}\right]^{2}\right) d s
\end{align*}
$$

On the other hand, from (3.21) applied to (3.17) we find that

$$
\begin{align*}
\left|w_{0}\right|= & \left|U(t, t-k) w_{k}\right|^{2}=\left|w_{k}\right|^{2} e^{-\sigma k} \tag{3.28}\\
& +2 \int_{t-k}^{t} e^{\sigma(s-t)}\left(\left\langle f(s), U(s, t-k) w_{k}\right\rangle-\left[U(s, t-k) w_{k}\right]^{2}\right) d s
\end{align*}
$$

From (3.27) and (3.28), we have

$$
\begin{aligned}
\limsup _{n^{\prime} \rightarrow \infty}\left|U\left(t, \tau_{n^{\prime}}\right) u_{0 n^{\prime}}\right|^{2} & \leq e^{-\sigma k} R_{\sigma}^{2}(t-k)+\left|w_{0}\right|^{2}-\left|w_{k}\right|^{2} e^{-\sigma k} \\
& \leq e^{-\sigma k} R_{\sigma}^{2}(t-k)+\left|w_{0}\right|^{2}
\end{aligned}
$$

and thus, taking into account that

$$
e^{-\sigma k} R_{\sigma}^{2}(t-k)=\frac{e^{-\sigma t}}{\epsilon \nu} \int_{-\infty}^{t-k} e^{\sigma s}\|f(s)\|_{*}^{2} d s \rightarrow 0 \quad \text { as } k \rightarrow+\infty
$$

we easily obtain (3.18) from the last inequality.
REmARK 3.5. When $g \equiv$ const >0, we formally get the results for the 2D non-autonomous Navier-Stokes equations. Notice that the result of Theorem 3.4 improves the existing one for the Navier-Stokes equations in the sense that the external force $f \in L_{\mathrm{loc}}^{2}\left(\mathbb{R} ; V_{g}^{\prime}\right)$ only need satisfy

$$
\int_{-\infty}^{0} e^{\sigma s}\|f(s)\|_{*}^{2} d s<+\infty, \quad \text { where } \sigma<2 \nu \lambda_{1}
$$

compared with the condition $\sigma=\nu \lambda_{1}$ for the Navier-Stokes equations [2] (this condition is recovered if we take $g \equiv 1$ and $\epsilon=1 / 2$).
4. Fractal dimension estimates of the pullback attractor. Observe that problem (1.1) can be written in the form 2.4 by taking

$$
F(u, t)=-\nu A u(t)-B u(t)-\nu C u(t)+f(t) .
$$

Then it follows immediately that for all $t \in \mathbb{R}$, the mapping $F(\cdot, t)$ is Gateaux differentiable in V_{g} with

$$
F^{\prime}(u, t) v=-\nu A v-B(u, v)-B(v, u)-\nu C v, \quad u, v \in V_{g}
$$

and the mapping $F^{\prime}:(u, t) \in V_{g} \times \mathbb{R} \mapsto F^{\prime}(u, t) \in \mathcal{L}\left(V_{g} ; V_{g}^{\prime}\right)$ is continuous.
Evidently, for any $\tau \in \mathbb{R}, u_{0}, v_{0} \in H_{g}$, there exists a unique solution $v(t)=v\left(t ; \tau, u_{0}, v_{0}\right)$ of the problem

$$
\left\{\begin{array}{l}
v \in L^{2}\left(\tau, T ; V_{g}\right) \cap C\left([\tau, T] ; H_{g}\right) \tag{4.1}\\
\frac{d v}{d t}=-\nu A v(t)-B\left(U(t, \tau) u_{0}, v(t)\right)-B\left(v(t), U(t, \tau) u_{0}\right)-\nu C v(t), \tau<t \\
v(\tau)=v_{0}
\end{array}\right.
$$

From now on we suppose that

$$
\begin{equation*}
f \in L^{\infty}\left(-\infty, T^{*} ; V_{g}^{\prime}\right) \quad \text { for some } T^{*} \in \mathbb{R} \tag{4.2}
\end{equation*}
$$

Lemma 4.1. Suppose that conditions (H1)-(H3) and (4.2) hold. Then the pullback \mathcal{D}_{σ}-attractor $\hat{\mathcal{A}}$ obtained in Theorem 3.4 satisfies

$$
\begin{equation*}
\bigcup_{\tau \leq T *} A(\tau) \text { is relatively compact in } H_{g} \text {. } \tag{4.3}
\end{equation*}
$$

Proof. Denoting $M=\|f\|_{L^{\infty}\left(-\infty, T^{*} ; V_{g}^{\prime}\right)}$, from (3.14) we have

$$
R_{\sigma}^{2}(t) \leq \frac{M e^{-\sigma t}}{\epsilon \nu} \int_{-\infty}^{t} e^{\sigma \xi} d \xi=\frac{M}{\epsilon \nu \sigma}
$$

and consequently

$$
B^{*}:=\bigcup_{\tau \leq T^{*}} B_{\sigma}(\tau) \text { is bounded in } H_{g}
$$

where $B_{\sigma}(\tau)=B\left(0, R_{\sigma}(\tau)\right)$.
Denote by \mathcal{M} the set of all $y \in H_{g}$ such that there exist a sequence $\left\{\left(t_{n}, \tau_{n}\right)\right\} \subset \mathbb{R}^{2}$ satisfying

$$
\tau_{n} \leq t_{n} \leq T^{*}, \quad n \geq 1, \quad \lim _{n \rightarrow \infty}\left(t_{n}-\tau_{n}\right)=+\infty,
$$

and a sequence $\left\{u_{0 n}\right\} \subset B^{*}$ such that $\lim _{n \rightarrow \infty}\left|U\left(t, \tau_{n}\right) u_{0 n}-y\right|=0$.
It is easy to see that $A(t) \subset \mathcal{M}$ for all $t \leq T^{*}$. If we prove that \mathcal{M} is relatively compact in H_{g}, then (4.3) follows immediately.

Let $\left\{y_{k}\right\} \subset \mathcal{M}$. For each $k \geq 1$, we can take $\left(t_{k}, \tau_{k}\right) \in \mathbb{R}^{2}$ and an element $u_{0 k} \in B^{*}$ such that $t_{k} \leq T^{*}, t_{k}-\tau_{k} \geq k$ and $\left|U\left(t_{k}, \tau_{k}\right) u_{0 k}-y_{k}\right| \leq 1 / k$. Using (4.2), by arguments as in Proposition 3.4 in [7], we can extract from $\left\{y_{k}\right\}$ a subsequence that converges in H_{g}.

Lemma 4.2. Suppose that conditions (H1)-(H3) and 4.2) hold. Then the process $U(t, \tau)$ associated to problem (1.1) has the quasidifferentiability properties (2.5) -2.7), with $v(t)=v\left(t ; \tau, u_{0}, v_{0}\right)$ defined by (4.1).

Proof. By 4.2 and Lemma 4.1, there exists a constant $C>1$ such that

$$
\begin{equation*}
\|f\|_{L^{\infty}\left(-\infty, T^{*} ; V_{g}^{\prime}\right)}^{2} \leq C \nu^{3}, \quad\left|u_{0}\right|^{2} \leq C \nu^{2} \quad \text { for all } u_{0} \in \bigcup_{\tau \leq T^{*}} A(\tau) . \tag{4.4}
\end{equation*}
$$

Fix $\tau \leq T^{*}, u_{0}, \bar{u}_{0} \in A(\tau)$, denote $u(t)=U(t, \tau) u_{0}, \bar{u}(t)=U(t, \tau) \bar{u}_{0}$ and let $v(t)$ be the solution of 4.1) with $v_{0}=\bar{u}_{0}-u_{0}$.

It is easy to see that

$$
\begin{equation*}
|u(t)|^{2}+2 \nu\left(\gamma_{0}-\epsilon\right) \int_{\tau}^{t}\|u(s)\|^{2} d s \leq\left|u_{0}\right|^{2}+\frac{1}{2 \epsilon \nu} \int_{\tau}^{t}\|f(s)\|_{*}^{2} d s \tag{4.5}
\end{equation*}
$$

where $\gamma_{0}=1-|\nabla g|_{\infty} /\left(m_{0} \lambda_{1}^{1 / 2}\right)$, and $\epsilon>0$ is chosen such that $\gamma_{0}-\epsilon>0$.

Taking into account (4.4), we easily deduce from (4.5) that

$$
\begin{equation*}
\int_{\tau}^{t}\|u(s)\|^{2} d s \leq \frac{C \nu}{2\left(\gamma_{0}-\epsilon\right)}(1+t-\tau) \quad \text { for all } \tau \leq t \leq T^{*} \tag{4.6}
\end{equation*}
$$

Denoting

$$
w(t)=\bar{u}(t)-u(t), \quad \tau \leq t
$$

we have

$$
\begin{aligned}
\frac{d}{d t}|w(t)|^{2}+2 \nu\|w(t)\|^{2}+ & 2
\end{aligned} \begin{aligned}
& g \\
& g \\
&=-2 b(\bar{u}(t), \bar{u}(t), w(t))+2 b(u(t), u(t), w(t)) \\
&=2 b(w(t), u(t), w(t))
\end{aligned}
$$

Since

$$
\begin{aligned}
|2 b(w(t), u(t), w(t))| & \leq 2 c|w(t)|\|w(t)\|\|u(t)\| \\
& \leq \frac{\nu}{2}\|w(t)\|^{2}+\frac{2 c^{2}}{\nu}|w(t)|^{2}\|u(t)\|^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\left|2\left(\frac{\nu}{g}(\nabla g \cdot \nabla) w(t), w(t)\right)\right| & \leq 2 \nu \frac{|\nabla g|_{\infty}}{m_{0}}\|w(t)\||w(t)| \\
& \leq \frac{\nu}{2}\|w(t)\|^{2}+\frac{2 \nu|\nabla g|_{\infty}^{2}}{m_{0}^{2}}|w(t)|^{2}
\end{aligned}
$$

we have

$$
\begin{equation*}
\frac{d}{d t}|w(t)|^{2}+\nu\|w(t)\|^{2} \leq\left(\frac{2 c^{2}}{\nu}\|u(t)\|^{2}+\frac{2 \nu|\nabla g|_{\infty}^{2}}{m_{0}^{2}}\right)|w(t)|^{2} \tag{4.7}
\end{equation*}
$$

In particular,

$$
|w(t)|^{2} \leq|w(\tau)|^{2} \exp \left(\int_{\tau}^{t}\left(\frac{2 c^{2}}{\nu}\|u(s)\|^{2}+\frac{2 \nu|\nabla g|_{\infty}^{2}}{m_{0}^{2}}\right) d s\right)
$$

Thus, by using (4.6),

$$
\begin{equation*}
|w(t)|^{2} \leq|w(\tau)|^{2} \exp \left(C_{1}(1+t-\tau)\right) \quad \text { for all } \tau \leq t \leq T^{*} \tag{4.8}
\end{equation*}
$$

where $C_{1}=\max \left\{C c^{2} /\left(\gamma_{0}-\epsilon\right)+2 \nu|\nabla g|_{\infty}^{2} / m_{0}^{2}, 1\right\}$.

Now, from 4.7 and 4.8, we have

$$
\begin{aligned}
& \nu \int_{\tau}^{t}\|w(s)\|^{2} d s \leq|w(\tau)|^{2}+\int_{\tau}^{t}\left(\frac{2 c^{2}}{\nu}\|u(s)\|^{2}+\frac{2 \nu|\nabla g|_{\infty}^{2}}{m_{0}^{2}}\right)|w(s)|^{2} d s \\
& \quad \leq|w(\tau)|^{2}+\int_{\tau}^{t}\left(\frac{2 c^{2}}{\nu}\|u(s)\|^{2}+\frac{2 \nu|\nabla g|_{\infty}^{2}}{m_{0}^{2}}\right)|w(\tau)|^{2} \exp \left(C_{1}(1+s-\tau)\right) d s \\
& \quad \leq|w(\tau)|^{2}\left[1+\exp \left(C_{1}(1+t-\tau)\right) \int_{\tau}^{t}\left(\frac{2 c^{2}}{\nu}\|u(s)\|^{2}+\frac{2 \nu|\nabla g|_{\infty}^{2}}{m_{0}^{2}}\right) d s\right]
\end{aligned}
$$

and thus, by (4.4), we have

$$
\begin{align*}
\nu \int_{\tau}^{t}\|w(s)\|^{2} d s & \leq|w(\tau)|^{2}\left[1+\exp \left(C_{1}(1+t-\tau)\right) C_{1}(1+t-\tau)\right] \tag{4.9}\\
& \leq|w(\tau)|^{2}\left[1+C_{1}(1+t-\tau)\right] \exp \left(C_{1}(1+t-\tau)\right) \\
& \leq|w(\tau)|^{2} \exp \left(2 C_{1}(1+t-\tau)\right)
\end{align*}
$$

Let $z(t)$ be defined by

$$
z(t)=\bar{u}(t)-u(t)-v(t)=w(t)-v(t), \quad t \geq \tau
$$

Evidently, $z(t)$ satisfies

$$
\left\{\begin{array}{l}
z \in L^{2}\left(\tau, T ; V_{g}\right) \cap L^{\infty}\left(\tau, T ; H_{g}\right) \cap C\left([\tau, T] ; H_{g}\right) \quad \text { for all } t>\tau \\
\frac{d z}{d t}= \\
\quad-\nu A z(t)-B(\bar{u}(t), \bar{u}(t))+B(u(t), u(t))+B(u(t), v(t)) \\
\quad \quad+B(v(t), u(t))-\nu C z(t), \quad t>\tau \\
z(\tau)=0
\end{array}\right.
$$

It is easy to see that

$$
\begin{array}{r}
-B(\bar{u}(t), \bar{u}(t))+B(u(t), u(t))+B(u(t), v(t))+B(v(t), u(t)) \\
=-B(u(t), z(t))-B(z(t), u(t))-B(w(t), w(t))
\end{array}
$$

and consequently, for all $t>\tau$,

$$
\begin{align*}
& \frac{d}{d t}|z|^{2}+2 \nu\|z\|^{2}=-2 b(z, u, z)-2 b(w, w, z)-2\left(\frac{\nu}{g}(\nabla g \cdot \nabla) z, z\right) \tag{4.10}\\
\leq & -2 b(z, u, z)-2 b(w, w, z)+2 \nu \frac{|\nabla g|_{\infty}}{m_{0}}\|z\||z| \\
\leq & \frac{\nu}{2}\|z\|^{2}+\frac{2 c^{2}}{\nu}\|u\|^{2}|z|^{2}+\frac{\nu}{2}\|z\|^{2}+\frac{2 c^{2}}{\nu}\|w\|^{2}|w|^{2}+\nu\|z\|^{2}+\frac{\nu|\nabla g|_{\infty}^{2}}{m_{0}^{2}}|z|^{2} \\
= & 2 \nu\|z\|^{2}+\frac{2 c^{2}}{\nu}\|u\|^{2}|z|^{2}+\frac{2 c^{2}}{\nu}\|w\|^{2}|w|^{2}+\frac{\nu|\nabla g|_{\infty}^{2}}{m_{0}^{2}}|z|^{2}
\end{align*}
$$

Integrating 4.10 from τ to t, and using the fact that $z(\tau)=0$, we have

$$
|z(t)|^{2} \leq \frac{2 c^{2}}{\nu} \int_{\tau}^{t}\|w\|^{2}|w|^{2} d s+\int_{\tau}^{t}\left(\frac{2 c^{2}}{\nu}\|u\|^{2}+\frac{\nu|\nabla g|_{\infty}^{2}}{m_{0}^{2}}\right)|z|^{2} d s, \quad \forall t \geq \tau
$$

and consequently, by Gronwall's lemma,

$$
|z(t)|^{2} \leq \frac{2 c^{2}}{\nu} \int_{\tau}^{t}\|w\|^{2}|w|^{2} d s \exp \left[\int_{\tau}^{t}\left(\frac{2 c^{2}}{\nu}\|u\|^{2}+\frac{\nu|\nabla g|_{\infty}^{2}}{m_{0}^{2}}\right) d s\right]
$$

From (4.8) we obtain

$$
|z(t)|^{2} \leq \frac{2 c^{2}}{\nu}|w(\tau)|^{2} \exp \left(2 C_{1}(1+t-\tau)\right) \int_{\tau}^{t}\|w(s)\|^{2} d s
$$

Plugging (4.9) into the last estimate, we obtain

$$
|z(t)|^{2} \leq \frac{2 c^{2}}{\nu^{2}}|w(\tau)|^{4} \exp \left(4 C_{1}(1+t-\tau)\right)
$$

i.e., (2.5)-2.7 hold with

$$
\gamma(s, r)=\frac{\sqrt{2} c r}{\nu} \exp \left(2 C_{1}(1+s)\right)
$$

where $C_{1}>1$.
We now prove the main result in this section.
Theorem 4.3. Suppose that conditions (H1)-(H3) and 4.2) hold. Then the pullback $\mathcal{D}_{\sigma^{-}}$attractor $\hat{\mathcal{A}}=\{A(t): t \in \mathbb{R}\}$ satisfies

$$
d_{\mathrm{F}}(A(\tau)) \leq \max \left(1, \frac{\kappa\|f\|_{L^{\infty}\left(-\infty, T^{*} ; V_{g}^{\prime}\right)}^{2}}{16 \nu^{4}\left(\gamma_{0}-\epsilon\right)^{2} \epsilon^{2} \lambda_{1}}\right) \quad \text { for all } \tau \in \mathbb{R}
$$

where $\gamma_{0}=1-|\nabla g|_{\infty}^{2} /\left(m_{0} \lambda_{1}^{2}\right)>0$, and $\epsilon>0$ is the number such that $\sigma=2 \nu \lambda_{1}\left(\gamma_{0}-\epsilon\right)$.

Proof. For $u_{0}, \xi_{1}, \ldots, \xi_{m} \in H_{g}$, we suppose $v_{j}(t)=L\left(t, \tau ; u_{0}\right) \xi_{j}$. Let $\left\{e_{1}(t), \ldots, e_{m}(t)\right\}$ be an orthonormal basis in H_{g} of the subspace spanned by $\left\{v_{1}(t), \ldots, v_{m}(t)\right\}$. Since $v_{j}(t) \in V_{g}$ for a.e. $t \geq \tau$, we can assume $e_{j}(t) \in V_{g}$ for a.e. $t \geq \tau$. Then it is not difficult to see that

$$
\begin{align*}
& \operatorname{Tr}_{m}\left(F^{\prime}\left(U(s, \tau) u_{0}, s\right)=\sum_{i=1}^{m}\left\langle F^{\prime}\left(U(s, \tau) u_{0}, s\right) e_{i}, e_{i}\right\rangle\right. \tag{4.11}\\
& \quad=-\nu \sum_{i=1}^{m}\left\|e_{i}\right\|^{2}-\sum_{i=1}^{m} b\left(e_{i}, U(s, \tau) u_{0}, e_{i}\right)-\sum_{i=1}^{m}\left(\frac{\nu}{g}(\nabla g \cdot \nabla) e_{i}, e_{i}\right)
\end{align*}
$$

for a.e. $s \geq \tau$.

Using the explicit expression for b, we have

$$
\begin{aligned}
\left|\sum_{i=1}^{m} b\left(e_{i}, u, e_{i}\right)\right| & =\left|\sum_{i=1}^{m} \int_{\Omega} \sum_{k, l=1}^{2} e_{i k}(x) D_{l} u_{k}(x) e_{i l}(x) g(x) d x\right| \\
& \leq \int_{\Omega}|\operatorname{grad} u(x)| \rho(x) g(x) d x
\end{aligned}
$$

where

$$
|\operatorname{grad} u(x)|=\left\{\sum_{l, k=1}^{2}\left|D_{l} u_{k}(x)\right|^{2}\right\}^{1 / 2}, \quad \rho(x)=\sum_{i=1}^{m} \sum_{k=1}^{2}\left(e_{i k}(x)\right)^{2}
$$

Therefore,

$$
\begin{equation*}
\left|\sum_{i=1}^{m} b\left(e_{i}, u, e_{i}\right)\right| \leq \int_{\Omega}|\operatorname{grad} u(x)| \rho(x) g(x) d x \leq\|u\||\rho| \tag{4.12}
\end{equation*}
$$

by the Schwarz inequality. Also, we obtain

$$
\begin{equation*}
\left|\sum_{i=1}^{m}\left(\frac{\nu}{g}(\nabla g \cdot \nabla) e_{i}, e_{i}\right)\right| \leq \sum_{i=1}^{m} \frac{\nu|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\left\|e_{i}\right\|^{2} \tag{4.13}
\end{equation*}
$$

We recall that the dependence on s has been omitted and in fact $u=$ $u(s, x), \rho=\rho(s, x)$, etc. From 4.11 -4.13), we get

$$
\begin{aligned}
\operatorname{Tr}_{m}\left(F^{\prime}\left(U(s, \tau) u_{0}, s\right)\right. & \leq-\nu\left(1-\frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\right) \sum_{i=1}^{m}\left\|e_{i}\right\|+\left\|U(t, \tau) u_{0}\right\||\rho| \\
& =-\nu \gamma_{0} \sum_{i=1}^{m}\left\|e_{i}\right\|+\left\|U(t, \tau) u_{0}\right\||\rho|
\end{aligned}
$$

Since $\left\{e_{i}\right\}$ are orthonormal in H_{g}, hence in $L^{2}(\Omega, g)$, and belong to $V_{g} \hookrightarrow$ $H_{0}^{1}(\Omega, g)$, by the Lieb-Thirring inequality (see [15, Theorem A.3.1] with $n=2, p=2, m=1$ and in particular [15, Example A5.1]), there exists a constant κ depending only on the shape of Ω such that

$$
|\rho(s)|^{2}=\int_{\Omega} \rho(s, x)^{2} g(x) d x \leq \kappa \sum_{i=1}^{m}\left\|e_{i}\right\|^{2}
$$

Hence,

$$
\begin{aligned}
\operatorname{Tr}_{m}\left(F^{\prime}\left(U(s, \tau) u_{0}, s\right)\right. & \leq-\nu \gamma_{0} \sum_{i=1}^{m}\left\|e_{i}\right\|+\left\|U(t, \tau) u_{0}\right\||\rho| \\
& \leq-\nu \gamma_{0} \sum_{i=1}^{m}\left\|e_{i}\right\|^{2}+\left\|U(t, \tau) u_{0}\right\|\left(\kappa \sum_{i=1}^{m}\left\|e_{i}\right\|^{2}\right)^{1 / 2} \\
& \leq-\nu\left(\gamma_{0}-\epsilon\right) \sum_{i=1}^{m}\left\|e_{i}\right\|^{2}+\frac{\kappa}{4 \nu \epsilon}\left\|U(t, \tau) u_{0}\right\|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \leq-\nu\left(\gamma_{0}-\epsilon\right) \lambda_{1} \sum_{i=1}^{m}\left|e_{i}\right|^{2}+\frac{\kappa}{4 \nu \epsilon}\left\|U(t, \tau) u_{0}\right\|^{2} \\
& =-\nu\left(\gamma_{0}-\epsilon\right) \lambda_{1} m+\frac{\kappa}{4 \nu \epsilon}\left\|U(t, \tau) u_{0}\right\|^{2}
\end{aligned}
$$

where we have used the fact that $\left|e_{i}\right|=1$. On the other hand,

$$
\frac{d}{d t}\left|U(s, \tau) u_{0}\right|^{2}+2 \nu\left(\gamma_{0}-\epsilon\right)\left\|U(s, \tau) u_{0}\right\|^{2} \leq \frac{\|f(s)\|_{*}^{2}}{2 \nu \epsilon}
$$

and if we denote $M=\|f\|_{L^{\infty}\left(-\infty, T^{*} ; V_{g}^{\prime}\right)}^{2}$ we have

$$
\int_{\tau-T}^{\tau}\left\|U(s, \tau) u_{0}\right\|^{2} d s \leq\left(\frac{M T}{4 \nu^{2} \epsilon}+\frac{\left|u_{0}\right|^{2}}{2 \nu}\right)\left(\gamma_{0}-\epsilon\right)^{-1}, \quad t \geq \tau
$$

Using Theorem 2.9, we obtain

$$
\begin{align*}
\widetilde{q}_{m} & \leq \limsup _{T \rightarrow+\infty} \sup _{u_{0} \in A(\tau-T)} \frac{1}{T} \int_{\tau-T}^{\tau} \operatorname{Tr}_{m}\left(F^{\prime}\left(U(s, \tau-T) u_{0}, s\right)\right) d s \tag{4.14}\\
& \leq-\nu\left(\gamma_{0}-\epsilon\right) \lambda_{1} m+\frac{\kappa}{4 \nu \epsilon} \limsup _{T \rightarrow+\infty} \sup _{u_{0} \in A(\tau-T)}\left(\frac{M}{4 \nu^{2} \epsilon}+\frac{\left|u_{0}\right|^{2}}{2 \nu T}\right)\left(\gamma_{0}-\epsilon\right)^{-1} \\
& \leq-\nu\left(\gamma_{0}-\epsilon\right) \lambda_{1} m+\frac{\kappa M}{16 \nu^{3} \epsilon^{2}\left(\gamma_{0}-\epsilon\right)}
\end{align*}
$$

We now consider two cases: if $\kappa M<16 \nu^{4}\left(\gamma_{0}-\epsilon\right)^{2} \epsilon^{2} \lambda_{1}$, then taking

$$
q_{m}=-\nu\left(\gamma_{0}-\epsilon\right) \lambda_{1}(m-1), \quad m=1,2, \ldots
$$

and $n_{0}=1$, we can apply Theorem 2.9 to obtain

$$
d_{\mathrm{F}}(A(\tau)) \leq 1 \quad \text { for all } \tau \leq T^{*}
$$

if $\kappa M \geq 16 \nu^{4}\left(\gamma_{0}-\epsilon\right)^{2} \epsilon^{2} \lambda_{1}$, then taking

$$
q_{m}=-\nu\left(\gamma_{0}-\epsilon\right) \lambda_{1} m+\frac{\kappa M}{16 \nu^{3} \epsilon^{2}\left(\gamma_{0}-\epsilon\right)}, \quad m=1,2, \ldots
$$

and

$$
n_{0}=1+\left[\frac{\kappa M}{16 \nu^{4}\left(\gamma_{0}-\epsilon\right)^{2} \epsilon^{2} \lambda_{1}}-1\right]
$$

where $[r]$ denotes the integer part of a real number r, we obtain

$$
d_{\mathrm{F}}(A(\tau)) \leq \frac{\kappa\|f\|_{L^{\infty}\left(-\infty, T^{*} ; V_{g}^{\prime}\right)}^{2}}{16 \nu^{4}\left(\gamma_{0}-\epsilon\right)^{2} \epsilon^{2} \lambda_{1}} \quad \text { for all } \tau \leq T^{*}
$$

Finally, since $U(t, \tau)$ is Lipschitz in $A(\tau)$, it follows from 10, Proposition 13.9] that $d_{\mathrm{F}}(A(t))$ is bounded for every $t \geq \tau$ with the same bound.

Remark 4.4. When $g \equiv 1$ and $\epsilon=1 / 2$, we recover the result in $[7$ for the usual 2D non-autonomous Navier-Stokes equations:

$$
d_{\mathrm{F}}(A(\tau)) \leq \max \left(1, \frac{\kappa\|f\|_{L^{\infty}\left(-\infty, T^{*} ; V_{g}^{\prime}\right)}^{2}}{\nu^{4} \lambda_{1}}\right) \quad \text { for all } \tau \in \mathbb{R}
$$

5. Global stability of stationary solutions. Assuming now that the external force f is independent of time t, in this section we are looking for solutions of the following problem:

$$
\begin{cases}-\nu \Delta u+(u \cdot \nabla) u+\nabla p=f, & x \in \Omega, \tag{5.1}\\ (1 / g) \nabla \cdot(g u)=0, & x \in \Omega, \\ u(x)=0, & x \in \partial \Omega\end{cases}
$$

Given $f \in V_{g}^{\prime}$, a weak solution to stationary problem (5.1) is a function $u \in V_{g}$ satisfying

$$
\nu((u, v))_{g}+b(u, u, v)=\langle f, v\rangle \quad \text { for all test functions } v \in V_{g} .
$$

Theorem 5.1. For every $f \in V_{g}^{\prime}$, there exists at least one weak solution of problem 5.1). Moreover, if f belongs to H_{g}, all weak solutions belong to $D(A)$. Finally, if

$$
\begin{equation*}
\nu^{2}\left(1-\frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\right)^{2}>\frac{c_{1}}{\lambda_{1}^{1 / 2}}\|f\|_{*}, \tag{5.2}
\end{equation*}
$$

where c_{1} is the constant in (2.3), then the weak solution of problem (5.1) is unique.

Proof. Let us consider an orthonormal basis $\left\{w_{j}\right\} \subset V$ of H_{g} consisting of eigenfunctions of the Stokes problem in Ω with the homogeneous Dirichlet condition. The subspace of V_{g} spanned by w_{1}, \ldots, w_{m} will be denoted V_{m}. Consider the projector $P_{m}: H_{g} \rightarrow V_{m}$ given by

$$
P_{m} u=\sum_{i=1}^{m}\left(u, w_{i}\right)_{g} w_{i},
$$

and define

$$
u^{m}=\sum_{i=1}^{m} \gamma_{m i} w_{i}
$$

where

$$
\begin{equation*}
\nu\left(\left(u^{m}, w_{i}\right)\right)+\nu b\left(\frac{\nabla g}{g}, u^{m}, w_{i}\right)+b\left(u^{m}, u^{m}, w_{i}\right)=\left\langle f, w_{i}\right\rangle \tag{5.3}
\end{equation*}
$$

for every v in V_{m}. Equation (5.3) is also equivalent to

$$
\begin{equation*}
\nu A u^{m}+P_{m} B u^{m}+\nu P_{m} C u^{m}=P_{m} f . \tag{5.4}
\end{equation*}
$$

The existence of a solution u^{m} of (5.3) follows from the Brouwer fixed point theorem as in the case of stationary Navier-Stokes equations (for details, see [13, p. 164]). Taking $v=u^{m}$ in (5.3) and taking into account (2.2), we get

$$
\nu\left\|u^{m}(t)\right\|^{2}=\left\langle f, u^{m}\right\rangle-\nu b\left(\frac{\nabla g}{g}, u^{m}, u^{m}\right) \leq\|f\|_{*}\left\|u^{m}\right\|+\nu \frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\left\|u^{m}\right\|^{2}
$$

Hence

$$
\begin{equation*}
\nu\left(1-\frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\right)\left\|u^{m}\right\| \leq\|f\|_{*} \tag{5.5}
\end{equation*}
$$

We extract from $\left\{u^{m}\right\}$ a sequence $\left\{u^{m^{\prime}}\right\}$ which converges weakly in V_{g} to some limit u. If Ω is bounded, then the injection of V_{g} into H_{g} is compact. Thus, this convergence holds also in the norm of H_{g} :

$$
u^{m^{\prime}} \rightarrow u \quad \text { weakly in } V_{g}, \text { and strongly in } H_{g}
$$

up to a subsequence. Passing to the limit in with the sequence m^{\prime}, we find that u is a weak solution of 5.1 . If Ω is unbounded, the injection of V_{g} into H_{g} is no longer compact. However, this difficulty can be overcome by using arguments as in [13, pp. 168-171].

To prove the second statement, we note that if $u \in V_{g}$, then $B u \in V_{g}^{-1 / 2}$ and $C u \in V_{g}^{-1 / 2}$. Hence $u=(1 / \nu) A^{-1}(f-B u-\nu C u) \in V_{g}^{3 / 2}$ since $f \in H_{g}$. Therefore, $B u \in H_{g}$ and $C u \in H_{g}$, and thus u is in $D(A)$.

For the uniqueness of solutions, let us assume that u_{1} and u_{2} are two solutions of (5.3). Setting $u=u_{1}-u_{2}$, we have

$$
\nu\|u\|^{2}+\nu b\left(\frac{\nabla g}{g}, u, u\right)=b\left(u_{2}, u_{2}, u\right)-b\left(u_{1}, u_{1}, u\right)=-b\left(u, u_{2}, u\right)
$$

By Lemma 2.1,

$$
\begin{aligned}
\left|b\left(u, u_{2}, u\right)\right| & \leq c_{1}|u|\|u\|\left\|u_{2}\right\| \leq \frac{c_{1}}{\lambda_{1}^{1 / 2}}\|u\|^{2}\left\|u_{2}\right\| \\
& \leq \frac{c_{1}}{\lambda_{1}^{1 / 2}} \frac{1}{\nu\left(1-\frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\right)}\|f\|_{*}\|u\|^{2}
\end{aligned}
$$

where we have used the fact that $\|u\|^{2} \geq \lambda_{1}|u|^{2}$ and inequality (5.5) for the solution u_{2}. By Lemma 2.3 ,

$$
\left|b\left(\frac{\nabla g}{g}, u, u\right)\right| \leq \frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\|u\|^{2}
$$

Therefore,

$$
\left(\nu\left(1-\frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\right)-\frac{c_{1}}{\lambda_{1}^{1 / 2}} \frac{1}{\nu\left(1-\frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\right)}\|f\|_{*}\right)\|u\|^{2} \leq 0
$$

and $u=0$, i.e. $u_{1}=u_{2}$, if (5.2) holds.

Theorem 5.2. Given $f \in H_{g}$, assume that

$$
\begin{align*}
\nu\left(\frac{\lambda_{1}\left(1-\frac{|\nabla g|_{\infty}^{2}}{m_{0}^{2} \lambda_{1}}\right)}{c_{2}^{\prime}}\right)^{3 / 4}> & \frac{2}{\nu}\left(1+\frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}\left(1-\frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\right)}\right)|f| \tag{5.6}\\
& +\frac{c_{2}^{2}}{2 \nu^{5} \lambda_{1}^{3 / 2}\left(1-\frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\right)^{3}}|f|^{3}
\end{align*}
$$

where c_{2} is the constant in Lemma 2.1 and $c_{2}^{\prime}=\frac{3}{4}\left(c_{2} / \lambda_{1}^{1 / 2}\right)^{4 / 3}$. Then the weak solution of (5.1) (denoted by $\left.u_{\infty}\right)$ is unique. If u is any weak solution of problem (1.1) with $u_{0} \in H_{g}$ arbitrary and $f(t) \equiv f$ for all t, then

$$
u(t) \rightarrow u_{\infty} \quad \text { in } H_{g} \text { as } t \rightarrow \infty
$$

Proof. Let $w(t)=u(t)-u_{\infty}$. We have

$$
\frac{d w(t)}{d t}+\nu A w(t)+\nu C w(t)+B u(t)-B u_{\infty}=0
$$

and, taking the scalar product with $w(t)$,

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}|w(t)|^{2}+\nu\|w(t)\|^{2}+ & \nu b\left(\frac{\nabla g}{g}, w(t), w(t)\right) \\
& +b(u(t), u(t), w(t))-b\left(u_{\infty}, u_{\infty}, w(t)\right)=0
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}|w(t)|^{2}+\nu\|w(t)\|^{2} \\
& \quad=-b\left(w(t), u_{\infty}, w(t)\right)-\nu b\left(\frac{\nabla g}{g}, w(t), w(t)\right) \\
& \quad \leq \frac{c_{2}}{\lambda_{1}^{1 / 2}}|w(t)|^{3 / 2}\|w(t)\|^{1 / 2}\left|A u_{\infty}\right|+\nu \frac{|\nabla g|_{\infty}}{m_{0}}\|w(t)\||w(t)| \\
& \quad \leq \frac{\nu}{4}\|w(t)\|^{2}+\frac{c_{2}^{\prime}}{\nu^{1 / 3}}|w(t)|^{2}\left|A u_{\infty}\right|^{4 / 3}+\frac{\nu}{4}\|w(t)\|^{2}+\nu \frac{|\nabla g|_{\infty}^{2}}{m_{0}^{2}}|w(t)|^{2}
\end{aligned}
$$

where we have used (2.3), the inequality $\left|A u_{\infty}\right| \geq \lambda_{1}^{1 / 2}\left\|u_{\infty}\right\|$, the Young inequality, and $c_{2}^{\prime}=\frac{3}{4}\left(c_{2} / \lambda_{1}^{1 / 2}\right)^{4 / 3}$. Therefore,

$$
\begin{equation*}
\frac{d}{d t}|w(t)|^{2}+\left(\nu \lambda_{1}-\frac{c_{2}^{\prime}}{\nu^{1 / 3}}\left|A u_{\infty}\right|^{4 / 3}-\nu \frac{|\nabla g|_{\infty}^{2}}{m_{0}^{2}}\right)|w(t)|^{2} \leq 0 \tag{5.7}
\end{equation*}
$$

If

$$
\begin{equation*}
\bar{\nu}=\nu \lambda_{1}-\frac{c_{2}^{\prime}}{\nu^{1 / 3}}\left|A u_{\infty}\right|^{4 / 3}-\nu \frac{|\nabla g|_{\infty}^{2}}{m_{0}^{2}}>0 \tag{5.8}
\end{equation*}
$$

then (5.7) shows that $|w(t)|$ decays exponentially to 0 as $t \rightarrow \infty$:

$$
|w(t)|^{2} \leq|w(0)| e^{-\bar{\nu} t}, \quad w(0)=u_{0}-u_{\infty}
$$

Since $u_{\infty} \in D(A)$, we have

$$
\begin{aligned}
\nu\left|A u_{\infty}\right| \leq & |f|+\left|B u_{\infty}\right|+\nu\left|C u_{\infty}\right| \\
& \leq|f|+c_{2}\left\|u_{\infty}\right\|^{3 / 2}\left|A u_{\infty}\right|^{1 / 2}+\frac{\nu|\nabla g|_{\infty}}{m_{0}}\left\|u_{\infty}\right\| \\
& \leq|f|+\frac{\nu}{2}\left|A u_{\infty}\right|+\frac{c_{2}^{2}}{2 \nu}\left\|u_{\infty}\right\|^{3}+\frac{\nu|\nabla g|_{\infty}}{m_{0}}\left\|u_{\infty}\right\| \\
\leq & |f|+\frac{\nu}{2}\left|A u_{\infty}\right|+\frac{c_{2}^{2}}{2 \nu^{4} \lambda_{1}^{3 / 2}} \frac{1}{\left(1-\frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\right)^{3}}|f|^{3} \\
& +\frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}} \frac{1}{\left(1-\frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\right)}|f|
\end{aligned}
$$

where we have used (5.5) and the fact that $\|f\|_{*} \leq \frac{1}{\lambda_{1}^{1 / 2}}|f|$. Hence

$$
\begin{equation*}
\left|A u_{\infty}\right| \leq \frac{2}{\nu}\left(1+\frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}} \frac{1}{\left(1-\frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\right)}\right)|f|+\frac{c_{2}^{2}}{2 \nu^{5} \lambda_{1}^{3 / 2}} \frac{1}{\left(1-\frac{|\nabla g|_{\infty}}{m_{0} \lambda_{1}^{1 / 2}}\right)^{3}}|f|^{3} \tag{5.9}
\end{equation*}
$$

Using (5.9), we obtain a sufficient condition for (5.8), which is exactly (5.6).
If we replace $u(t)$ by another stationary solution u_{∞}^{*} of (5.1) in the computations leading to (5.7), we obtain instead of (5.7),

$$
\bar{\nu}\left|u_{\infty}-u_{\infty}^{*}\right|^{2} \leq 0
$$

This implies the uniqueness of the stationary solution if (5.6) holds.
Acknowledgements. This work was supported by Vietnam's National Foundation for Science and Technology Development (NAFOSTED), Project 101.01-2010.05.

References

[1] H. Bae and J. Roh, Existence of solutions of the g-Navier-Stokes equations, Taiwanese J. Math. 8 (2004), 85-102.
[2] T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal. 64 (2006), 484-498.
[3] J. Jiang and Y. Hou, The global attractor of g-Navier-Stokes equations with linear dampness on \mathbb{R}^{2}, Appl. Math. Comput. 215 (2009), 1068-1076.
[4] —, 一, Pullback attractor of 2D non-autonomous g-Navier-Stokes equations on some bounded domains, Appl. Math. Mech. (Engl. Ed.) 31 (2010), 697-708.
[5] M. Kwak, H. Kwean and J. Roh, The dimension of attractor of the 2D g-NavierStokes equations, J. Math. Anal. Appl. 315 (2006), 436-461.
[6] H. Kwean and J. Roh, The global attractor of the $2 D \mathrm{~g}$-Navier-Stokes equations on some unbounded domains, Comm. Korean Math. Soc. 20 (2005), 731-749.
[7] J. A. Langa, G. Łukaszewicz and J. Real, Finite fractal dimension of pullback attractors for non-autonomous 2D Navier-Stokes equations in some unbounded domains, Nonlinear Anal. 66 (2007), 735-749.
[8] Y. Li and C. K. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations, Appl. Math. Comput. 190 (2007), 1020-1029.
[9] J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod and Gauthier-Villars, Paris, 1969.
[10] J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Univ. Press, 2001.
[11] J. Roh, Dynamics of the g-Navier-Stokes equations, J. Differential Equations 211 (2005), 452-484.
[12] -, Derivation of the g-Navier-Stokes equations, J. Chungcheon Math. Soc. 19 (2006), 213-218.
[13] R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, 2nd ed., North-Holland, Amsterdam, 1979.
[14] -, Navier-Stokes Equations and Nonlinear Functional Analysis, 2nd ed., SIAM, 1995.
[15] -, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed., Springer, 1997.
[16] D. Wu, The finite-dimensional uniform attractors for the non-autonomous g-NavierStokes equations, J. Appl. Math. 2009, art. ID 150420, 17 pp.

Cung The Anh
Department of Mathematics
Hanoi National University of Education
136 Xuan Thuy, Cau Giay
Hanoi, Vietnam
E-mail: anhctmath@hnue.edu.vn

Dao Trong Quyet Faculty of Information Technology Le Qui Don Technical University 100 Hoang Quoc Viet, Cau Giay

Hanoi, Vietnam
E-mail: dtq107800@gmail.com

Received 15.3.2011 and in final form 29.5.2011

[^0]: 2010 Mathematics Subject Classification: Primary 35B41; Secondary 35Q30, 37L30, 35D05.
 Key words and phrases: g-Navier-Stokes equation, weak solution, Galerkin method, pullback attractor, fractal dimension, stationary solution, global stability.

