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Long-time behavior for 2D non-autonomous
g-Navier–Stokes equations

by Cung The Anh and Dao Trong Quyet (Hanoi)

Abstract. We study the first initial boundary value problem for the 2D non-autonom-
ous g-Navier–Stokes equations in an arbitrary (bounded or unbounded) domain satisfying
the Poincaré inequality. The existence of a weak solution to the problem is proved by using
the Galerkin method. We then show the existence of a unique minimal finite-dimensional
pullback Dσ-attractor for the process associated to the problem with respect to a large
class of non-autonomous forcing terms. Furthermore, when the force is time-independent
and “small”, the existence, uniqueness and global stability of a stationary solution are also
studied.

1. Introduction. Let Ω be a (bounded or unbounded) domain in R2

with boundary ∂Ω. In this paper we study the long-time behavior of solutions
to the following 2D non-autonomous g-Navier–Stokes equations in Ω:

(1.1)


∂tu− ν∆u+ (u · ∇)u+∇p = f, x ∈ Ω, t > τ ,
(1/g)∇ · (gu) = 0, x ∈ Ω, t > τ ,
u(x, t) = 0, (x, t) ∈ ∂Ω × (τ,+∞),
u(x, τ) = u0(x), x ∈ Ω,

where u = u(x, t) = (u1, u2) is the unknown velocity vector, p = p(x, t) is
the unknown pressure, ν > 0 is the kinematic viscosity coefficient, and u0 is
the initial velocity.

The g-Navier–Stokes equations are a variation of the standard Navier–
Stokes equations. More precisely, when g ≡ 1 we get the usual Navier–Stokes
equations. The 2D g-Navier–Stokes equations arise in a natural way when
we study the standard 3D problem in thin domains. We refer the reader
to [11, 12] for a derivation of the 2D g-Navier–Stokes equations from the
3D Navier–Stokes equations and a relationship between them. As mentioned
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in [6], good properties of the 2D g-Navier–Stokes equations can initiate the
study of the Navier–Stokes equations on the thin three-dimensional domain
Ωg = Ω×(0, g). In the last few years, the existence and asymptotic behavior
of solutions to g-Navier–Stokes equations have been studied extensively (see
e.g. [1, 3–6, 11, 12, 16]).

The aim of this paper is to continue the study of the long-time be-
havior of weak solutions to problem (1.1). When the external force f is
time-dependent, we use the theory of pullback attractors. This theory is
a natural generalization of the theory of global attractors for autonomous
dynamical systems (cf. [15]) and allows considering a number of different
problems of non-autonomous dynamical systems and random dynamical sys-
tems for a large class of non-autonomous forcing terms. When the force is
time-independent and “small”, we prove the existence, uniqueness and global
stability of a stationary solution. The results obtained, in particular, re-
cover and extend some existing ones for the 2D Navier–Stokes equations in
[2, 7, 14, 15] and for 2D g-Navier–Stokes equations in bounded domains in [4].

In order to study problem (1.1), we assume that:

(H1) Ω is an arbitrary (bounded or unbounded) domain in R2 without
any regularity assumption on ∂Ω, provided that the Poincaré in-
equality holds on Ω: There exists λ1 > 0 such that

�

Ω

φ2g dx ≤ 1
λ1

�

Ω

|∇φ|2g dx, ∀φ ∈ H1
0 (Ω).

(H2) g ∈W 1,∞(Ω) such that

0 < m0 ≤ g(x) ≤M0 for x = (x1, x2) ∈ Ω, and |∇g|∞ < m0λ
1/2
1 .

(H3) f ∈ L2
loc(R;V ′g) such that

0�

−∞
eσs‖f(s)‖2V ′g ds < +∞,

where σ < 2νλ1γ0 is a fixed positive number with γ0 = 1 −
|∇g|∞/(m0λ

1/2
1 ) > 0.

The paper is organized as follows. In the next section, we recall some
auxilliary results on function spaces and inequalities for the nonlinear terms
related to the g-Navier–Stokes equations, and abstract results on the exis-
tence and the fractal dimension of pullback attractors. In Sections 3 and
4, following the general lines of the proof in [2, 7], we prove the existence
and fractal dimension estimates of a unique minimal pullback Dσ-attractor
for the associated process. The existence, uniqueness and global stability of
a stationary solution are studied in the last section under some additional
conditions.
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2. Preliminary results

2.1. Function spaces and inequalities for the nonlinear terms.
Let L2(Ω, g) = (L2(Ω))2 and H1

0 (Ω, g) = (H1
0 (Ω))2 endowed, respectively,

with the inner products

(u, v)g =
�

Ω

u · vg dx, u, v ∈ L2(Ω, g),

and

((u, v))g =
�

Ω

2∑
j=1

∇uj · ∇vjg dx, u = (u1, u2), v = (v1, v2) ∈ H1
0 (Ω, g),

and norms |u|2 = (u, u)g, ‖u‖2 = ((u, u))g. Thanks to assumption (H2), the
norms | · | and ‖ · ‖ are equivalent to the usual ones in (L2(Ω))2 and in
(H1

0 (Ω))2.
Let

V = {u ∈ (C∞0 (Ω))2 : ∇ · (gu) = 0}.

Denote by Hg the closure of V in L2(Ω, g), and by Vg the closure of V in
H1

0 (Ω, g). It follows that Vg ⊂ Hg ≡ H ′g ⊂ V ′g , where the injections are dense
and continuous. We will use ‖·‖∗ for the norm in V ′g , and 〈·, ·〉 for the duality
pairing between Vg and V ′g .

We now define the trilinear form b by

b(u, v, w) =
2∑

i,j=1

�

Ω

ui
∂vj
∂xi

wjg dx,

whenever the integrals make sense. It is easy to check that if u, v, w ∈ Vg,
then

(2.1) b(u, v, w) = −b(u,w, v).

Hence

(2.2) b(u, v, v) = 0, ∀u, v ∈ Vg.

Define A :Vg → V ′g by 〈Au, v〉 = ((u, v))g, B : Vg×Vg → V ′g by 〈B(u, v), w〉 =
b(u, v, w), Bu = B(u, u). Then D(A) = H2(Ω, g) ∩ V and Au = −Pg∆u for
all u ∈ D(A), where Pg is the ortho-projector from L2(Ω, g) onto Hg.

Using Hölder’s inequality, the Ladyzhenskaya inequality (when n = 2):

|u|L4 ≤ c|u|1/2|∇u|1/2, ∀u ∈ H1
0 (Ω),

and the interpolation inequalities, as in [13, 14], one can prove the following
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Lemma 2.1. If n = 2, then

(2.3) |b(u, v, w)|

≤


c1|u|1/2‖u‖1/2‖v‖ |w|1/2‖w‖1/2, ∀u, v, w ∈ Vg,
c2|u|1/2‖u‖1/2‖v‖1/2|Av|1/2|w|, ∀u ∈ Vg, v ∈ D(A), w ∈ Hg,

c3|u|1/2|Au|1/2‖v‖ |w|, ∀u ∈ D(A), v ∈ Vg, w ∈ Hg,

c4|u| ‖v‖ |w|1/2|Aw|1/2, ∀u ∈ Hg, v ∈ Vg, w ∈ D(A),

where ci, i = 1, . . . , 4, are appropriate constants.

Lemma 2.2 ([1]). Let u ∈ L2(τ, T ;Vg). Then the function Bu defined by

(Bu(t), v)g = b(u(t), u(t), v), ∀u ∈ Vg, a.e. t ∈ [τ, T ],

belongs to L2(τ, T ;V ′g).

Lemma 2.3 ([1]). Let u ∈ L2(τ, T ;Vg). Then the function Cu defined by

(Cu(t), v)g =
((
∇g
g
· ∇
)
u, v

)
g

= b

(
∇g
g
, u, v

)
, ∀v ∈ Vg,

belongs to L2(τ, T ;Hg), and hence to L2(τ, T ;V ′g). Moreover,

‖Cu(t)‖∗ ≤
|∇g|∞
m0λ

1/2
1

‖u(t)‖ for a.e. t ∈ (τ, T ).

Since
−1
g

(∇ · g∇)u = −∆u−
(
∇g
g
· ∇
)
u,

we have

(−∆u, v)g = ((u, v))g +
((
∇g
g
· ∇
)
u, v

)
g

= (Au, v)g +
((
∇g
g
· ∇
)
u, v

)
g

, ∀u, v ∈ Vg.

2.2. Pullback attractors. Let (X, d) be a metric space. For A,B ⊂ X,
we define the Hausdorff semi-distance between A and B by

dist(A,B) = sup
x∈A

inf
y∈B

d(x, y).

A process on X is a two-parameter family of mappings {U(t, τ)} in X having
the following properties:

U(t, r)U(r, τ) = U(t, τ) for all t ≥ r ≥ τ,
U(τ, τ) = Id for all τ ∈ R.

The process {U(t, τ)} is said to be norm-to-weak continuous if U(t, τ)xn ⇀
U(t, τ)x as xn → x in X, for all t ≥ τ , τ ∈ R.
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Suppose that B(X) is the family of all non-empty bounded subsets of X,
and D is a non-empty class of parameterized sets D̂ = {D(t) : t ∈ R} ⊂
B(X).

Definition 2.4. The process {U(t, τ)} is said to be pullback D-asymptot-
ically compact if for any t ∈ R, any D̂ ∈ D, any sequence τn → −∞, and any
sequence xn ∈ D(τn), the sequence {U(t, τn)xn} is relatively compact in X.

Definition 2.5. The family of bounded sets B̂ = {B(t) : t ∈ R} ∈ D
is called pullback D-absorbing for the process U(t, τ) if for any t ∈ R, any
D̂ ∈ D, there exists τ0 = τ0(D̂, t) ≤ t such that⋃

τ≤τ0

U(t, τ)D(τ) ⊂ B(t).

Definition 2.6. A family Â = {A(t) : t ∈ R} ⊂ B(X) is said to be a
pullback D-attractor for {U(t, τ)} if

(1) A(t) is compact for all t ∈ R;
(2) Â is invariant, i.e.,

U(t, τ)A(τ) = A(t), for all t ≥ τ ;

(3) Â is pullback D-attracting, i.e.,
lim

τ→−∞
dist(U(t, τ)D(τ), A(t)) = 0 for all D̂ ∈ D and all t ∈ R;

(4) If {C(t) : t ∈ R} is another family of closed attracting sets then
A(t) ⊂ C(t) for all t ∈ R.

Theorem 2.7 ([8]). Let {U(t, τ)} be a norm-to-weak continuous process
such that {U(t, τ)} is pullback D-asymptotically compact. If there exists a
family of pullback D-absorbing sets B̂ = {B(t) : t ∈ R} ∈ D, then {U(t, τ)}
has a unique pullback D-attractor Â = {A(t) : t ∈ R} and

A(t) =
⋂
s≤t

⋃
τ≤s

U(t, τ)B(τ).

We now recall some results on the estimates of the fractal dimension of
pullback attractors in [7].

Let H be a separable real Hilbert space H. Given a compact set K ⊂ H,
and ε > 0, we denote by Nε(K) the minimum number of open balls in H
with radii ε that are necessary to cover K.

Definition 2.8. For any non-empty compact set K ⊂ H, the fractal
dimension of K is the number

dF(K) = lim sup
ε↓0

log(Nε(K))
log(1/ε)

.
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Consider a separable real Hilbert space V ⊂ H such that the injection of
V inH is continuous, and V is dense inH. We identifyH with its topological
dual H ′, and we consider V as a subspace of H ′, identifying v ∈ V with the
element fv ∈ H ′, defined by

fv(h) = (v, h), h ∈ H.

Let F : V ×R→ V ′ be a given family of non-linear operators such that,
for all τ ∈ R and any u0 ∈ H, there exists a unique function u(t) = u(t; τ, u0)
satisfying
(2.4)
u ∈ L2(τ, T ;V ) ∩ C([τ, T ];H), F (u(t), t) ∈ L1(τ, T ;V ′) for all T > τ,

du/dt = F (u(t), t), t > τ,

u(τ) = u0.

Let us define
U(t, τ)u0 = u(t; τ, u0), τ ≤ t, u0 ∈ H.

Fix T ∗ ∈ R. We assume that there exists a family {A(t) : t ≤ T ∗} of
non-empty compact subsets of H with the invariance property

U(t, τ)A(τ) = A(t) for all τ ≤ t ≤ T ∗

and such that, for all τ ≤ t ≤ T ∗ and any u0 ∈ A(τ), there exists a continuous
linear operator L(t; τ, u0) ∈ L(H) such that

(2.5) |U(t, τ)u0−U(t, τ)u0−L(t; τ, u0)(u0−u0)| ≤ γ(t−τ, |u0−u0|)|u0−u0|

for all u0 ∈ A(τ), where γ : R+ ×R+ → R+ is a function such that γ(s, ·) is
non-decreasing for all s ≥ 0, and

(2.6) lim
r→0

γ(s, r) = 0 for any s ≥ 0.

We assume that, for all t ≤ T ∗, the mapping F (·, t) is Gateaux differ-
entiable in V , i.e., for any u ∈ V there exists a continuous linear operator
F ′(u, t) ∈ L(V ;V ′) such that

lim
ε→0

1
ε

[F (u+ εv, t)− F (u, t)− εF ′(u, t)v] = 0 ∈ V ′.

Moreover, we suppose that the mapping

F ′ : (u, t) ∈ V × (−∞, T ∗] 7→ F ′(u, t) ∈ L(V ;V ′)

is continuous (thus, in particular, for each t ≤ T ∗, the mapping F (·, t) is
continuously Fréchet differentiable in V ).

Then, for all τ ≤ T ∗ and u0, v0 ∈ H, there exists a unique v(t) =
v(t; τ, u0, v0) which is a solution of
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v ∈ L2(τ, T ;V ) ∩ C([τ, T ];H) for all τ < T ≤ T ∗,
dv/dt = F ′(U(t, τ)u0, t)v, τ < t < T ∗,

v(τ) = v0.

We make the assumption that

(2.7) v(t; τ, u0, v0) = L(t; τ, u0)v0 for all τ ≤ t ≤ T ∗, u0, v0 ∈ A(τ).

Let us write, for j = 1, 2, . . . ,

q̃j = lim
T→+∞

sup
τ≤T ∗

sup
u0∈A(τ−T )

(
1
T

τ�

τ−T
Trj(F ′(U(s, τ − T )u0, s)) ds

)
,

where

Trj(F ′(U(s, τ)u0, s)) = sup
vi0∈H, |vi0|≤1, i≤j

( j∑
i=1

〈F ′(U(s, τ)u0, s)ei, ei〉
)
,

e1, . . . , ej being an orthonormal basis of the subspace in H spanned by

v(s; τ, u0, v
1
0), . . . , v(s; τ, u0, v

j
0).

Theorem 2.9 ([7, Theorem 2.2]). Under the assumptions above, suppose
that ⋃

τ≤T ∗
A(τ) is relatively compact in H,

and there exist qj, j = 1, 2, . . . , such that

q̃j ≤ qj for any j ≥ 1,
qn0 ≥ 0, qn0+1 < 0 for some n0 ≥ 1,
qj ≤ qn0 + (qn0 − qn0+1)(n0 − j) for all j = 1, 2, . . . .

Then
dF(A(τ)) ≤ d0 := n0 +

qn0

qn0 − qn0+1
for all τ ≤ T ∗.

3. Existence of pullback attractors. We first prove a result on the
existence and uniqueness of a weak solution to problem (1.1).

Definition 3.1. A function u is called a weak solution to problem (1.1)
on the interval (τ, T ) if

u ∈ L∞(τ, T ;Hg) ∩ L2(τ, T ;Vg),
d

dt
u(t)+νAu(t)+B(u(t), u(t))+νCu(t)=f(t) in V ′g for a.e. t ∈ (τ, T ),

u(τ) = u0.

Theorem 3.2. Suppose u0 ∈ Hg is given and assumptions (H1)–(H3)
hold. Then, for any τ ∈ R, T > τ given, problem (1.1) has a unique weak
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solution u on (τ, T ). Moreover,

(3.1) |u(t)|2 ≤ e−σ(t−τ)|u0|2 +
e−σt

2εν

t�

−∞
eσs‖f(s)‖2∗ ds,

where ε is the positive number such that σ = 2νλ1(γ0 − ε).

Proof. (i) Existence. The existence part is based on Galerkin appoxima-
tions, a priori estimates, and the compactness method [9]. As it is standard
and similar to the case of the Navier–Stokes equations [13], we provide only
some basic a priori estimates used frequently later. From (1.1), we have

(3.2)
d

dt
|u(t)|2 + 2ν‖u(t)‖2 = 2〈f(t), u(t)〉 − 2νb

(
∇g
g
, u(t), u(t)

)
.

Using Lemma 2.3 and the Cauchy inequality, we get
d

dt
|u(t)|2 + 2ν‖u(t)‖2 ≤ 2εν‖u(t)‖2 +

1
2εν
‖f(t)‖2∗ + 2ν

|∇g|∞
m0λ

1/2
1

‖u(t)‖2,

and hence
d

dt
|u(t)|2 + 2ν(γ0 − ε)‖u(t)‖2 ≤ 1

2εν
‖f(t)‖2∗,

where γ0 = 1 − |∇g|∞/(m0λ
1/2
1 ), and ε > 0 is chosen such that γ0 − ε > 0.

Integrating the last inequality on [τ, t], τ ≤ t ≤ T , we get

|u(t)|2 + 2ν(γ0 − ε)
t�

τ

‖u(s)‖2 ds ≤ |u(τ)|2 +
1

2εν

t�

τ

‖f(s)‖2∗ ds(3.3)

≤ |u0|2 +
1

2εν
‖f‖2L2(τ,T ;V ′g).

This inequality implies the estimates of u in the function space L2(τ, T ;Vg)∩
L∞(τ, T ;Hg). By rewriting the equation as

(3.4)
du(t)
dt

= −νAu(t)−B(u(t))− νCu(t) + f(t),

we get the estimate of du/dt in L2(τ, T ;V ′g).
(ii) Uniqueness and continuous dependence. Assume that u = u(t; τ, u0)

and v = v(t; τ, v0) are two weak solutions of (1.1) with initial data u0, v0.
Set w = u− v. Then

w ∈ L2(τ, T ;Vg) ∩ L∞(τ, T ;Hg),

and w satisfies
d

dt
w + νAw + νCw = Bv −Bu,

w(τ) = u0 − v0.
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Hence we have
d

dt
|w(t)|2 + 2ν‖w(t)‖2 + 2νb

(
∇g
g
, w(t), w(t)

)
= 2b(v(t), v(t), w(t))− 2b(u(t), u(t), w(t)) = −2b(w(t), v(t), w(t)).

By Lemma 2.1, we have

|2b(w(t), v(t), w(t))|≤2c|w(t)| ‖w(t)‖ ‖v(t)‖≤ν‖w(t)‖2 +
c2

ν
|w(t)|2‖v(t)‖2,

and∣∣∣∣2νb(∇gg , w(t), w(t)
)∣∣∣∣≤2

|∇g|∞
m0

‖w(t)‖ |w(t)|≤ν‖w(t)‖2 +
ν|∇g|2∞
m2

0

|w(t)|2.

Therefore,
d

dt
|w(t)|2 ≤

(
c2

ν
‖v(t)‖2 +

ν|∇g|2∞
m2

0

)
|w(t)|2.

Thus,

|w(t)|2 ≤ |w(τ)|2 exp
(t�
τ

(
c2

ν
‖v(s)‖2 +

ν|∇g|2∞
m2

0

)
ds

)
.

The last estimate implies the uniqueness (if u0 = v0) and the continuous
dependence of solutions on the initial data.

(iii) The a priori estimate (3.1). Choose ε > 0 in inequality (3.3) such
that σ = 2νλ1(γ0 − ε), where γ0 = 1 − |∇g|∞/(m0λ

1/2
1 ) > 0. Applying the

Gronwall lemma in (3.3), we get (3.1). Hence it follows that the solution u
can be extended to [τ,+∞).

Thanks to Theorem 3.2, we can define a process U(t, τ) in Hg by

U(t, τ)u0 = u(t; τ, u0), τ ≤ t, u0 ∈ Hg,

where u(t) = u(t; τ, u0) is the unique weak solution of problem (1.1) with
the initial datum u(τ) = u0.

We first prove the weak continuity of the process.

Lemma 3.3. Let {u0n} be a sequence in Hg converging weakly in Hg to
an element u0 ∈ Hg. Then

U(t, τ)u0n ⇀ U(t, τ)u0 weakly in Hg, for all τ ≤ t,(3.5)

U(t, τ)u0n ⇀ U(t, τ)u0 weakly in L2(τ, T ;Vg), for all τ < T.(3.6)

Proof. Let un(t) = U(t, τ)u0n and u(t) = U(t, τ)u0. As in the proof of
Theorem 3.1, for all T > τ ,

(3.7) {un} is bounded in L∞(τ, T ;Hg) ∩ L2(τ, T ;Vg),

and
{u′n} is bounded in L2(τ, T ;V ′g).
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Then, for all v ∈ Vg, and τ ≤ t ≤ t+ a ≤ T with T > τ ,

(un(t+ a)− un(t), v)g =
t+a�

t

〈u′n(s), v〉 ds(3.8)

≤ ‖v‖a1/2‖u′n‖L2(τ,T ;V ′g) ≤ CT ‖v‖a1/2,

where CT is positive and independent of n. Then, for v = un(t+ a)− un(t),
which belongs to Vg for almost every t, from (3.8) we have

|un(t+ a)− un(t)|2 ≤ CTa1/2‖un(t+ a)− un(t)‖.

Hence

(3.9)
T−a�

τ

|un(t+ a)− un(t)|2 ds ≤ CTa1/2
T−a�

τ

‖un(t+ a)− un(t)‖ dt.

Using the Cauchy inequality and (3.7), we deduce from (3.9) that

T−a�

τ

|un(t+ a)− un(t)|2 dt ≤ C̃Ta1/2

for another positive constant C̃T independent of n. Therefore

(3.10) lim
a→0

sup
n

T−a�

τ

‖un(t+ a)− un(t)‖2L2(Ωr,g)
dt = 0

for all r > 0, where Ωr = {x ∈ Ω : |x| < r}. Moreover, from (3.7),

{un|Ωr} is bounded in L∞(τ, T ;L2(Ωr, g)) ∩ L2(τ, T ;H1(Ωr, g))

for all r > 0. Consider now a truncation function ρ ∈ C1(R+) with ρ(s)
= 1 in [0, 1], and ρ(s) = 0 in [2,+∞). For each r > 0, define vn,r(x) =
ρ(|x|2/r2)un(x) for x ∈ Ω2r. Then, from (3.10), we have

lim
a→0

sup
n

T−a�

τ

‖un(t+ a)− un(t)‖2L2(Ω2r,g)
dt = 0, ∀T > τ, ∀r > 0,

and {vn,r} is bounded in L∞(τ, T ;L2(Ω2r, g)) ∩ L2(τ, T ;H1
0 (Ω2r, g)) for all

T > τ , r > 0. Thus, by the Aubin–Lions lemma [9],

{vn,r} is relatively compact in L2(τ, T ;L2(Ω2r, g), ∀T > τ, r > 0.

It follows that

{un|Ωr} is relatively compact in L2(τ, T ;L2(Ω2r, g), ∀T > τ, r > 0.
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Then, by a diagonal process, we can extract a subsequence {un′} such that

un′ → ũ weakly∗ in L∞loc(R;Hg),

un′ → ũ weakly in L2
loc(R;Vg),(3.11)

un′ → ũ strongly in L2
loc(R;L2(Ωr, g)), r > 0,

for some ũ ∈ L∞loc(R;Hg) ∩ L2
loc(R;Vg).

The convergences (3.11) allows us to pass to the limit in the equation
for un′ to find that ũ is a weak solution of (1.1) with ũ(τ) = u0. By the
uniqueness of the solutions we must have ũ = u. Then by a contradiction
argument we deduce that the whole sequence {un} converges to u in the
sense of (3.11). This proves (3.6).

Now, from the strong convergence in (3.11) we also infer that un(t) con-
verges strongly in L2(Ωr, g) to u(t) for a.e. t ≥ τ and all r > 0. Hence for
all v ∈ V,

(un(t), v)g → (u(t), v)g for a.e. t ∈ R.
Moveover, from (3.9) and (3.10), we see that {(un(t), v)} is equibounded and
equicontinuous on [τ, T ] for all T > 0. Therefore

(un(t), v)g → (u(t), v)g, ∀t ∈ R, ∀v ∈ V.
Finally, (3.5) follows from the fact that V is dense in Hg.

Let Rσ be the set of all functions r : R→ (0,+∞) such that

(3.12) lim
t→−∞

eσtr2(t) = 0,

and denote by Dσ the class of all families D̂ = {D(t) : t ∈ R} ⊂ B(Hg) such
that D(t) ⊂ B(0, r̂(t)) for some r̂(t) ∈ Rσ, where B(0, r) denotes the close
ball in Hg, centered at zero with radius r.

Now, we can prove one of the main results of the paper.

Theorem 3.4. Suppose that conditions (H1)–(H3) hold. Then there ex-
ists a unique pullback Dσ-attractor Â = {A(t) : t ∈ R} for the process
{U(t, τ)} associated to problem (1.1).

Proof. Let τ ∈ R and u0 ∈ Hg be fixed, and denote

u(t) = u(t; τ, u0) = U(t, τ)u0 for all t ≥ τ.
In order to apply Theorem 2.7, we will check the conditions in the abstract
theorem.

(i) The process U(t, τ) has a family B̂ of pullback Dσ-absorbing sets. Let
D̂ ∈ Dσ be given. From (3.1), we get

(3.13) |U(t, τ)u0|2 ≤ e−σ(t−τ)r̂(τ) +
e−σt

2εν

t�

−∞
eσs‖f(s)‖2∗ ds

for all u0 ∈ D(τ) and all t ≥ τ .
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Define Rσ(t) ∈ Rσ by

(3.14) R2
σ(t) =

e−σt

εν

t�

−∞
eσs‖f(s)‖2∗ ds,

and consider the family B̂σ of closed balls inHg defined byBσ(t)=B(0,Rσ(t)).
It is straightforward to check that B̂σ ∈ Dσ, and moreover, by (3.12) and
(3.13), the family B̂σ is pullback Dσ-absorbing for the process U(t, τ).

(ii) U(t, τ) is pullback Dσ-asymptotically compact. Fix D̂ ∈ Dσ, a se-
quence τn → −∞, a sequence u0n ∈ D(τn) and t ∈ R. We must prove that
from the sequence {U(t, τn)u0n} we can extract a subsequence that converges
in Hg.

As the family B̂σ is pullback Dσ-absorbing, for each integer k ≥ 0, there
exists a τD̂(k) ≤ t− k such that

(3.15) U(t− k, τ)D(τ) ⊂ Bσ(t− k) for all τ ≤ τD̂(k),

so that for τn ≤ τD̂(k),

U(t− k, τn)u0n ⊂ Bσ(t− k).

Thus, {U(t− k, τn)u0n} is weakly precompact in Hg and since Bσ(t− k) is
closed and convex, there exist a subsequence {(τn′ , u0n′)} ⊂ {(τn, u0n)} and
a sequence {wk : k ≥ 0} ⊂ Hg such that for all k ≥ 0, wk ∈ Bσ(t− k), and

(3.16) U(t− k, τn′)u0n′ ⇀ wk weakly in Hg.

Note that from the weak continuity of U(t, τ) established in Lemma 3.3,
we have

w0 = w-lim
n′→∞

U(t, τn′)u0n′ = w-lim
n′→∞

U(t, t− k)U(t− k, τn′)u0n′

= U(t, t− k)w-lim
n′→∞

U(t− k, τn′)u0n′ = U(t, t− k)wk,

where w-lim denotes the limit taken in the weak topology of Hg. Thus

(3.17) U(t, t− k)wk = w0 for all k ≥ 0.

Now, from (3.16), by the lower semicontinuity of the norm, we have

|w0| ≤ lim inf
n′→∞

|U(t, τn′)u0n′ |.

If we now prove that also

(3.18) lim sup
n′→∞

|U(t, τn′)u0n′ | ≤ |w0|,

then we will have
lim
n′→∞

|U(t, τn′)u0n′ | = |w0|,

and this, together with the weak convergence, will imply the strong conver-
gence in Hg of U(t, τn′)u0n′ to w0.
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In order to prove (3.18), define [· , ·]g : Vg × Vg → R by
(3.19)

[u, v]g = ν((u, v))g +
ν

2

((
∇g
g
· ∇
)
u, v

)
+
ν

2

((
∇g
g
· ∇
)
v, u

)
− σ

2
(u, v)g,

for all u, v ∈ Vg. Clearly, [· , ·]g is bilinear and symmetric. Moreover, from
the fact that ‖u‖2 ≥ λ1|u|2, we have

[u]2 ≡ [u, u]g = ν‖u‖2 + ν

((
∇g
g
· ∇
)
u, u

)
− σ

2
|u|2

≥ ν‖u‖2 − ν
(
|∇g|∞
m0λ

1/2
1

+
γ0

2

)
‖u‖2 = εν‖u‖2,

where we have used Lemma 2.3 and the facts that σ = 2νλ1(γ0 − ε) and
γ0 = 1− |∇g|∞/(m0λ

1/2
1 ). Hence

(3.20)
ε

ν
‖u‖2 ≤ [u]2 ≤ ν‖u‖2, ∀u ∈ Vg.

Thus, [· , ·]g defines an inner product in Vg with the norm [·] = [· , ·]1/2g , which
is equivalent to the norm ‖ · ‖ in Vg.

Now, from (3.2), we get
d

dt
|u(t)|2 + σ|u(t)|2 + 2[u(t)]2 ≤ 2〈f(t), u(t)〉.

Hence

|u(t)|2 ≤ |u0|2e−σ(t−τ) + 2
t�

τ

(〈f(s), u(s)〉 − [u(s)]2) ds,

which can be rewritten as

|U(t, τ)u0|2 ≤ |u0|2eσ(τ−t)(3.21)

+ 2
t�

τ

eσ(s−t)(〈f(s), U(s, τ)u0〉 − [U(s, τ)u0]2) ds

for all τ ≤ t, and all u0 ∈ Hg. Thus, for all k ≥ 0 and all τn′ ≤ t− k,
|U(t, τn′)u0n′ |2 = |U(t, t− k)U(t− k, τn′)u0n′ |2(3.22)

≤ e−σk|U(t− k, τn′)u0n′ |2

+ 2
t�

t−k
eσ(s−t)〈f(s), U(s, t− k)U(t− k, τn′)u0n′〉 ds

− 2
t�

t−k
eσ(s−t)[U(s, t− k)U(t− k, τn′)u0n′ ]2 ds.

By (3.15), U(t− k, τn′)u0n′ ∈ Bσ(t− k) for all τn′ ≤ τD̂(k), k ≥ 0, we have
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(3.23) lim sup
n′→∞

e−σk|U(t− k, τn′)u0n′ |2 ≤ e−σkR2
σ(t− k), k ≥ 0.

As U(t− k, τn′)u0n′ ⇀ wk weakly in Hg, from Lemma 3.3 we have

(3.24) U(·, t−k)U(t−k, τn′)u0n′ ⇀ U(·, t−k)wk weakly in L2(t−k, t;Vg).

Taking into account that, in particular, eσ(s−t)f(s) ∈ L2(t − k, t;V ′g), from
(3.24) we obtain

(3.25) lim
n′→∞

t�

t−k
eσ(s−t)〈f(s), U(s, t− k)U(t− k, τn′)u0n′〉 ds

=
t�

t−k
eσ(s−t)〈f(s), U(s, t− k)wk〉 ds.

Moreover, since [·] is a norm in Vg equivalent to ‖ · ‖ and

0 < e−σk ≤ eσ(s−t) ≤ 1 for all s ∈ [t− k, t],
we see that ( t�

t−k
e−σ(t−s)[·]2 ds

)1/2

is a norm in L2(t− k, t;Vg) equivalent to the usual norm. Hence from (3.24)
we deduce that
t�

t−k
eσ(s−t)[U(s, t−k)wk]2 ds ≤ lim inf

n′→∞

t�

t−k
eσ(s−t)[U(s, t−k)U(t−k, τn′)u0n′ ]2 ds.

Hence

(3.26) lim sup
n′→∞

−2
t�

t−k
eσ(s−t)[U(s, t− k)U(t− k, τn′)u0n′ ]2 ds

= − lim inf
n′→∞

2
t�

t−k
eσ(s−t)[U(s, t− k)U(t− k, τn′)u0n′ ]2 ds

≤ −2
t�

t−k
eσ(s−t)[U(s, t− k)wk]2 ds.

We can now pass to the lim sup as n′ goes to ∞ in (3.22), and take (3.23),
(3.25) and (3.26) into account to obtain

(3.27) lim sup
n′→∞

|U(t, τn′)u0n′ |2 ≤ e−σkR2
σ(t− k)

+ 2
t�

t−k
eσ(s−t)(〈f(s), U(s, t− k)wk〉 − [U(s, t− k)wk]2

)
ds.
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On the other hand, from (3.21) applied to (3.17) we find that

|w0| = |U(t, t− k)wk|2 = |wk|2e−σk(3.28)

+ 2
t�

t−k
eσ(s−t)(〈f(s), U(s, t− k)wk〉 − [U(s, t− k)wk]2

)
ds.

From (3.27) and (3.28), we have

lim sup
n′→∞

|U(t, τn′)u0n′ |2 ≤ e−σkR2
σ(t− k) + |w0|2 − |wk|2e−σk

≤ e−σkR2
σ(t− k) + |w0|2,

and thus, taking into account that

e−σkR2
σ(t− k) =

e−σt

εν

t−k�

−∞
eσs‖f(s)‖2∗ ds→ 0 as k → +∞,

we easily obtain (3.18) from the last inequality.

Remark 3.5. When g ≡ const > 0, we formally get the results for
the 2D non-autonomous Navier–Stokes equations. Notice that the result of
Theorem 3.4 improves the existing one for the Navier–Stokes equations in
the sense that the external force f ∈ L2

loc(R;V ′g) only need satisfy
0�

−∞
eσs‖f(s)‖2∗ ds < +∞, where σ < 2νλ1,

compared with the condition σ = νλ1 for the Navier–Stokes equations [2]
(this condition is recovered if we take g ≡ 1 and ε = 1/2).

4. Fractal dimension estimates of the pullback attractor. Ob-
serve that problem (1.1) can be written in the form (2.4) by taking

F (u, t) = −νAu(t)−Bu(t)− νCu(t) + f(t).

Then it follows immediately that for all t ∈ R, the mapping F (·, t) is Gateaux
differentiable in Vg with

F ′(u, t)v = −νAv −B(u, v)−B(v, u)− νCv, u, v ∈ Vg,
and the mapping F ′ : (u, t) ∈ Vg × R 7→ F ′(u, t) ∈ L(Vg;V ′g) is continuous.

Evidently, for any τ ∈ R, u0, v0 ∈ Hg, there exists a unique solution
v(t) = v(t; τ, u0, v0) of the problem
(4.1)
v ∈ L2(τ, T ;Vg) ∩ C([τ, T ];Hg),
dv

dt
= −νAv(t)−B(U(t, τ)u0, v(t))−B(v(t), U(t, τ)u0)− νCv(t), τ < t,

v(τ) = v0.
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From now on we suppose that

(4.2) f ∈ L∞(−∞, T ∗;V ′g) for some T ∗ ∈ R.
Lemma 4.1. Suppose that conditions (H1)–(H3) and (4.2) hold. Then

the pullback Dσ-attractor Â obtained in Theorem 3.4 satisfies

(4.3)
⋃
τ≤T∗

A(τ) is relatively compact in Hg.

Proof. Denoting M = ‖f‖L∞(−∞,T ∗;V ′g), from (3.14) we have

R2
σ(t) ≤ Me−σt

εν

t�

−∞
eσξ dξ =

M

ενσ
,

and consequently

B∗ :=
⋃
τ≤T ∗

Bσ(τ) is bounded in Hg,

where Bσ(τ) = B(0, Rσ(τ)).
Denote by M the set of all y ∈ Hg such that there exist a sequence

{(tn, τn)} ⊂ R2 satisfying

τn ≤ tn ≤ T ∗, n ≥ 1, lim
n→∞

(tn − τn) = +∞,

and a sequence {u0n} ⊂ B∗ such that limn→∞ |U(t, τn)u0n − y| = 0.
It is easy to see that A(t) ⊂ M for all t ≤ T ∗. If we prove that M is

relatively compact in Hg, then (4.3) follows immediately.
Let {yk} ⊂ M. For each k ≥ 1, we can take (tk, τk) ∈ R2 and an element

u0k ∈ B∗ such that tk ≤ T ∗, tk− τk ≥ k and |U(tk, τk)u0k−yk| ≤ 1/k. Using
(4.2), by arguments as in Proposition 3.4 in [7], we can extract from {yk} a
subsequence that converges in Hg.

Lemma 4.2. Suppose that conditions (H1)–(H3) and (4.2) hold. Then
the process U(t, τ) associated to problem (1.1) has the quasidifferentiability
properties (2.5)–(2.7), with v(t) = v(t; τ, u0, v0) defined by (4.1).

Proof. By (4.2) and Lemma 4.1, there exists a constant C > 1 such that

(4.4) ‖f‖2L∞(−∞,T ∗;V ′g) ≤ Cν
3, |u0|2 ≤ Cν2 for all u0 ∈

⋃
τ≤T ∗

A(τ).

Fix τ ≤ T ∗, u0, u0 ∈ A(τ), denote u(t) = U(t, τ)u0, u(t) = U(t, τ)u0 and let
v(t) be the solution of (4.1) with v0 = u0 − u0.

It is easy to see that

(4.5) |u(t)|2 + 2ν(γ0 − ε)
t�

τ

‖u(s)‖2 ds ≤ |u0|2 +
1

2εν

t�

τ

‖f(s)‖2∗ ds,

where γ0 = 1− |∇g|∞/(m0λ
1/2
1 ), and ε > 0 is chosen such that γ0 − ε > 0.
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Taking into account (4.4), we easily deduce from (4.5) that

(4.6)
t�

τ

‖u(s)‖2 ds ≤ Cν

2(γ0 − ε)
(1 + t− τ) for all τ ≤ t ≤ T ∗.

Denoting

w(t) = u(t)− u(t), τ ≤ t,

we have

d

dt
|w(t)|2 + 2ν‖w(t)‖2 + 2

(
ν

g
(∇g · ∇)w(t), w(t)

)
= −2b(u(t), u(t), w(t)) + 2b(u(t), u(t), w(t))
= 2b(w(t), u(t), w(t)).

Since

|2b(w(t), u(t), w(t))| ≤ 2c|w(t)| ‖w(t)‖ ‖u(t)‖

≤ ν

2
‖w(t)‖2 +

2c2

ν
|w(t)|2‖u(t)‖2,

and ∣∣∣∣2(νg (∇g · ∇)w(t), w(t)
)∣∣∣∣ ≤ 2ν

|∇g|∞
m0

‖w(t)‖|w(t)|

≤ ν

2
‖w(t)‖2 +

2ν|∇g|2∞
m2

0

|w(t)|2,

we have

(4.7)
d

dt
|w(t)|2 + ν‖w(t)‖2 ≤

(
2c2

ν
‖u(t)‖2 +

2ν|∇g|2∞
m2

0

)
|w(t)|2.

In particular,

|w(t)|2 ≤ |w(τ)|2 exp
(t�
τ

(
2c2

ν
‖u(s)‖2 +

2ν|∇g|2∞
m2

0

)
ds

)
.

Thus, by using (4.6),

(4.8) |w(t)|2 ≤ |w(τ)|2 exp(C1(1 + t− τ)) for all τ ≤ t ≤ T ∗,

where C1 = max{Cc2/(γ0 − ε) + 2ν|∇g|2∞/m2
0, 1}.
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Now, from (4.7) and (4.8), we have

ν

t�

τ

‖w(s)‖2 ds ≤ |w(τ)|2 +
t�

τ

(
2c2

ν
‖u(s)‖2 +

2ν|∇g|2∞
m2

0

)
|w(s)|2 ds

≤ |w(τ)|2 +
t�

τ

(
2c2

ν
‖u(s)‖2 +

2ν|∇g|2∞
m2

0

)
|w(τ)|2 exp(C1(1 + s− τ)) ds

≤ |w(τ)|2
[
1 + exp(C1(1 + t− τ))

t�

τ

(
2c2

ν
‖u(s)‖2 +

2ν|∇g|2∞
m2

0

)
ds

]
,

and thus, by (4.4), we have

ν

t�

τ

‖w(s)‖2 ds ≤ |w(τ)|2[1 + exp(C1(1 + t− τ))C1(1 + t− τ)](4.9)

≤ |w(τ)|2[1 + C1(1 + t− τ)] exp(C1(1 + t− τ))

≤ |w(τ)|2 exp(2C1(1 + t− τ)).

Let z(t) be defined by

z(t) = u(t)− u(t)− v(t) = w(t)− v(t), t ≥ τ.
Evidently, z(t) satisfies

z ∈ L2(τ, T ;Vg) ∩ L∞(τ, T ;Hg) ∩ C([τ, T ];Hg) for all t > τ,
dz

dt
= −νAz(t)−B(u(t), u(t)) +B(u(t), u(t)) +B(u(t), v(t))

+B(v(t), u(t))− νCz(t), t > τ,

z(τ) = 0.

It is easy to see that

−B(u(t), u(t)) +B(u(t), u(t)) +B(u(t), v(t)) +B(v(t), u(t))
= −B(u(t), z(t))−B(z(t), u(t))−B(w(t), w(t)),

and consequently, for all t > τ ,

(4.10)
d

dt
|z|2 + 2ν‖z‖2 = −2b(z, u, z)− 2b(w,w, z)− 2

(
ν

g
(∇g · ∇)z, z

)
≤ −2b(z, u, z)− 2b(w,w, z) + 2ν

|∇g|∞
m0

‖z‖ |z|

≤ ν

2
‖z‖2 +

2c2

ν
‖u‖2|z|2 +

ν

2
‖z‖2 +

2c2

ν
‖w‖2|w|2 + ν‖z‖2 +

ν|∇g|2∞
m2

0

|z|2

= 2ν‖z‖2 +
2c2

ν
‖u‖2|z|2 +

2c2

ν
‖w‖2|w|2 +

ν|∇g|2∞
m2

0

|z|2.
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Integrating (4.10) from τ to t, and using the fact that z(τ) = 0, we have

|z(t)|2 ≤ 2c2

ν

t�

τ

‖w‖2|w|2 ds+
t�

τ

(
2c2

ν
‖u‖2 +

ν|∇g|2∞
m2

0

)
|z|2 ds, ∀t ≥ τ,

and consequently, by Gronwall’s lemma,

|z(t)|2 ≤ 2c2

ν

t�

τ

‖w‖2|w|2 ds exp
[t�
τ

(
2c2

ν
‖u‖2 +

ν|∇g|2∞
m2

0

)
ds

]
.

From (4.8) we obtain

|z(t)|2 ≤ 2c2

ν
|w(τ)|2 exp(2C1(1 + t− τ))

t�

τ

‖w(s)‖2 ds.

Plugging (4.9) into the last estimate, we obtain

|z(t)|2 ≤ 2c2

ν2
|w(τ)|4 exp(4C1(1 + t− τ)),

i.e., (2.5)–(2.7) hold with

γ(s, r) =
√

2 cr
ν

exp(2C1(1 + s)),

where C1 > 1.

We now prove the main result in this section.

Theorem 4.3. Suppose that conditions (H1)–(H3) and (4.2) hold. Then
the pullback Dσ-attractor Â = {A(t) : t ∈ R} satisfies

dF(A(τ)) ≤ max
(

1,
κ‖f‖2L∞(−∞,T ∗;V ′g)

16ν4(γ0 − ε)2ε2λ1

)
for all τ ∈ R,

where γ0 = 1 − |∇g|2∞/(m0λ
2
1) > 0, and ε > 0 is the number such that

σ = 2νλ1(γ0 − ε).

Proof. For u0, ξ1, . . . , ξm ∈ Hg, we suppose vj(t) = L(t, τ ;u0)ξj . Let
{e1(t), . . . , em(t)} be an orthonormal basis in Hg of the subspace spanned by
{v1(t), . . . , vm(t)}. Since vj(t) ∈ Vg for a.e. t ≥ τ , we can assume ej(t) ∈ Vg
for a.e. t ≥ τ . Then it is not difficult to see that

(4.11) Trm(F ′(U(s, τ)u0, s) =
m∑
i=1

〈F ′(U(s, τ)u0, s)ei, ei〉

= −ν
m∑
i=1

‖ei‖2 −
m∑
i=1

b(ei, U(s, τ)u0, ei)−
m∑
i=1

(
ν

g
(∇g · ∇)ei, ei

)
for a.e. s ≥ τ .
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Using the explicit expression for b, we have∣∣∣ m∑
i=1

b(ei, u, ei)
∣∣∣ =

∣∣∣ m∑
i=1

�

Ω

2∑
k,l=1

eik(x)Dluk(x)eil(x)g(x) dx
∣∣∣

≤
�

Ω

|gradu(x)|ρ(x)g(x) dx,

where

|gradu(x)| =
{ 2∑
l,k=1

|Dluk(x)|2
}1/2

, ρ(x) =
m∑
i=1

2∑
k=1

(eik(x))2.

Therefore,

(4.12)
∣∣∣ m∑
i=1

b(ei, u, ei)
∣∣∣ ≤ �

Ω

|gradu(x)|ρ(x)g(x) dx ≤ ‖u‖ |ρ|

by the Schwarz inequality. Also, we obtain

(4.13)
∣∣∣∣ m∑
i=1

(
ν

g
(∇g · ∇)ei, ei

)∣∣∣∣ ≤ m∑
i=1

ν|∇g|∞
m0λ

1/2
1

‖ei‖2.

We recall that the dependence on s has been omitted and in fact u =
u(s, x), ρ = ρ(s, x), etc. From (4.11)–(4.13), we get

Trm(F ′(U(s, τ)u0, s) ≤ −ν
(

1− |∇g|∞
m0λ

1/2
1

) m∑
i=1

‖ei‖+ ‖U(t, τ)u0‖ |ρ|

= −νγ0

m∑
i=1

‖ei‖+ ‖U(t, τ)u0‖ |ρ|.

Since {ei} are orthonormal in Hg, hence in L2(Ω, g), and belong to Vg ↪→
H1

0 (Ω, g), by the Lieb–Thirring inequality (see [15, Theorem A.3.1] with
n = 2, p = 2, m = 1 and in particular [15, Example A5.1]), there exists a
constant κ depending only on the shape of Ω such that

|ρ(s)|2 =
�

Ω

ρ(s, x)2g(x) dx ≤ κ
m∑
i=1

‖ei‖2.

Hence,

Trm(F ′(U(s, τ)u0, s) ≤ −νγ0

m∑
i=1

‖ei‖+ ‖U(t, τ)u0‖|ρ|

≤ −νγ0

m∑
i=1

‖ei‖2 + ‖U(t, τ)u0‖
(
κ

m∑
i=1

‖ei‖2
)1/2

≤ −ν(γ0 − ε)
m∑
i=1

‖ei‖2 +
κ

4νε
‖U(t, τ)u0‖2
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≤ −ν(γ0 − ε)λ1

m∑
i=1

|ei|2 +
κ

4νε
‖U(t, τ)u0‖2

= −ν(γ0 − ε)λ1m+
κ

4νε
‖U(t, τ)u0‖2,

where we have used the fact that |ei| = 1. On the other hand,

d

dt
|U(s, τ)u0|2 + 2ν(γ0 − ε)‖U(s, τ)u0‖2 ≤

‖f(s)‖2∗
2νε

,

and if we denote M = ‖f‖2L∞(−∞,T ∗;V ′g) we have

τ�

τ−T
‖U(s, τ)u0‖2 ds ≤

(
MT

4ν2ε
+
|u0|2

2ν

)
(γ0 − ε)−1, t ≥ τ.

Using Theorem 2.9, we obtain

q̃m ≤ lim sup
T→+∞

sup
u0∈A(τ−T )

1
T

τ�

τ−T
Trm(F ′(U(s, τ − T )u0, s)) ds

(4.14)

≤ −ν(γ0 − ε)λ1m+
κ

4νε
lim sup
T→+∞

sup
u0∈A(τ−T )

(
M

4ν2ε
+
|u0|2

2νT

)
(γ0 − ε)−1

≤ −ν(γ0 − ε)λ1m+
κM

16ν3ε2(γ0 − ε)
.

We now consider two cases: if κM < 16ν4(γ0 − ε)2ε2λ1, then taking

qm = −ν(γ0 − ε)λ1(m− 1), m = 1, 2, . . . ,

and n0 = 1, we can apply Theorem 2.9 to obtain

dF(A(τ)) ≤ 1 for all τ ≤ T ∗;
if κM ≥ 16ν4(γ0 − ε)2ε2λ1, then taking

qm = −ν(γ0 − ε)λ1m+
κM

16ν3ε2(γ0 − ε)
, m = 1, 2, . . . ,

and

n0 = 1 +
[

κM

16ν4(γ0 − ε)2ε2λ1
− 1
]
,

where [r] denotes the integer part of a real number r, we obtain

dF(A(τ)) ≤
κ‖f‖2L∞(−∞,T ∗;V ′g)

16ν4(γ0 − ε)2ε2λ1
for all τ ≤ T ∗.

Finally, since U(t, τ) is Lipschitz in A(τ), it follows from [10, Proposition
13.9] that dF(A(t)) is bounded for every t ≥ τ with the same bound.
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Remark 4.4. When g ≡ 1 and ε = 1/2, we recover the result in [7] for
the usual 2D non-autonomous Navier–Stokes equations:

dF(A(τ)) ≤ max
(

1,
κ‖f‖2L∞(−∞,T ∗;V ′g)

ν4λ1

)
for all τ ∈ R.

5. Global stability of stationary solutions. Assuming now that the
external force f is independent of time t, in this section we are looking for
solutions of the following problem:

(5.1)


−ν∆u+ (u · ∇)u+∇p = f, x ∈ Ω,
(1/g)∇ · (gu) = 0, x ∈ Ω,
u(x) = 0, x ∈ ∂Ω.

Given f ∈ V ′g , a weak solution to stationary problem (5.1) is a function
u ∈ Vg satisfying

ν((u, v))g + b(u, u, v) = 〈f, v〉 for all test functions v ∈ Vg.

Theorem 5.1. For every f ∈ V ′g , there exists at least one weak solution
of problem (5.1). Moreover, if f belongs to Hg, all weak solutions belong to
D(A). Finally, if

(5.2) ν2

(
1− |∇g|∞

m0λ
1/2
1

)2

>
c1

λ
1/2
1

‖f‖∗,

where c1 is the constant in (2.3), then the weak solution of problem (5.1) is
unique.

Proof. Let us consider an orthonormal basis {wj} ⊂ V of Hg consisting
of eigenfunctions of the Stokes problem in Ω with the homogeneous Dirichlet
condition. The subspace of Vg spanned by w1, . . . , wm will be denoted Vm.
Consider the projector Pm : Hg → Vm given by

Pmu =
m∑
i=1

(u,wi)gwi,

and define

um =
m∑
i=1

γmiwi,

where

(5.3) ν((um, wi)) + νb

(
∇g
g
, um, wi

)
+ b(um, um, wi) = 〈f, wi〉

for every v in Vm. Equation (5.3) is also equivalent to

(5.4) νAum + PmBu
m + νPmCu

m = Pmf.
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The existence of a solution um of (5.3) follows from the Brouwer fixed point
theorem as in the case of stationary Navier–Stokes equations (for details, see
[13, p. 164]). Taking v = um in (5.3) and taking into account (2.2), we get

ν‖um(t)‖2 = 〈f, um〉 − νb
(
∇g
g
, um, um

)
≤ ‖f‖∗‖um‖+ ν

|∇g|∞
m0λ

1/2
1

‖um‖2.

Hence

(5.5) ν

(
1− |∇g|∞

m0λ
1/2
1

)
‖um‖ ≤ ‖f‖∗.

We extract from {um} a sequence {um′} which converges weakly in Vg to
some limit u. If Ω is bounded, then the injection of Vg into Hg is compact.
Thus, this convergence holds also in the norm of Hg:

um
′ → u weakly in Vg, and strongly in Hg,

up to a subsequence. Passing to the limit in (5.3) with the sequence m′, we
find that u is a weak solution of (5.1). If Ω is unbounded, the injection of
Vg into Hg is no longer compact. However, this difficulty can be overcome
by using arguments as in [13, pp. 168–171].

To prove the second statement, we note that if u ∈ Vg, then Bu ∈ V −1/2
g

and Cu ∈ V −1/2
g . Hence u = (1/ν)A−1(f −Bu− νCu) ∈ V 3/2

g since f ∈ Hg.
Therefore, Bu ∈ Hg and Cu ∈ Hg, and thus u is in D(A).

For the uniqueness of solutions, let us assume that u1 and u2 are two
solutions of (5.3). Setting u = u1 − u2, we have

ν‖u‖2 + νb

(
∇g
g
, u, u

)
= b(u2, u2, u)− b(u1, u1, u) = −b(u, u2, u).

By Lemma 2.1,

|b(u, u2, u)| ≤ c1|u| ‖u‖ ‖u2‖ ≤
c1

λ1
1/2
‖u‖2‖u2‖

≤ c1

λ1
1/2

1

ν
(

1− |∇g|∞
m0λ

1/2
1

)‖f‖∗‖u‖2,
where we have used the fact that ‖u‖2 ≥ λ1|u|2 and inequality (5.5) for the
solution u2. By Lemma 2.3,∣∣∣∣b(∇gg , u, u

)∣∣∣∣ ≤ |∇g|∞
m0λ

1/2
1

‖u‖2.

Therefore,(
ν

(
1− |∇g|∞

m0λ
1/2
1

)
− c1

λ
1/2
1

1

ν
(

1− |∇g|∞
m0λ

1/2
1

)‖f‖∗)‖u‖2 ≤ 0,

and u = 0, i.e. u1 = u2, if (5.2) holds.
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Theorem 5.2. Given f ∈ Hg, assume that

ν

(λ1

(
1− |∇g|

2
∞

m2
0λ1

)
c′2

)3/4

>
2
ν

(
1 +

|∇g|∞
m0λ

1/2
1

(
1− |∇g|∞

m0λ
1/2
1

))|f |(5.6)

+
c2

2

2ν5λ
3/2
1

(
1− |∇g|∞

m0λ
1/2
1

)3 |f |
3,

where c2 is the constant in Lemma 2.1 and c′2 = 3
4(c2/λ

1/2
1 )4/3. Then the

weak solution of (5.1) (denoted by u∞) is unique. If u is any weak solution
of problem (1.1) with u0 ∈ Hg arbitrary and f(t) ≡ f for all t, then

u(t)→ u∞ in Hg as t→∞.

Proof. Let w(t) = u(t)− u∞. We have

dw(t)
dt

+ νAw(t) + νCw(t) +Bu(t)−Bu∞ = 0,

and, taking the scalar product with w(t),

1
2
d

dt
|w(t)|2 + ν‖w(t)‖2 + νb

(
∇g
g
, w(t), w(t)

)
+ b(u(t), u(t), w(t))− b(u∞, u∞, w(t)) = 0.

Hence
1
2
d

dt
|w(t)|2 + ν‖w(t)‖2

= −b(w(t), u∞, w(t))− νb
(
∇g
g
, w(t), w(t)

)
≤ c2

λ
1/2
1

|w(t)|3/2‖w(t)‖1/2|Au∞|+ ν
|∇g|∞
m0

‖w(t)‖ |w(t)|

≤ ν

4
‖w(t)‖2 +

c′2
ν1/3
|w(t)|2|Au∞|4/3 +

ν

4
‖w(t)‖2 + ν

|∇g|2∞
m2

0

|w(t)|2,

where we have used (2.3), the inequality |Au∞| ≥ λ
1/2
1 ‖u∞‖, the Young

inequality, and c′2 = 3
4(c2/λ

1/2
1 )4/3. Therefore,

(5.7)
d

dt
|w(t)|2 +

(
νλ1 −

c′2
ν1/3
|Au∞|4/3 − ν

|∇g|2∞
m2

0

)
|w(t)|2 ≤ 0.

If

(5.8) ν̄ = νλ1 −
c′2
ν1/3
|Au∞|4/3 − ν

|∇g|2∞
m2

0

> 0,
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then (5.7) shows that |w(t)| decays exponentially to 0 as t→∞:

|w(t)|2 ≤ |w(0)|e−ν̄t, w(0) = u0 − u∞.
Since u∞ ∈ D(A), we have

ν|Au∞| ≤ |f |+ |Bu∞|+ ν|Cu∞|

≤ |f |+ c2‖u∞‖3/2|Au∞|1/2 +
ν|∇g|∞
m0

‖u∞‖

≤ |f |+ ν

2
|Au∞|+

c2
2

2ν
‖u∞‖3 +

ν|∇g|∞
m0

‖u∞‖

≤ |f |+ ν

2
|Au∞|+

c2
2

2ν4λ
3/2
1

1(
1− |∇g|∞

m0λ
1/2
1

)3 |f |
3

+
|∇g|∞
m0λ

1/2
1

1(
1− |∇g|∞

m0λ
1/2
1

) |f |,
where we have used (5.5) and the fact that ‖f‖∗ ≤ 1

λ
1/2
1

|f |. Hence

(5.9)

|Au∞| ≤
2
ν

(
1 +

|∇g|∞
m0λ

1/2
1

1(
1− |∇g|∞

m0λ
1/2
1

))|f |+ c2
2

2ν5λ
3/2
1

1(
1− |∇g|∞

m0λ
1/2
1

)3 |f |
3.

Using (5.9), we obtain a sufficient condition for (5.8), which is exactly (5.6).
If we replace u(t) by another stationary solution u∗∞ of (5.1) in the com-

putations leading to (5.7), we obtain instead of (5.7),

ν̄|u∞ − u∗∞|2 ≤ 0.

This implies the uniqueness of the stationary solution if (5.6) holds.
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