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On isometries of the Kobayashi and Carathéodory metrics

by Prachi Mahajan (Bangalore)

Abstract. This article considers C1-smooth isometries of the Kobayashi and Cara-
théodory metrics on domains in Cn and the extent to which they behave like holomorphic
mappings. First we provide an example which suggests that Bn cannot be mapped iso-
metrically onto a product domain. In addition, we prove several results on continuous
extension of C0-isometries f : D1 → D2 to the closures under purely local assumptions
on the boundaries. As an application, we show that there is no C0-isometry between a
strongly pseudoconvex domain in C2 and certain classes of weakly pseudoconvex finite
type domains in C2.

1. Introduction. The principal aim of this article is to explore the phe-
nomenon of the rigidity of continuous isometries of the Kobayashi and the
Carathéodory metrics. More precisely, if D,D′ are two domains in Cn and
f : D → D′ is a continuous isometry of the Kobayashi metrics on D,D′, it
is not known whether f must necessarily be holomorphic or conjugate holo-
morphic. The same question can be asked about the Carathéodory metric
or for that matter about any invariant metric as well. An affirmative answer
for the Bergman metric was given in [GK] in the case when D and D′ are
both C2-smooth strongly pseudoconvex domains in Cn, and this required
knowledge of the limiting behaviour of the holomorphic sectional curvatures
of the Bergman metric near strongly pseudoconvex points. In general, the
Kobayashi metric is just upper semicontinuous and therefore a different ap-
proach will be needed for this question. The case of isometries when D is
smooth strongly convex and D′ is the unit ball was dealt with in [SV2] and
this was improved upon in [KK] to handle the case when D is a C2,ε-smooth
strongly pseudoconvex domain; a common ingredient in both proofs was
the use of Lempert discs. On the other hand, it was remarked in [F] that
the localization of a biholomorphic mapping between bounded domains near
a given boundary point should follow from general principles of Gromov
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hyperbolicity—an example of this localization can be found in [BB]. Mo-
tivated by such considerations it seemed natural to determine the extent
to which isometries behave like holomorphic mappings. An example in this
context is provided by the following result.

Theorem 1.1. There is no C1-Kobayashi or Carathéodory isometry be-
tween Bn and the product of m domains D1 × · · · ×Dm for any 2 ≤ m ≤ n
where each Di is a bounded strongly convex domain in Cni with C6-smooth
boundary and n = n1 + · · ·+ nm.

Several remarks are in order here. Firstly, by a C0-Kobayashi (Cara-
théodory or inner Carathéodory) isometry we mean a distance preserving
bijection between the metric spaces (D1, dD1) and (D2, dD2) ((D1, cD1) and
(D2, cD2); (D1, c

i
D1

) and (D2, c
i
D2

) respectively). Here dD, cD and ciD de-
note the Kobayashi, Carathéodory and inner Carathéodory metrics respec-
tively on the domain D. For k ≥ 1, a Ck-Kobayashi isometry is a Ck-
diffeomorphism f from D1 onto D2 with f∗(FKD2

) = FKD1
where FKD1

and FKD2

denote the infinitesimal Kobayashi metrics on D1 and D2 respectively. Sec-
ondly, note that isometries are continuous when the domains are Kobayashi
hyperbolic, for in this case the topology induced by the Kobayashi metric
coincides with the intrinsic topology of the domain. As can be expected,
the main step in proving Theorem 1.1 is to show that the C1-smooth isom-
etry, if it exists, is indeed a biholomorphic mapping to arrive at a contra-
diction. The proof of this is based on differential-geometric considerations,
in particular the theorem of Myers–Steenrod as in [SV2]; the fact that the
Kobayashi metric of the ball is a smooth Kähler metric of constant negative
sectional curvature −4 plays a key role. The proof of Theorem 1.1 requires
the existence of complex geodesics and a certain degree of smoothness of the
Kobayashi metric, and hence we restrict to C6-smooth strongly convex do-
mains. It must be mentioned that the above result is motivated by the well
known fact that there does not exist a proper holomorphic mapping from a
product domain onto Bn for any n > 1. A different approach was used to
get related results in [S].

This article also considers the question of continuous extendability up
to the boundary of continuous isometries between domains in Cn. Here is a
prototype statement that can be proved.

Theorem 1.2. Let f : D1 → D2 be a Kobayashi isometry between two
bounded domains in C2. Let p0 and q0 be points on ∂D1 and ∂D2 respectively.
Assume that ∂D1 is C∞-smooth weakly pseudoconvex of finite type near p0

and that ∂D2 is C2-smooth strongly pseudoconvex in a neighbourhood U2

of q0. Suppose that q0 belongs to the cluster set of p0 under f . Then f extends
as a continuous mapping to a neighbourhood of p0 in D1.
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It should be noted that we make only purely local assumptions on D1

and D2; in particular, the domains are not assumed to be pseudoconvex
away from p0 and q0 and there are no global smoothness assumptions on
the boundaries. Theorem 1.2 is proved using the global estimates on the
Kobayashi metric near weakly pseudoconvex boundary points of finite type
from [HERB]. This is done in Propositions 4.1 and 4.2. It is worth men-
tioning that other relevant theorems of this nature for proper holomorphic
mappings between strongly pseudoconvex domains were proved by Forstnerič
and Rosay [FR] using global estimates on the Kobayashi metric. As an ap-
plication of Theorem 1.2 we get:

Theorem 1.3. Let D1 and D2 be bounded domains in C2. Let p0 =
(0, 0) and q0 be points on ∂D1 and ∂D2 respectively. Assume that ∂D1 in
a neighbourhood U1 of the origin is weakly pseudoconvex of finite type and
defined by {ρ0(z) < 0} with

ρ0(z1, z2) = 2<z2 + |z1|2m + o(|z1|2m + =z2)

where m > 1 is a positive integer, and that ∂D2 is C2-smooth strongly pseu-
doconvex in a neighbourhood U2 of q0. Then there cannot be a Kobayashi
isometry f from D1 onto D2 such that q0 belongs to the cluster set of p0

under f .

Theorem 1.3 dispenses with the assumption of having a global biholo-
morphic mapping and replaces it with a global Kobayashi isometry at the
expense of restricting to certain classes of weakly pseudoconvex finite type
domains in C2. A particularly useful strategy to investigate this type of re-
sults in the holomorphic category has been Pinchuk’s scaling technique (cf.
[P2]). Scaling D1 near p0 with respect to a sequence of points that converges
to p0 along the inner normal yields a limit domain of the form

D1,∞ = {(z1, z2) ∈ C2 : 2<z2 + |z1|2m < 0}
for which the Kobayashi metric has some smoothness ([M2]). It is for this
reason that we restrict attention to domains with a defining function as
described in Theorem 1.3. In trying to adapt the scaling methods in our
situation, the ‘normality’ of the scaled isometries has to be established.
This requires the stability of the integrated Kobayashi distance under scal-
ing of a given strongly pseudoconvex domain (this was done in [SV1]) and a
weakly pseudoconvex finite type domain in C2—this was developed in [MV]
for a different application and we intend to use it here as well. The con-
clusion then would be that the limit of scaled isometries exists and yields
a Kobayashi isometry between the corresponding model domains, i.e., the
ellipsoid D1,∞ and the ball B2. Another difficulty is that unlike the holo-
morphic case the restrictions of Kobayashi isometries to subdomains are not
isometries with respect to the Kobayashi metric of the subdomain. The end
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game is to show that the isometry is holomorphic, and this is done using the
techniques employed in the proof of Theorem 1.1.

Several other statements about the continuous extendability of isometries
are possible—these relate to isometries between either a pair of strongly
pseudoconvex domains in Cn or a pair of weakly pseudoconvex domains of
finite type in C2. These are stated (cf. Theorems 5.9 and 5.10) and elaborated
upon towards the end of Section 5. They are valid for isometries of the inner
Carathéodory distance as well (cf. Theorem 5.11).

2. Notation and terminology. Let ∆ denote the open unit disc in
the complex plane and let dhyp(a, b) denote the distance between a, b ∈ ∆
with respect to the hyperbolic metric. For r > 0, ∆(0, r) ⊂ C will be the
disc of radius r around the origin and B(z, δ) ⊂ Cn will be the Euclidean
ball of radius δ > 0 around z. Let X be a complex manifold of dimension n.
The Kobayashi and the Carathéodory distances on X, denoted by dX and
cX respectively, are defined as follows:

Let z ∈ X and fix a holomorphic tangent vector ξ at z. Define the
associated infinitesimal Carathéodory and Kobayashi metrics as

FCX (z, ξ) = sup{|df(z)ξ| : f ∈ O(X,∆)},

FKX (z, ξ) = inf
{

1
α

: α > 0, f ∈ O(∆,X) with f(0) = z, f ′(0) = αξ

}
respectively. This induces a concept of length of a path. If γ : [0, 1] → X is
a piecewise smooth path, then the Carathéodory length is given by

LCX(γ) =
1�

0

FCX (γ(t), γ̇(t)) dt,

and this in turn induces the associated inner Carathéodory distance

ciX(p, q) = inf LCX(γ)

where the infimum is taken over all piecewise smooth curves γ in X joining
p to q. Likewise, the Kobayashi length of a piecewise C1-curve γ : [0, 1]→ X
is given by

LKX(γ) =
1�

0

FKX (γ(t), γ̇(t)) dt,

and finally the Kobayashi distance between p, q ∈ X is defined as

dX(p, q) = inf LX(γ)

where the infimum is taken over all piecewise differentiable curves γ in X
joining p to q. Furthermore, BX(z, r) will denote the ball of radius r > 0
around z ∈ X with respect to the Kobayashi distance dX . Recall that X is
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taut if O(∆,X ) is a normal family and any Kobayashi complete domain is
taut. The Carathéodory distance cX between p, q ∈ X is defined by setting

cX(p, q) = sup
f
dhyp(f(p), f(q))

where the supremum is taken over the family of all holomorphic mappings
f : X → ∆.

A domain D ⊂ Cn with C2-smooth boundary is said to be strongly
convex if there is a defining function ρ for ∂D such that the real Hessian of
ρ is positive definite as a bilinear form on Tp(∂D) for every p ∈ ∂D.

Let D ⊂ Cn be a bounded domain. A holomorphic mapping φ : ∆→ D is
said to be an extremal disc or a complex geodesic for the Kobayashi distance
if it is distance preserving, i.e., dD

(
φ(p), φ(q)

)
= d∆(p, q) for all p, q in ∆.

A sequenceDj of domains in Cn is said to converge to a domainD∞ ⊂ Cn

in the Hausdorff sense if two things happen: first, given any compact set
K ⊂ Cn such that K is compactly contained in Dj for all j large, then K
is a relatively compact subset of D∞; second, any compact subset of D∞ is
contained in Dj for all j large.

The notion of finite type for a smooth hypersurface M ⊂ Cn will be in
the sense of D’Angelo, i.e., the order of contact of one-dimensional varieties
with M is finite.

Recall some properties of the infinitesimal Kobayashi metric on taut do-
mains:

Proposition 2.1. Let D be a taut domain in Cn. Then

(i) for any z ∈ D and v ∈ Cn there exists an extremal disc g : ∆ → D,
i.e., g(0) = z and FKD (z, v)g′(0) = v,

(ii) the function FKD (·, ·) is jointly continuous on D × Cn.

A good source of details on holomorphically invariant functions is [JP].

3. Isometries versus biholomorphisms

Proof of Theorem 1.1. Suppose for some 2 ≤ m ≤ n there exists a C1-
Kobayashi isometry f : D1 × · · · ×Dm → Bn. Now, fix a = (a2, . . . , am) ∈
D2×· · ·×Dm and consider fa : D1 → Bn defined by fa(z) = f(z, a2, . . . , am)
for z in D1. Using the product formula for the Kobayashi metric, we see
that dBn

(
fa(z), fa(w)

)
= dD1(z, w) for all z, w in D1. Said differently, the

mapping fa : D1 → Bn is distance preserving.

Step I. By Lemma 3.3 of [SV2], dD1 is Lipschitz equivalent to the Eu-
clidean distance on compact convex subdomains of D1. To see this, observe
that FKD1

is jointly continuous by the tautness of D1. Hence, FKD1
(·, v) ≈ |v|

on any compact subset of D1. Integrating the above estimate along straight
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line segments and complex geodesics joining any two points p, q ∈ D1, we
get the required result. Note that convexity of D1 guarantees the existence
of geodesics between any two points in D1 and that the line segment joining
these two points is contained in D1. Therefore, from the classical theorem
of Rademacher and Stepanov, we see that fa is differentiable almost every-
where.

Step II. Firstly, it follows from [L1] that FKD1
is C1-smooth on D1 ×

Cn1 \ {0}. Secondly, an argument similar to that used in [SV2] shows that
the infinitesimal metric FKD1

is Riemannian. FKD1
being Riemannian at p ∈ D1

is equivalent to the ‘parallelogram law’ being satisfied on TpD1, i.e.,

(3.1) (FKD1
(p, v + w))2 + (FKD1

(p, v − w))2 = 2((FKD1
(p, v))2 + (FK(p, w))2)

for all v, w ∈ TpD1. This is verified by first showing that FKD1
= f∗a (FKBn)

at every point of differentiability of fa, which in turn relies on [MS] and on
existence of smooth geodesics in D1. Once we know that FKD1

is Riemannian
at every point of differentiability of fa, which is a dense subset of D1, we
fix v, w in (3.1) and use the continuity of FKD1

in the domain variable to
conclude.

Step III. Since fa is a continuous distance preserving mapping between
two C1 Riemannian manifolds (D1, F

K
D1

) and (Bn, FKBn), applying the theo-
rem of Myers–Steenrod ([MS]) gives us that fa is C1.

Step IV. fa is holomorphic or antiholomorphic. Let J0 and J denote
the almost complex structures on TBn and TD1 respectively. It suffices to
prove that dfa ◦J = ±J0 ◦dfa. To do this, fix p ∈ D1 and let S0 and S denote
the set of complex lines, i.e. 2-planes invariant under J0 and J respectively,
in Tfa(p)Bn and TpD1. The goal now is to show that J-invariant 2-planes
go to J0-invariant 2-planes under dfa. To see this, first note that since FKBn

has constant holomorphic sectional curvature −4, at any point the sectional
curvature of a 2-plane P spanned by an orthonormal pair of tangent vectors
X,Y is −(1 + 3〈X, J0Y 〉). In particular, a two-dimensional subspace Q of
Tfa(p)Bn is in S0 if and only if the sectional curvature of Q is −4.

Next, we claim that if P ∈ S then dfa(P ) ∈ S0. The following observation
will be needed to establish the above claim: The image fa ◦ φ(∆) is a C∞-
submanifold of Bn for any complex geodesic φ : ∆ → D1 with φ(0) = p
and dφ(T0∆) = P (note that the convexity of D1 ensures that such a φ
exists). For this, it suffices to show that fa ◦φ(∆) = expfa(p) dfa(P ). Indeed,
since fa ◦φ is distance preserving, it takes geodesics in ∆ to geodesics in Bn.
Therefore, fa ◦ φ(∆) is the union of geodesics which originate at fa(p) in
directions along dfa(P ).

Firstly, since fa ◦ φ : ∆→ fa ◦ φ(∆) is a C1-smooth distance preserving
map for the induced metric on the image, appealing to the Myers–Steenrod
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theorem, we infer that fa◦φ is C2. Hence, the sectional curvature of fa◦φ(∆)
at fa(p) with respect to the metric induced by the mapping fa ◦φ is equal to
that of ∆ with respect to the hyperbolic metric, i.e., −4. Secondly, fa ◦φ(∆)
is a totally geodesic two-dimensional submanifold of Bn as fa ◦ φ is distance
preserving. This implies that the sectional curvature of fa ◦ φ(∆) at fa(p)
with respect to the metric induced from Bn is equal to the sectional curvature
in the FKBn-metric. Since this can be realized only by holomorphic sections in
the ball, we conclude that complex lines are taken to complex lines by dfa.

Now, use the fact that the metrics involved are invariant under the almost
complex structures to get dfa ◦ J = ±J0 ◦ dfa on any P ∈ S. Next, the
connectedness of S as a subset of the Grassmann manifold of 2-planes in
TpD1 implies that either dfa◦J = J0◦dfa on every P ∈ S or dfa◦J = −J0◦dfa
on every P ∈ S, i.e., dfa ◦ J = ±J0 ◦ dfa on TpD1. By the connectedness
of D1, it follows that dfa ◦ J = ±J0 ◦ dfa on TD1. This completes Step IV.

Recall that f ∈ C1 by assumption and consequently the mapping a =
(a2, . . . , am) 7→ fa is also C1—this is the only point in the proof that uses
the C1-smoothness of f . Now, from the connectedness of D2× · · · ×Dm, we
see that either

dfa ◦ J = J0 ◦ dfa or dfa ◦ J = −J0 ◦ dfa
for every a ∈ D2×· · ·×Dm. In other words, fa is either holomorphic for every
choice of a ∈ D2× · · ·×Dm or antiholomorphic for every a. Replacing fa by
its complex conjugate, if necessary, we may assume that fa is holomorphic for
every a ∈ D2×· · ·×Dm. Likewise, it can be shown that the mappings fb given
by fb(z) = f(b1, z, b3, . . . , bm), z ∈ D2, are holomorphic for every parameter
b = (b1, b3, . . . , bm) ∈ D1 ×D3 × · · · ×Dm. Repeating this argument, we see
that f is separately holomorphic with respect to a group of variables for any
fixed value of the other ones. In this setting, a generalization due to Hervé
of the classical Hartogs theorem (see Theorem 2 in Section II.2.1 of [HERV])
shows that f is holomorphic onD1×· · ·×Dm and consequentlyD1×· · ·×Dm

is biholomorphic to Bn. This contradicts the fact that there cannot be a
biholomorphism from a product domain onto Bn, and finishes the proof for
the Kobayashi metric. Since the Kobayashi and the Carathéodory metrics
coincide on bounded convex domains (cf. [L2]), the theorem is completely
proven.

We record two simple corollaries of Theorem 1.1.

Corollary 3.1. There is no C1-Kobayashi or Carathéodory isometry
between Bn, the unit ball in Cn, and ∆n, the unit polydisc in Cn, for any n>1.

Corollary 3.2. There is no C1-Kobayashi or Carathéodory isometry
between Bn and the product of m Euclidean balls Bn1 × · · · × Bnm for any
2 ≤ m ≤ n where n = n1 + · · ·+ nm.
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A similar situation to the above corollary was considered in Proposition
2.2.8 of [JP] (see also [KR]), the emphasis here being on a different approach
which is valid in a more general context.

4. Continuous extendability of isometries—Proof of Theorem
1.2. Recall the special coordinates constructed for weakly pseudoconvex fi-
nite type domains in [C]: LetD ⊂ C2 be a domain whose boundary is smooth
pseudoconvex and of finite type 2m, m ∈ N, near the origin. Let U be a tiny
neighbourhood of the origin and ρ a smooth defining function on U such
that U ∩ ∂D = {ρ = 0} and ∂ρ

∂z2
(0, 0) 6= 0. Then for each ζ ∈ U ∩D, there

is a unique automorphism φζ of C2 defined by

φζ(z1, z2) =
(
z1 − ζ1,

(
z2 − ζ2 −

2m∑
l=1

dl(ζ)(z1 − ζ1)l
)

(d0(ζ))−1
)
,

where dl(ζ) are non-zero functions depending smoothly on ζ with the prop-
erty that the function ρ ◦ (φζ)−1 satisfies

ρ ◦ (φζ)−1(w1, w2) = 2<w2 +
2m∑
l=2

Pl,ζ(w1, w̄1) + o
(
|w1|2m + =w2

)
where Pl,ζ(w1, w̄1) are real-valued homogeneous polynomials of degree l with-
out any harmonic terms. Let ‖ · ‖ be a fixed norm on the finite-dimensional
space of all real-valued polynomials on the complex plane with degree at
most 2m that do not contain any harmonic terms. Define, for some small
δ > 0,

τ(ζ, δ) = min
2≤l≤2m

(δ/‖Pl,ζ(w1, w̄1)‖)1/l.

Let ∆δ
ζ : C2 → C2 be anisotropic dilations defined by

∆δ
ζ(z1, z2) =

(
(τ(ζ, δ))−1z1, δ

−1z2
)
.

A useful set for approximating the geometry of D near the origin is Catlin’s
bidisc Q(ζ, δ) determined by the quantities τ(ζ, δ) where

Q(ζ, δ) = (∆δ
ζ ◦ φζ)−1(∆×∆).

The proof of Theorem 1.2 requires the following estimates on the Kobayashi
metric near a weakly pseudoconvex boundary point of finite type.

Proposition 4.1. Let D be a bounded domain in C2. Assume that ∂D is
C∞-smooth weakly pseudoconvex of finite type near a point p0 ∈ ∂D. Given
ε > 0, there exist positive numbers r2 < r1 < ε and C such that

dD(a, b) ≥ −1
2 log d(b, ∂D)− C, a ∈ D \B(p0, r1), b ∈ B(p0, r2) ∩D.
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Proof. By Theorem 1.1 of [BER] there exists a neighbourhood U of p0

in C2 such that

(4.1) FKD (z, v) ≈ |vT |
τ(z, d(z, ∂D))

+
|vN |

d(z, ∂D)

for all z ∈ U ∩D and v a tangent vector at z. As usual the decomposition
v = vT + vN into the tangential and normal components is taken at π(z) ∈
∂D, which is the closest point on ∂D to z, and τ(z, d(z, ∂D)) is as described
above. Let γ be an arbitrary piecewise C1-smooth curve in D joining a and b,
i.e., γ(0) = a, γ(1) = b. As we travel along γ starting from a, there is a
last point α on the curve with α ∈ ∂U ∩ D. Let γ(t) = α and denote
by σ the subcurve of γ with end-points b and α. Then σ is contained in a
δ-neighbourhood of ∂D for some fixed uniform δ > 0. Using (4.1) we get

1�

0

FKD (γ(t), γ̇(t)) dt ≥
1�

t

FKD (σ(t), σ̇(t)) dt

&
1�

t

|σ̇T (t)|
τ(σ(t), d(σ(t), ∂D))

dt+
1�

t

|σ̇N (t)|
d(σ(t), ∂D)

dt

≥
1�

t

|σ̇N (t)|
d(σ(t), ∂D)

dt.

The last integrand is seen to be at least

d

dt
log(d(σ(t), ∂D))1/2

(see for example Lemma 4.1 of [BB]) and hence
1�

0

FKD (γ(t), γ̇(t)) dt & −1
2 log d(b, ∂D)− C

for some uniform C > 0. Taking the infimum over all such γ yields

dD(a, b) & −1
2 log d(b, ∂D)− C.

Proposition 4.2. Let D be a bounded domain in C2. Assume that ∂D
is C∞-smooth weakly pseudoconvex of finite type near two distinct boundary
points a0 and b0. Then for a suitable constant C,

dD(a, b) ≥ −1
2 log d(a, ∂D)− 1

2 log d(b, ∂D)− C

whenever a, b ∈ D, a is near a0 and b is near b0.

Proof. Each path in D joining a and b must exit from neighbourhoods
of a0 and b0. Hence the result follows from Proposition 4.1.
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The following lemma will be useful for our purposes.

Lemma 4.3. Let D ⊂ Cn be a bounded domain and p0 ∈ ∂D be a local
holomorphic peak point. Then for any fixed R > 0 and every neighbourhood
U of p0 there exists a neighbourhood V ⊂ U of p0 with V relatively compact
in U such that for all z ∈ V ∩D we have

BD(z, cR) ⊂ BU∩D(z,R) ⊂ BD(z,R)

where c > 0 is a constant independent of z ∈ V ∩D.

Proof. Let U be a neighbourhood of p0 and let g ∈ A(U∩D), the algebra
of continuous functions on the closure of U∩D that are holomorphic on U∩D,
be such that g(p0) = 1 and |g(p)| < 1 for p ∈ U ∩D \ {p0}. Fix ε > 0. Then
there exists a neighbourhood V1 ⊂ U of p0 such that

FKD (z, v) ≤ FKU∩D(z, v) ≤ (1 + ε)FKD (z, v)

for z ∈ V1 ∩D and v a tangent vector at z. This is possible by the localiza-
tion property of the Kobayashi metric (see for example Lemma 2 in [RO],
or [G]).

The first inequality evidently implies that BU∩D(z,R) ⊂ BD(z,R) for all
z ∈ V1 ∩D and all R > 0. For the left inclusion in the lemma, the following
observation will be needed. For every R > 0 there is a neighbourhood V ⊂ V1

of p0 with the property that if z ∈ V ∩D then BU∩D(z,R/2) ⊂ V1 ∩D. For
this it suffices to show that

lim
z→p0

dU∩D(z, (U ∩D) \ V1 ∩D) =∞.

Indeed, for every p ∈ (U ∩D) \ V1 ∩D,

(4.2) dU∩D(z, p) ≥ d∆(g(z), g(p))→∞

as z → p0 since g(p0) = 1 and |g| < 1 on (U ∩ D) \ V1 ∩D. The estimate
(4.2) is uniform with respect to p ∈ (U ∩D) \ V1 ∩D and hence proves the
claim.

Now for a given R > 0 let V be a sufficiently small neighbourhood of p0

so that

BU∩D(z,R/2) ⊂ V1 ∩D

if z ∈ V ∩D. Pick p ∈ D in the complement of the closure of BU∩D(z,R/2)
and let γ : [0, 1] → D be a piecewise C1-path with γ(0) = z and γ(1) = p.
Then there is a t0 ∈ (0, 1) such that γ([0, t0)) ⊂ BU∩D(z,R/2) and γ(t0) ∈
∂BU∩D(z,R/2). Hence
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1�

0

FKD (γ(t), γ̇(t)) dt ≥
t0�

0

FKD (γ(t), γ̇(t))dt

≥ 1
1 + ε

t0�

0

FKU∩D(γ(t), γ̇(t)) dt

≥ 1
1 + ε

dU∩D(z, γ(t0)) =
R

2(1 + ε)
,

which implies that dD(z, p) ≥ R/(2(1 + ε)). In other words,

BD(z,R/(2(1 + ε))) ⊂ BU∩D(z,R/2)

and consequently

BD(z,R/(2(1 + ε))) ⊂ BU∩D(z,R)

if z ∈ V ∩D. Finally observe that

BD(z,R/(2(1 + ε))) ⊂ BU∩D(z,R) ⊂ BD(z,R)

for all z ∈ V ∩D.

Proof of Theorem 1.2. We first claim that f extends to D1 ∪ {p0} as a
continuous mapping. To establish this, suppose that the claim is false. Then
there is a sequence of points sj in D1 converging to p0 ∈ ∂D1 such that f(sj)
does not converge to q0 ∈ ∂D2. Moreover, there exists a sequence pj ∈ D1

with pj → p0 such that f(pj)→ q0 ∈ ∂D2.
Consider polygonal paths γj in D1 joining pj and sj defined as follows:

for each j, choose pj0, sj0 ∈ ∂D1 closest to pj and sj respectively. Set pj′ =
pj − |pj − sj |n(pj0) and sj

′
= sj − |pj − sj |n(sj0) where n(z) denotes the

outward unit normal to ∂D1 at z ∈ ∂D1. Let γj be the union of three
segments: the first is the straight line path joining pj and pj

′ along the
inward normal to ∂D1 at the point pj0, the second is a straight line path
joining pj′ and sj′ , and finally the third is the straight line path joining sj′

and sj along the inward normal to the point sj0. Then f ◦γj is a continuous
path in D2 joining f(pj) and f(sj). Now, for each j, pick uj ∈ ∂B(q0, ε)∩U2

on trace(f ◦ γj) for some ε > 0 sufficiently small. Let tj ∈ D1 be such
that f(tj) = uj . Then tj ∈ trace(γj) and hence tj → p0 by construction.
Moreover, f(tj) = uj → u0 ∈ U2 ∩ ∂D2 (u0 6= q0). It follows from [FR] that

dD1(pj , tj) ≤ −1
2 log d(pj , ∂D1)(4.3)

+ 1
2 log(d(pj , ∂D1) + |pj − tj |)

+ 1
2 log(d(tj , ∂D1) + |pj − tj |)

− 1
2 log d(tj , ∂D1) + C1
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and

dD2f(pj), f(tj)) ≥ −1
2 log d(f(pj), ∂D2)(4.4)

− 1
2 log d(f(tj), ∂D2)− C2

for all j large and uniform positive constants C1 and C2.

Assertion. d(f(pj), ∂D2) ≤ C3d(pj , ∂D2) and d(f(tj), ∂D2) ≤
C3d(tj , ∂D2) for some uniform positive constant C3.

Grant this for now. Using the fact that dD1(pj , tj) = dD2(f(pj), f(tj))
and comparing the inequalities (4.3) and (4.4), it follows from the Assertion
that for all j large

−(C1 + C2 + logC3) ≤ 1
2 log(d(pj , ∂D1) + |pj − tj |)
+ 1

2 log(d(tj , ∂D1) + |pj − tj |),
which is impossible. This contradiction proves the claim.

It remains to establish the Assertion. For this, fix a ∈ D1 and use Propo-
sition 4.1 to infer that

(4.5) dD1(pj , a) ≥ −1
2 log d(pj , ∂D1)− C4

for some uniform positive constant C4. On the other hand,

(4.6) dD2(f(pj), f(a)) ≤ −1
2 log d(f(pj), ∂D2) + C5

for all j large and a uniform constant C5 > 0. Fixing a in D1, using
dD1(a, pj) = dD2(f(pj), f(a)), and comparing (4.5) and (4.6), we get the
required estimates. Hence the Assertion. This completes the proof of the
claim.

Now, let zj be a sequence of points in U1 ∩D1 with zj → z0 ∈ U1 ∩ ∂D1.
The goal now is to show that f extends continuously to the point z0. To
see this, pick z′ ∈ U1 ∩D1 such that f(z′) ∈ U2 ∩D2. This can be achieved
using the continuity of f . There are two cases to consider. After passing to
a subsequence if needed, we have either

(i) f(zj)→ w0 ∈ U2 ∩ ∂D2, or
(ii) f(zj)→ w1 ∈ U2 ∩D2 as j →∞.

In case (ii), observe that the quantity dU2∩D2(f(zj), f(z′)) is uniformly
bounded (say by R) because of the completeness of U2 ∩ D2. Therefore,
for all j large,

dD2(f(zj), f(z′)) ≤ dU2∩D2(f(zj), f(z′)) < R.

Using the fact that dD1(zj , z′) = dD2(f(zj), f(z′)), we get z′ ∈ BD1(zj , R).
Applying Lemma 4.3 forces that z′ ∈ BU1∩D1(zj , R/c) for some uniform
constant c. This exactly means that

dU1∩D1(zj , z′) < R/c.
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This is however a contradiction as dU1∩D1(zj , z′) remains unbounded be-
cause of the completeness of U1 ∩D1. Hence, f(zj) → w0 ∈ U2 ∩ ∂D2 and
consequently w0 belongs to the cluster set of z0 under f . From this point,
proceeding exactly as in the first part of the proof we show that f extends
continuously to the point z0. Since z0 ∈ U1∩∂D1 was arbitrary, Theorem 1.2
is completely proven.

5. Non-existence of isometry—Proof of Theorem 1.3. The proof
of Theorem 1.3 relies on the following lemma.

Lemma 5.1. Let D be a Kobayashi hyperbolic domain in Cn with a sub-
domain D′ ⊂ D. Let p, q ∈ D′, dD(p, q) = a and b > a. If BD(q, b) ⊂ D′,
then

dD′(p, q) ≤
1

tanh(b− a)
dD(p, q), FKD′(p, v) ≤ 1

tanh(b− a)
FKD (p, v).

The reader is referred to [KK] (or [KM]) for a proof, but it should be
noted that this statement emphasizes an upper bound for dD′ in terms of dD.
An estimate with the inequality reversed is an immediate consequence of the
definition of the Kobayashi metric.

The second ingredient is an estimate for the Kobayashi and the inner
Carathéodory distance between two points in a weakly pseudoconvex finite
type domain D in C2, due to Herbort ([HERB]). To state this, let d(·, ∂D)
be the Euclidean distance to the boundary and ρ a smooth defining function
for ∂D. For a, b ∈ D, define

ρ∗(a, b) = log
(

1 +
d̃(a, b)
d(a, ∂D)

+
|〈L(a), a− b〉|
τ(a, d(a, ∂D))

)
,

L(a) =
(
− ∂ρ

∂z2
(a),

∂ρ

∂z1
(a)
)
,

d′(a, b) = inf{δ > 0 : a ∈ Q(b, δ)},
d̃(a, b) = min{d′(a, b), |a− b|},

where 〈·, ·〉 denotes the standard hermitian inner product in C2. The main
result of [HERB] that is needed is:

Theorem 5.2. Assume that D = {ρ < 0} ⊂ C2 be a bounded pseudocon-
vex domain with smooth boundary such that all boundary points are of finite
type. Then there exists a positive constant C∗ such that for any a, b ∈ D,

C∗(ρ∗(a, b) + ρ∗(b, a)) ≤ ciD(a, b) ≤ dD(a, b) ≤ 1
C∗

(ρ∗(a, b) + ρ∗(b, a)).

Proof of Theorem 1.3. Suppose that there exists an isometry f : D1→D2

with q0 belonging to the cluster set of p0. The proof is in several steps.
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Step I. Considering the Levi form
2∑

i,j=1

∂2ρ0

∂ziz̄j
(p0)viv̄j

for every complex tangent vector v = (v1, 0) at p0, we see that ∂D1 is weakly
pseudoconvex near p0. Using the explicit form of the defining function ρ0,
it is a straightforward calculation that ∂D1 is of finite type 2m and smooth
near p0. Applying Theorem 1.2, we immediately see that f extends contin-
uously to p0.

Step II. Choose a sequence aj = (0,−δj) inD1 along the inner normal at
the origin, where δj>0 and δj → 0. Step I shows that bj = f(aj)→ q0∈∂D2.

The scaling method applied to (D1, D2, f). Let ∆j be the dilation defined
by

∆j(z1, z2) = (δ−1/2m
j z1, δ

−1
j z2),

and note that ∆j(aj) = (0,−1) while the domains Dj
1 = ∆j(D1) are defined

in a neighbourhood of the origin by

δ−1
j ρ0 ◦ (∆j)−1(z) = 2<z2 + |z1|2m + δ−1

j o(δj |z1|2m + δj=z2).

On each compact set in C2 the error term converges to zero and hence the
sequence of domains Dj

1 converges in the Hausdorff sense to

D1,∞ = {z ∈ C2 : 2<z2 + |z1|2m < 0}.
To scale D2 recall that by [P1], for each ζ near q0 ∈ ∂D2 there is a unique
automorphism hζ : C2 → C2 with hζ(ζ) = 0 such that

hζ(D2) = {z ∈ C2 : 2<(z2 +Kζ(z)) +Hζ(z) + αζ(z) < 0}

where Kζ(z) =
∑2

i,j=1 aij(ζ)zizj , Hζ(z) =
∑2

i,j=1 bij(ζ)ziz̄j and αζ(z) =
o(|z|2) with Kζ(z1, 0) ≡ 0 and Hζ(z1, 0) ≡ |z1|2. Furthermore, if ζ = (ζ1, ζ2)
∈ D2 as above, we consider the point ζ̃ = (ζ1, ζ2 +ε) where ε > 0 is chosen to
ensure that ζ̃ ∈ ∂D2. Then the actual form of hζ shows that hζ̃(ζ) = (0,−ε).

Consider the sequence bj = f(aj) ∈ D2 that converges to q0 and denote
by ζj the point on ∂D2 chosen such that if bj = (bj1, b

j
2) then ζj = (bj1, b

j
2+εj)

for some εj > 0. Note that εj ≈ dist(bj , ∂D2) for all j large. Let hj := hζj

be the biholomorphism corresponding to ζj as described above. Define a
dilation of coordinates by

T j(w1, w2) = (ε−1/2
j w1, ε

−1
j w2).

Let Dj
1 = ∆j(D1) and Dj

2 = T j ◦ hj(D2) be the scaled domains and let the
scaled maps between them be

f j = T j ◦ hj ◦ f ◦ (∆j)−1 : Dj
1 → Dj

2.
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Note first that T j ◦ hj(bj) = (0,−1), which implies that f j(0,−1) = (0,−1)
and f j is an isometry for the Kobayashi distances on Dj

1 and Dj
2 for each j.

The defining function for Dj
2 is given by

2<w2 + |w1|2 +Aj(w)

where
|Aj(w)| ≤ |w|2(c

√
εj + η(εj |w|2))

and η(t) is a function of one real variable such that η(t) = o(1) as t → 0.
Hence Dj

2 converge to

D2,∞ = {w ∈ C2 : 2<w2 + |w1|2 < 0},

which is the unbounded realization of the unit ball.

Stability of the Kobayashi metric

Proposition 5.3. d
Dj

1
((0,−1), ·)→ dD1,∞((0,−1), ·) uniformly on com-

pact subsets of D1,∞.

This was proved in [MV]; we include the proof for completeness. The
proof requires several steps. First, it is natural to prove convergence at the
infinitesimal level:

Lemma 5.4. For (s, v) ∈ D1,∞ × C2,

lim
j→∞

FK
Dj

1

(s, v) = FKD1,∞(s, v).

Moreover, the convergence is uniform on compact subsets of D1,∞ × C2.

Proof. Let S ⊂ D1,∞ and G ⊂ C2 be compact and suppose that the
desired convergence does not occur. Then there is an ε0 > 0 such that after
passing to a subsequence if necessary, we may assume that there exists a
sequence of points sj in S which is relatively compact in Dj

1 and a sequence
vj ∈ G such that

|FK
Dj

1

(sj , vj)− FKD1,∞(sj , vj)| > ε0

for j large. Let sj → s ∈ S and vj → v ∈ G. Since FKD1,∞
(s, ·) is homoge-

neous, we may assume that |vj | = 1 for all j. Observe that D1,∞ is complete
hyperbolic and hence taut. The tautness of D1,∞ implies via a normal fam-
ily argument that FKD1,∞

(·, ·) is jointly continuous, 0 < FKD1,∞
(s, v) <∞ and

there exists a holomorphic extremal disc g : ∆ → D1,∞ that by definition
satisfies g(0) = s, g′(0) = µv where µ > 0 and FKD1,∞

(s, v) = 1/µ. Hence

(5.1) |FK
Dj

1

(sj , vj)− FKD1,∞(s, v)| > ε0/2
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for j sufficiently large. Fix δ ∈ (0, 1) and define the holomorphic mappings
gj : ∆→ C2 by

gj(z) = g((1− δ)z) + (sj − s) + µ(1− δ)z(vj − v).

The image g((1− δ)∆) is compactly contained in D1,∞, sj → s and vj → v,
therefore gj : ∆→ Dj

1 for j large. Also, gj(0) = sj and (gj)′(0) = µ(1−δ)vj .
By the definition of the infinitesimal metric it follows that

FK
Dj

1

(sj , vj) ≤ 1/(µ(1− δ)) = FKD1,∞(s, v)/(1− δ).

Letting δ → 0+ yields

(5.2) lim sup
j→∞

FK
Dj

1

(sj , vj) ≤ FKD1,∞(s, v).

Conversely, for ε > 0 arbitrarily small, there exist holomorphic mappings
hj : ∆→ Dj

1 satisfying hj(0) = sj and (hj)′(0) = µjvj where µj > 0 and

(5.3) FK
Dj

1

(sj , vj) ≥ 1/µj − ε.

The sequence hj has a subsequence that converges to a holomorphic mapping
h : ∆→ D1,∞ uniformly on compact sets of ∆. To see this, consider ∆(0, r)
for r ∈ (0, 1). Now, φp0 = φ(0,0) = idC2 and τ(p0, δj) = τ((0, 0), δj) ≈ δ

1/2m
j .

Further, we may assume that S is compactly contained in ∆(0, C1/2m
1 ) ×

∆(0, C1) for some C1 > 1. As a consequence,

(∆j)−1(sj) ∈ Q(p0, C1δj)

for all j. Also, note that

(∆j)−1(sj)→ p0 ∈ ∂D1

as j →∞. Now, applying Proposition 1 of [BERC] to the mappings

(∆j)−1 ◦ hj : ∆→ D1

shows that there exists a uniform positive constant C2 = C2(r) with

(∆j)−1 ◦ hj(∆(0, r)) ⊂ Q(p0, C2C1δj)

or equivalently

hj(∆(0, r)) ⊂ ∆(0, (C1C2)1/2m)×∆(0, C1C2).

Therefore, {hj} is uniformly bounded on each compact set in ∆ and is there-
fore normal. Let h : ∆ → C2 be a holomorphic limit of some subsequence
of {hj}. Since hj(0) = sj , it follows that h(0) = s. It remains to show that
h maps ∆ into D1,∞. For this, note that Dj

1 are defined in a neighbourhood
of the origin by

2<z2 + |z1|2m +
1
δj
o(δj |z1|2m + δj=z2) < 0.
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If hj(z) = (hj1(z), hj2(z)) for each j, then

2<(hj2(z)) + |hj1(z)|2m +
1
δj
o(δj |hj1(z)|2m + δj=(hj2(z))) < 0

whenever z ∈ ∆(0, r), r ∈ (0, 1). Letting j →∞ yields

2<(h2(z)) + |h1(z)|2m ≤ 0,

which exactly means that h(∆(0, r)) ⊂ D1,∞. Since r ∈ (0, 1) was arbitrary,
it follows that h(∆) ⊂ D1,∞. Since h(0) = s, the maximum principle shows
that h(∆) ⊂ D1,∞. Note that

h′(0) = lim
j→∞

(hj)′(0) = lim
j→∞

µjvj = µv

for some µ. The inequalities (5.2), (5.3) and 0 < FKD1,∞
(s, v) <∞ force that

µ > 0. Therefore,
FKD1,∞(s, v) ≤ 1/µ.

The above observation together with the inequality (5.3) yields

(5.4) lim inf
j→∞

FK
Dj

1

(sj , vj) ≥ FKD1,∞(s, v).

Combining (5.2) and (5.4) shows that

lim
j→∞

FK
Dj

1

(sj , vj) = FKD1,∞(s, v),

which contradicts the assumption (5.1) and proves the lemma.

To control the integrated Kobayashi distance on the domains Dj
1, we first

note the following:

Lemma 5.5. For any R > 0 and for all j large, B
Dj

1

(
(0,−1), R

)
is com-

pactly contained in D1,∞.

Proof. First note that

B
Dj

1
((0,−1), R) = ∆j(BD1(aj , R)).

Since p0 ∈ ∂D1 is a weakly pseudoconvex point, it is possible (see [BC] for
details) to find a smaller domain Ω ⊂ D1 with the following three properties:

(i) Ω is a C∞-smooth bounded weakly pseudoconvex domain contained
in D1.

(ii) p0 ∈ ∂Ω.
(iii) ∂Ω ∩ ∂D1 contains a relatively open neighbourhood of p0 in ∂Ω.

Moreover, since p0 ∈ ∂D1 is a local holomorphic peak point, by Lemma
4.3 there exists a neighbourhood V of p0 with V ∩ D1 ⊂ Ω and a uniform
positive constant c such that for all z ∈ V ∩D1,

BD1(z, cR) ⊂ BΩ(z,R) ⊂ BD1(z,R),
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and therefore it will suffice to show that ∆j(BΩ(aj , R)) is compactly con-
tained in D1,∞. The proof now divides into two parts. In the first part we
show that the sets ∆j(BΩ(aj , R)) cannot accumulate at the point at infinity
in ∂D1,∞ and in the second part we show that the sets B

Dj
1
((0,−1), R) do

not cluster at any finite boundary point. Assume that p ∈ BΩ(aj , R). Using
Herbort’s lower estimate for the Kobayashi metric gives us

C∗(ρ∗(aj , p) + ρ∗(p, aj)) ≤ dΩ(aj , p) < R.

As a consequence,

d̃(aj , p) < exp(R/C∗)d(aj , ∂Ω) = exp(R/C∗)d(aj , ∂D1),

which in turn implies that either

• |aj − p| < d(aj , ∂D1) exp(R/C∗), or
• for each j, there exists a δj ∈ (0, d(aj , ∂D1) exp(R/C∗)) such that
aj ∈ Q(p, δj).

It follows from Proposition 1.7 in [C] that there exists a uniform positive
constant C such that for each j, the following holds: if aj ∈ Q(p, δj), then
p ∈ Q(aj , Cδj). Hence, the second statement above can be rewritten as:
there exists a positive constant C such that for each j, there exists a δj ∈
(0, d(aj , ∂D1) exp(R/C∗)) with

p ∈ (φa
j
)−1(∆(0, τ(aj , Cδj))×∆(0, Cδj)).

Said differently, BΩ(aj , R) is contained in the union

B(aj , d(aj , ∂D1) exp (R/C∗)) ∪ (φa
j
)−1(∆(0, τ(aj , Cδj))×∆(0, Cδj))

with δj as described above. Now,

(5.5) ∆j{(z1, z2) : |z1 − aj1|
2 + |z2 − aj2|

2 < (d(aj , ∂D1))2 exp(2R/C∗)}

= {(w1, w2) : |w1|2 +δ
−1/m
j δ2j |w2 +1|2< δ−1/m

j (d(aj , ∂D1))2 exp(2R/C∗)}.

If w = (w1, w2) belongs to the set described above, then

|w1| ≤ δ−1/2m
j d(aj , ∂D1) exp(R/C∗) = δ

−1/2m
j δj exp(R/C∗),(5.6)

|w2 + 1| ≤ δj−1d(aj , ∂D1) exp(R/C∗) = exp(R/C∗).(5.7)

Moreover, for δj ∈ (0, d(aj , ∂D1) exp(R/C∗)),

(φa
j
)−1{(z1, z2) ∈ C2 : |z1| < τ(aj , Cδj), |z2| < Cδj}

=
{
w : |w1−aj1| < τ(aj , Cδj),

∣∣∣w2−aj2−
2m∑
l=1

dl(aj)(w1−aj1)l
∣∣∣ < Cδjd

0(aj)
}
,
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so that

(5.8) ∆j ◦ (φa
j
)−1(∆(0, τ(aj , Cδj))×∆(0, Cδj))

=
{
w : |w1| < δ

−1/2m
j τ(aj , Cδj),

∣∣∣w2 + 1 + δj
−1
( 2m∑
l=1

αj,lwl1

)∣∣∣ < Cd0(aj)
}

where
αj,l = dl(aj)δl/2mj .

If w = (w1, w2) belongs to the set given by (5.8), then

|w1| < δ
−1/2m
j τ(aj , Cδj),(5.9) ∣∣∣w2 + 1 + δj

−1
( 2m∑
l=1

dl(aj)δl/2mj wl1

)∣∣∣ < Cd0(aj).(5.10)

Among other things, it was shown in [C] that

• δ1/2j . τ(aj , δj) . δ
1/2m
j ,

• |dl(aj)| . δj(τ(aj , δj))−l for all 1 ≤ l ≤ 2m,
• d0(aj) ≈ 1.

These estimates together with (5.6), (5.7), (5.9) and (5.10) show that if
w = (w1, w2) belongs to either (5.5) or (5.8), then |w| is uniformly bounded.
In other words, the sets

∆j(B(aj , d(aj , ∂D1) exp(R/C∗)))

∪∆j((φa
j
)−1(∆(0, τ(aj , Cδj))×∆(0, Cδj)))

are uniformly bounded. Therefore,∆j(BΩ(aj , R)) and hence B
Dj

1
((0,−1), R)

as a set cannot cluster at the point at infinity on ∂D1,∞.
It remains to show that the sets B

Dj
1
((0,−1), R) do not cluster at any fi-

nite point of ∂D1,∞. Suppose there is a sequence of points zj∈B
Dj

1
((0,−1),R)

such that zj → z0 where z0 is a finite point on ∂D1,∞. Applying Theorem
1.1 of [BER], we see that there exists a neighbourhood U of z0 in C2 such
that

(5.11) FK
Dj

1

(z, v) ≈ |vT |
τ(z, d(z, ∂Dj

1))
+

|vN |
d(z, ∂Dj

1)
uniformly for all j large, z ∈ U∩D1,∞ and v a tangent vector at z; this stable
version holds since the defining functions for Dj

1 converge to that of D1,∞ in
the C∞-topology on a given compact set. Here the decomposition v = vT+vN
into the tangential and normal components is taken at πj(z) ∈ ∂Dj

1, which
is the closest point on ∂Dj

1 to z. Note that

d(z, ∂Dj
1) ≈ d(z, ∂D1,∞)
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for z ∈ U ∩ D1,∞ and that πj(z) → π(z) ∈ ∂D1,∞ where |π(z) − z| =
d(z, ∂D1,∞). Let γj be an arbitrary piecewise C1-smooth curve in Dj

1 joining
zj and (0,−1), that is, γj(0) = (0,−1), γj(1) = zj . As we travel along γj

starting from (0,−1), there is a last point αj on the curve with αj ∈ ∂U∩Dj
1.

Let γj(tj) = αj and let σj be the subcurve of γj with end-points zj and αj .
Then σj is contained in an ε-neighbourhood of ∂Dj

1 for some fixed uniform
ε > 0 and for all j large. Arguing as in the proof of Proposition 4.1 using
(5.11) we get

1�

0

FK
Dj

1

(γj(t), γ̇j(t)) dt ≥
1�

tj

FK
Dj

1

(σj(t), σ̇j(t)) dt & −1
2 log d(zj , ∂Dj

1) + C

for some uniform C > 0. Taking the infimum over all such γj shows that

d
Dj

1
(zj , (0,−1)) & −1

2 log d(zj , ∂Dj
1) + C.

This is however a contradiction since the left side is at most R while the
right side becomes unbounded. This completes the proof of Lemma 5.5.

Proof of Proposition 5.3. Let K be a compact subdomain of D1,∞ and
suppose that the desired convergence does not occur. Then there exists an
ε0 > 0 and a sequence of points zj ∈ K which is relatively compact in Dj

1

for all j large such that

|d
Dj

1
((0,−1), zj)− dD1,∞((0,−1), zj)| > ε0.

By passing to a subsequence, we may assume that zj → z0 ∈ K. Then using
the continuity of dD1,∞(z0, ·) we have

|d
Dj

1
((0,−1), zj)− dD1,∞((0,−1), z0)| > ε0/2

for all j large. Fix ε > 0 and let γ : [0, 1] → D1,∞ be a piecewise C1-path
such that γ(0) = (0,−1), γ(1) = z0 and

1�

0

FKD1,∞(γ(t), γ̇(t)) dt < dD1,∞((0,−1), z0) + ε/2.

Define γj : [0, 1]→ C2 by

γj(t) = γ(t) + (zj − z0)t.

Since the image γ([0, 1]) is compactly contained in D1,∞ and zj → z0, it
follows that γj : [0, 1]→ Dj

1 for j large. Note that γj → γ, γ̇j → γ̇ uniformly
on [0, 1], γj(0) = (0,−1) and γj(1) = zj . Applying Lemma 5.4, we obtain
1�

0

FK
Dj

1

(γj(t), γ̇j(t)) dt ≤
1�

0

FKD1,∞(γ(t), γ̇(t)) dt+ ε/2 < dD1,∞((0,−1), z0) + ε
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for all j large. By the definition of d
Dj

1

(
(0,−1), zj

)
it follows that

d
Dj

1
((0,−1), zj) ≤

1�

0

FK
Dj

1

(γj(t), γ̇j(t)) dt ≤ dD1,∞((0,−1), z0) + ε.

Thus

lim sup
j→∞

d
Dj

1
((0,−1), zj) ≤ dD1,∞((0,−1), z0).(5.12)

A similar argument yields

lim sup
j→∞

d
Dj

1
((0,−1), ·) ≤ dD1,∞((0,−1), ·),

which in turn implies

(5.13) BD1,∞((0,−1), R− ε) ⊂ B
Dj

1
((0,−1), R)

for any R > 0 and for all j large. Exploiting the continuity of the distance
function dD1,∞((0,−1), ·) and (5.13), we see that

zj ∈ K ⊂ BD1,∞((0,−1), R̃− ε) ⊂ B
Dj

1
((0,−1), R̃)

for some uniform positive constant R̃=R̃(K) and for all j large. Pick R′�R̃.
Using Lemma 5.5, we have

B
Dj

1
((0,−1), R′) ⊂ D1,∞

and consequently

dD1,∞((0,−1), ·) ≤ dB
D

j
1
((0,−1),R′)((0,−1), ·),

which in particular implies that

(5.14) dD1,∞((0,−1), zj) ≤ dB
D

j
1
((0,−1),R′)((0,−1), zj)

for all j large. Now, applying Lemma 5.1 to the domain Dj
1 with the

Kobayashi metric ball B
Dj

1
((0,−1), R′) as the subdomain D′ gives

(5.15) dB
D

j
1
((0,−1),R′)((0,−1), zj) ≤

d
Dj

1
((0,−1), zj)

tanh(R′ − d
Dj

1
((0,−1), zj))

.

The right side above cannot be greater than

d
Dj

1
((0,−1), zj)

tanh(R′ − R̃)
.

The above observation together with (5.14) and (5.15) yields

dD1,∞((0,−1), zj) ≤
d
Dj

1
((0,−1), zj)

tanh(R′ − R̃)
.
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Let first j →∞ and then R′ →∞ to get

(5.16) dD1,∞((0,−1), z0) ≤ lim sup
j→∞

d
Dj

1
((0,−1), zj).

From (5.12) and (5.16), we get

d
Dj

1
((0,−1), zj)→ dD1,∞((0,−1), z0).

This is a contradiction, and hence the result follows.

The following result from [SV1] shows that the integrated Kobayashi dis-
tance is stable under scaling in the strongly pseudoconvex case. The proof
uses Lempert’s theorem ([L1]) that guarantees the existence of complex
geodesics in strongly convex domains.

Proposition 5.6. For w ∈ D2,∞, dDj
2
(w, ·)→ dD2,∞(w, ·) uniformly on

compact sets of D2,∞.

Proposition 5.7. For w ∈ D2,∞ and R > 0,

B
Dj

2
(w,R)→ BD2,∞(w,R)

in the Hausdorff sense. Moreover, for any ε > 0 and for all j large,

(i) BD2,∞(w,R) ⊂ B
Dj

2
(w,R+ ε),

(ii) B
Dj

2
(w,R− ε) ⊂ BD2,∞(w,R).

Proof. It is not difficult to see that B
Dj

2
(w,R)→ BD2,∞(w,R) from the

stability of the Kobayashi metric on scaled domains, i.e., Proposition 5.6.
To verify (i), first observe that the closure of BD2,∞(w,R) is compact

since D2,∞ is Kobayashi complete. Then using Proposition 5.6, we get

d
Dj

2
(w, w̃) ≤ dD2,∞(w, w̃) + ε

for all w̃ in the closure of BD2,∞(w,R) and for all j large. Said differently,

BD2,∞(w,R) ⊂ B
Dj

2
(w,R+ ε)

for all j large. For (ii) suppose that the desired result is not true. Then there
exists an ε0 > 0 and a sequence of points w′j in ∂BD2,∞(w,R) such that
w′j ∈ B

Dj
2
(w,R − ε0). In view of compactness of ∂BD2,∞(w,R), we may

assume that w′j → w′ ∈ ∂BD2,∞(w,R). It follows from Proposition 5.6 that

d
Dj

2
(w′j , w)→ dD2,∞(w′, w).

Consequently, dD2,∞(w′, w) ≤ R− ε0. This contradicts the fact that

dD2,∞(w′, w) = R,

thereby proving (ii).

Step III (of the proof of Theorem 1.3). Let {Kν} be an increasing se-
quence of relatively compact subsets of D1,∞ that exhausts D1,∞ such that
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each contains (0,−1). Fix a pair of Kν0 compactly contained in Kν0+1 and
write K1 = Kν0 and K2 = Kν0+1 for brevity. Let ω(K1) be a neighbour-
hood of K1 such that ω(K1) ⊂ K2. Since Dj

1 → D1,∞, it follows that
K1 ⊂ ω(K1) ⊂ K2, which in turn is relatively compact in Dj

1 for all j
large. Then the sequence f j is equicontinuous at each point of ω(K1).

Since each f j is a Kobayashi isometry,

d
Dj

2
(f j(z), f j(z̃)) = d

Dj
1
(z, z̃)

for z, z̃ in K2. In particular,

d
Dj

2
(f j(z), (0,−1)) = d

Dj
1
(z, (0,−1))

for all z in K2. It follows from Proposition 5.3 that

d
Dj

1
(·, (0,−1))→ dD1,∞(·, (0,−1))

uniformly on K2 and hence for all z in K2,

d
Dj

2
(f j(z), (0,−1)) = d

Dj
1
(z, (0,−1)) ≤ dD1,∞(z, (0,−1)) + ε

for ε > 0 fixed. The right hand side is bounded above by a uniform constant
R̃ > 0. This observation together with Proposition 5.7 implies that

f j(K2) ∈ B
Dj

2
((0,−1), R̃) ⊂ BD2,∞((0,−1), R̃+ ε).

This is just the assertion that {f j(K2)} is uniformly bounded.
Further, for each z ∈ ω(K1) fixed, there exists an r > 0 such that B(z, r)

is compactly contained in ω(K1). The distance decreasing property of the
Kobayashi metric together with its explicit form on B(z, r) gives

d
Dj

2
(f j(z), f j(z̃)) = d

Dj
1
(z, z̃) ≤ dB(z,r)(z, z̃) ≤ |z − z̃|/c(5.17)

for all j large, z̃ ∈ B(z, r) and a uniform constant c > 0. For R′ � 2R̃, apply
Lemma 5.1 to the domain Dj

2 and argue as in the proof of Proposition 5.3
to get

dB
D

j
2
((0,−1),R′)(f

j(z), f j(z̃)) ≤
d
Dj

2
(f j(z), f j(z̃))

tanh(R′/2− d
Dj

2
(f j(z), f j(z̃)))

(5.18)

≤
d
Dj

2
(f j(z), f j(z̃))

tanh(R′/2− 2R̃)

for all j large and z̃ in B(z, r). Now, for a sufficiently small neighbourhood
W of q0 ∈ ∂D2, we see that

BD2,∞((0,−1), R′ + ε) ⊂ (T j ◦ hj)(W ∩D2)

for all j large. If W is small enough, there exists R > 1 such that for all j
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large

hj(W ∩D2) ⊂ {w ∈ C2 : |w1|2 + |w2 +R|2 < R2}
⊂ {w ∈ C2 : 2R<w2 + |w1|2 < 0} = Ω0.

Note that Ω0 is invariant under T j and Ω0 is biholomorphically equivalent
to B2. Hence

BD2,∞((0,−1), R′ + ε) ⊂ (T j ◦ hj)(W ∩D2) ⊂ Ω0.

The above observation together with Proposition 5.7 gives

dΩ0(f j(z), f j(z̃)) ≤ dBD2,∞ ((0,−1),R′+ε)(f
j(z), f j(z̃))

≤ dB
D

j
2
((0,−1),R′)(f

j(z), f j(z̃))

for all z̃ in B(z, r) and j large. Hence, from (5.18) and (5.17) we get

dΩ0(f j(z), f j(z̃)) ≤ dB
D

j
2
((0,−1),R′)(f

j(z), f j(z̃)) ≤ |z − z̃|
c tanh(R′/2− 2R̃)

Now, using the fact that Ω0 ' B2 and the explicit form of the metric on B2

we obtain
|f j(z)− f j(z̃)| . |z − z̃|

for z̃ ∈ B(z, r). This shows that {f j} is equicontinuous at each point of
ω(K1). The diagonal subsequence, still denoted by the same symbols, then
converges uniformly on compact subsets of D1,∞ to a limit mapping f̃ :
D1,∞ → D2,∞ which is continuous.

Step IV. We claim that dD1,∞(z, z̃) = dD2,∞(f̃(z), f̃(z̃)) for all z, z̃ ∈ Ω1

where Ω1 = {z ∈ D1,∞ : f̃(z) ∈ D2,∞}. Note that (0,−1) ∈ Ω1 and hence
Ω1 is non-empty. Recall that for z, z̃ in Ω1,

d
Dj

1
(z, z̃) = d

Dj
2
(f j(z), f j(z̃))

for all j. Now d
Dj

1
(z, z̃) → dD1,∞(z, z̃) as can be seen from the arguments

presented in Proposition 5.3. To show that the right side above converges to
d
Dj

2
(f̃(z), f̃(z̃)), notice that

|d
Dj

2
(f j(z), f j(z̃))− d

Dj
2
(f̃(z), f̃(z̃))| ≤ d

Dj
2
(f j(z), f̃(z)) + d

Dj
2
(f̃(z̃), f j(z̃))

by the triangle inequality. Since f j(z) → f̃(z) and Dj
2 → D2,∞, there is a

small ball B
(
f̃(z), r

)
around f̃(z) which contains f j(z) and which is con-

tained in Dj
2 for all large j, where r > 0 is independent of j. Thus

d
Dj

2
(f j(z), f̃(z)) . |f j(z)− f̃(z)|.
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The same argument shows that d
Dj

2
(f̃(z̃), f j(z̃)) is small. So to verify the

claim, it is enough to prove that
d
Dj

2
(f̃(z), f̃(z̃))→ dD2,∞(f̃(z), f̃(z̃)).

But this is immediate from Proposition 5.6.
Step V. The limit map f̃ is a surjection onto D2,∞. To establish this,

we first show that f̃(D1,∞) ⊂ D2,∞. Indeed, Ω1 = D1,∞. If z0 ∈ ∂Ω1∩D1,∞,
choose a sequence zj ∈ Ω1 that converges to z0. It follows from Step IV that

dD1,∞(zj , (0,−1)) = dD2,∞(f̃(zj), (0,−1))

for all j. Since z0 ∈ ∂Ω1, the sequence f̃(zj) converges to a point on ∂D2,∞
and, asD2,∞ is complete in the Kobayashi distance, the right hand side above
becomes unbounded. However, the left hand side remains bounded again
because of completeness of D1,∞. This contradiction shows that Ω1 = D1,∞,
which exactly means that f̃(D1,∞) ⊂ D2,∞. The above observation coupled
with Step IV forces that

dD1,∞(z, z̃) = dD2,∞(f̃(z), f̃(z̃))

for all z, z̃ ∈ D1,∞. To establish the surjectivity of f̃ , consider any point
w0 ∈ ∂(f̃(D1,∞))∩D2,∞ and choose a sequence wj ∈ f̃(D1,∞) that converges
to w0. Let {z̃j} be a sequence of points in D1,∞ such that f̃(z̃j) = wj . Then
for all j and z ∈ D1,∞,
(5.19) dD1,∞(z, z̃j) = dD2,∞(f̃(z), f̃(z̃j)).
There are two cases to consider. Possibly after passing to a subsequence, we
have either

(i) z̃j → z̃0 ∈ ∂D1,∞, or
(ii) z̃j → z̃1 ∈ D1,∞ as j →∞.
In case (i), observe that the right hand side of (5.19) remains bounded

because of the completeness of D2,∞. Moreover, since D1,∞ is complete in
the Kobayashi metric, the left hand side of (5.19) becomes unbounded. This
contradiction shows that f̃(D1,∞) = D2,∞.

For (ii), firstly, the continuity of f̃ implies that f̃(z̃j) → f̃(z̃1) and con-
sequently f̃(z̃1) = w0. Consider the mappings (f j)−1 : Dj

2 → Dj
1. Now,

an argument similar to the one employed in Step II shows that (f j)−1 ad-
mits a subsequence that converges uniformly on compact sets of D2,∞ to a
continuous mapping g̃ : D2,∞ → D1,∞. Then g̃ ◦ f̃ ≡ idD1,∞ . Therefore,

z̃1 = g̃ ◦ f̃(z̃1) = g̃(w0) = lim
j→∞

(f j)−1(w0)

and consequently the sequence (f j)−1(w0) is compactly contained in D1,∞.
Now, repeating the earlier argument for (f j)−1, it follows that g̃(D2,∞) ⊂
D1,∞ and f̃ ◦ g̃ ≡ idD2,∞ . In particular, f̃ is surjective.
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Hence f̃ is an isometry between D1,∞ and D2,∞ in the Kobayashi met-
ric. The goal now is to show that this isometry is indeed a biholomorphic
mapping. To do this, observe that f̃ is differentiable almost everywhere (see
[SV2]).

Step VI. By [M2], the infinitesimal Kobayashi metric FKD1,∞
is C1-

smooth on D1,∞×(C2\{0}). Further, FKD1,∞
is the quadratic form associated

to a Riemannian metric, f̃ is C1 on D1,∞ and finally f̃ is holomorphic or
antiholomorphic. These statements can be deduced from the arguments in
[SV2] without any additional difficulties. It follows that

B2 ' D1,∞ = {(z1, z2) ∈ C2 : 2<z2 + |z1|2m < 0}
' D̃ = {(z1, z2) ∈ C2 : |z1|2m + |z2|2 < 1}.

Let F : B2 → D̃ be a biholomorphism which in addition may be assumed
to preserve the origin. Since B2 and D̃ are both circular domains, it follows
that G is linear. This forces that 2m = 2. But this exactly means that there
exists a local coordinate system in a neighbourhood of the origin which can
be written as

{(z1, z2) ∈ C2 : 2<z2 + |z1|2 + o(|z1|2 + =z2) < 0}.

This contradicts the assumption that p0 = (0, 0) is a weakly pseudoconvex
point and proves Theorem 1.3.

Remark 5.8. Theorem 1.3 is to be interpreted as a version of Bell’s
result (cf. [BEL]) on biholomorphic inequivalence of a strongly pseudoconvex
domain and a smoothly bounded pseudoconvex domain in Cn. Here, the
end conclusion of non-existence of a global biholomorphism is replaced by a
global isometry. The question of recovering the theorem for arbitrary weakly
pseudoconvex finite type domains for isometries seems interesting.

Theorem 5.9. Let f : D1 → D2 be a Kobayashi isometry between two
bounded domains in C2. Let p0 and q0 be points on ∂D1 and ∂D2 respec-
tively. Assume that the boundaries ∂D1 and ∂D2 are both C∞-smooth weakly
pseudoconvex and of finite type near p0 and q0 respectively. Suppose that q0
belongs to the cluster set of p0 under f . Then f extends continuously to a
neighbourhood of p0 in D1.

Proof. We first show that f is continuous up to p0. If f does not extend
continuously to p0, there exists a sequence sj in D1 with sj → p0 ∈ ∂D1 such
that f(sj) does not converge to q0 ∈ ∂D2. Note that there is a sequence pj ∈
D1 converging to p0 ∈ ∂D1 such that f(pj)→ q0 ∈ ∂D2. Then for polygonal
paths γj in D1 joining pj and sj defined as in the proof of Theorem 1.2 and
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points pj0, sj0, tj , uj , u0 chosen analogously, it follows from [FR] that

dD1(pj , tj) ≤ − 1
2 log d(pj , ∂D1)(5.20)

+ 1
2 log(d(pj , ∂D1) + |pj − tj |)

+ 1
2 log(d(tj , ∂D1) + |pj − tj |)

− 1
2 log d(tj , ∂D1) + C1.

Applying Proposition 4.2 yields

dD2(f(pj), f(tj)) ≥ − 1
2 log d(f(pj), ∂D2e

)
(5.21)

− 1
2 log d(f(tj), ∂D2)− C2

for all j large and a uniform positive constant C2. Next, we claim that

d
(
f(pj), ∂D2) ≤ C4d(pj , ∂D2) and d

(
f(tj), ∂D2) ≤ C4d(tj , ∂D2)

for some uniform positive constant C4. Assume this for now. Using the fact
that dD1(pj , tj) = dD2

(
f(pj), f(tj)

)
and comparing (5.20) and (5.21), it fol-

lows from the above claim that for all j large,

−(C1 + C2 + logC4) ≤ 1
2 log(d(pj , ∂D1) + |pj − tj |)
+ 1

2 log(d(tj , ∂D1) + |pj − tj |),
which is impossible.

To prove the claim, fix a ∈ D1. By Proposition 4.1, we have

dD1(a, pj) ≥ −1
2 log d(pj , ∂D1)− C5,(5.22)

dD2(f(pj), f(a)) ≤ −1
2 log d(f(pj), ∂D2) + C6,(5.23)

for all j large and uniform positive constants C5 and C6. Fix a ∈ D1. Using
dD1(a, pj) = dD2

(
f(pj), f(a)

)
, and comparing (5.22) and (5.23), we get the

required estimates. Hence the claim. From this point, using an argument
similar to the one in the proof of Theorem 1.2, we infer that f is continuous
on a neighbourhood of p0 in D1.

Theorem 5.10. Let f : D1 → D2 be a Kobayashi isometry between
two bounded domains in Cn. Let p0 and q0 be points on ∂D1 and ∂D2 re-
spectively. Assume that the boundaries ∂D1 and ∂D2 are both C2-smooth
strongly pseudoconvex near p0 and q0 respectively. Suppose that q0 belongs to
the cluster set of p0 under f . Then f extends as a continuous mapping to a
neighbourhood of p0 in D1.

The proof of the above theorem is along the same lines as that of Theo-
rems 1.2 and 5.9 and is hence omitted.

It turns out that versions of the above mentioned results hold for the inner
Carathéodory distance. More concretely, the following global statements can
be proved:
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Theorem 5.11. Let f : D1 → D2 be an isometry between two bounded
domains in Cn with respect to the inner Carathéodory distances on these
domains.

(i) Assume that D1 and D2 are both C3-smooth strongly pseudoconvex
domains in Cn. Then f extends continuously up to the boundary.

(ii) Assume that D1 ⊂ C2 is a C3-smooth strongly pseudoconvex do-
main and D2 ⊂ C2 is a C∞-smooth weakly pseudoconvex finite type
domain. Then f extends continuously up to the boundary.

(iii) Assume that D1 and D2 are both C∞-smooth weakly pseudoconvex
finite type domains in C2. Then f extends continuously up to the
boundary.

To establish the above theorem, the following result due to Balogh–Bonk
([BB]) will be needed. This in turn relies on estimates for the infinitesimal
Carathéodory metric given by D. Ma ([M1]).

Theorem 5.12. Let D ⊂ Cn be a bounded strongly pseudoconvex domain
with C3-smooth boundary. Then there exists a constant C > 0 such that for
all a, b ∈ D,

g(a, b)− C ≤ ciD(a, b) ≤ g(a, b) + C

where

g(a, b) = 2 log
[
dH(π(a), π(b)) + max{(d(a, ∂D))1/2, (d(b, ∂D))1/2

}
(d(a, ∂D))1/4(d(b, ∂D))1/4

]
,

dH is the Carnot–Carathéodory metric on ∂D and π(z) ∈ ∂D is such that
|π(z)− z| = d(z, ∂D).

Proof of Theorem 5.11. Part (i) is in Lemma 2.2 of [SV1]. Parts (ii) and
(iii) can be verified by making appropriate changes in the proof of Theo-
rem 5.9—using the inequality ciD ≤ dD to get the upper bounds on the
inner Carathéodory distance and the following consequences of the results
of Balogh–Bonk ([BB]) and Herbort ([HERB]):

• If a belongs to some fixed compact set L in D, then

g(a, b) ≈ −1
2 log d(b, ∂D)± C(L).

Thus
ciD(a, b) ≈ −1

2 log d(b, ∂D)± C(L).

• If a, b ∈ D are close to two distinct points on ∂D, then

g(a, b) ≈ −1
2 log d(a, ∂D)− 1

2 log d(b, ∂D)± C.
Consequently,

ciD(a, b) ≈ −1
2 log d(a, ∂D)− 1

2 log d(b, ∂D)± C.
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• If a, b are close to the same boundary point, then
g(a, b) ≤ − 1

2 log d(a, ∂D) + 1
2 log(d(a, ∂D) + |a− b|)

+ 1
2 log(d(b, ∂D) + |a− b|)− 1

2 log d(b, ∂D) + C.

Therefore,
ciD(a, b) ≤ − 1

2 log d(a, ∂D) + 1
2 log(d(a, ∂D) + |a− b|)

+ 1
2 log(d(b, ∂D) + |a− b|)− 1

2 log d(b, ∂D) + C.

• If a, b are sufficiently close to two distinct points on ∂D for a weakly
pseudoconvex finite domain in C2, then d̃(a, b) & 1 and d̃(b, a) & 1 so
that

ciD(a, b) & −1
2 log d(a, ∂D)− 1

2 log d(b, ∂D)± C.
These bounds on ciD(a, b) are exactly the ones that are needed to reprove
Theorem 5.9 for the inner Carathéodory distance.
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