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Real hypersurfaces with
parallel induced almost contact structures

by ZUZANNA SZANCER (Krakéw)

Abstract. Real affine hypersurfaces of the complex space C™™' with a J-tangent

transversal vector field and an induced almost contact structure (¢,&,n) are studied.
Some properties of hypersurfaces with ¢ or n parallel relative to an induced connection
are proved. Also a local characterization of these hypersurfaces is given.

1. Introduction. We study real affine hypersurfaces of the complex
space C"t! with a J-tangent transversal vector field C' and an induced
almost contact structure (p,£,7n). The main purpose of this paper is to
investigate some properties of hypersurfaces with Vo = 0 or Vi = 0, where
V is an affine connection induced by a transversal vector field C.

In Section 2 we briefly recall basic formulas of affine differential geometry,
we introduce the notion of a J-tangent transversal vector field and give a
lemma relating to differential equations required in the next sections.

In Section 3 we recall some results obtained in [SS| for an induced al-
most contact structure and show how induced almost contact structures are
related to each other in case the J-tangent transversal vector field changes.

Section 4 contains the main results of this paper. In particular, we prove
some properties of induced objects under the condition Vo = 0 as well as
Vn = 0. Moreover, we prove that the existence of a J-tangent transversal
vector field ¢ with V¢ = 0 is equivalent to the existence of a J-tangent
transversal vector field n with Vi = 0. At the end we give a local charac-
terization of such hypersurfaces.

Throughout the paper we write a = 0 if a(xz) = 0 for all x € M, and
a # 01if a(z) # 0 for every x € M (i.e. @ is a nowhere vanishing function
on M).
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2. Preliminaries. We briefly recall the basic formulas of affine differ-
ential geometry. For more details, we refer to [NS]. Let f: M — R"*! be an
orientable, connected differentiable n-dimensional hypersurface immersed in
the affine space R™*! equipped with its usual flat connection D. Then for
any transversal vector field C' we have

(2.1) Dy £.Y = £u(VxY) + h(X,Y)C,

(2.2) DxC=—f.(SX)+1(X)C,

where X, Y are vector fields tangent to M. For any transversal vector field,
V is a torsion-free connection, h is a symmetric bilinear form on M, called
the second fundamental form, S is a tensor of type (1, 1), called the shape
operator, and 7 is a 1-form, called the transversal connection form.

We shall now consider the change of a transversal vector field for a given
immersion f.

THEOREM 2.1 ([NS]). Suppose we change a transversal vector field C' to
C=aC+ 1.(2),

where Z is a tangent vector field on M and @ is a nowhere vanishing func-
tion on M. Then the affine fundamental form, the induced connection, the
transversal connection form, and the affine shape operator change as follows:

_ 1
h=—h
@7

_ 1
VxY =VxY — 2h(X.Y)Z,

1
T=T7+ 5h<Z’ )+ dln|P|,
S=¢S-V.Z+7(-)Z.
If h is non-degenerate, then we say that the hypersurface or the hyper-
surface immersion is non-degenerate. We have the following
THEOREM 2.2 ([NS| §II1.2, Theorem 2.1]). For an arbitrary transversal
vector field C the induced connection V, the second fundamental form h, the
shape operator S, and the 1-form T satisfy the following equations:
(2.3) R(X,Y)Z =h(Y,Z)SX — h(X, Z)SY,
(25) (Vx9(Y) —7(X)SY = (VyS)(X) — 7(Y)5X,
(2.6) hX,SY)—h(SX,Y)=2d7(X,Y).
Equations (2.3)), (2.4)), (2.5, and (2.6 are called, respectively, the equa-

tion of Gauss, Codazzi for h, Codazzi for S and Ricci.
For a hypersurface immersion f: M — R™"! a transversal vector field C
is said to be equiaffine (resp. locally equiaffine) if 7 =0 (resp. d7 = 0).
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Let dimM = 2n + 1 and f: (M,g) — (R**2 3) be a non-degenerate
(relative to the second fundamental form) isometric immersion, where § is
the standard inner product on R?"*2. We assume that R**+2? ~ C"*+! is
endowed with the standard complex structure J,

J(l‘l, ey Tn415Y1y - - ey yn+1) = (—yl, ey T Yn+1,21y - - - ,:L'n+1).
Let C be a transversal vector field on M. We say that C is J-tangent if

JC, € fo(T, M) for every x € M. We also define a distribution D on M as
the biggest J-invariant distribution on M, that is,

D, = f*_l(f*(TxM) N J(f*(TxM)))
for every x € M. It is clear that dimD = 2n. A vector field X is called a
D-field if X, € D, for every x € M. We use the notation X € D for vectors
as well as for D-fields. We say that the distribution D is non-degenerate if
h is non-degenerate on D. To simplify the writing, we will omit f, in front
of vector fields in most cases.

We conclude this section with the following useful lemma relating to
differential equations (we also give the proof for completeness):

LeEMMA 2.3 ([S]). Let F: I — R?" be a smooth function on the interval I
and let o, 3 € C®(I,R) be such that a® + 3% # 0 on I. If F satisfies the
differential equation

(2.7) F'(y) = —a(y) JF(y) + By)F(y),
then F' is of the form
(2.8) F(y) = JueP®) cos(a(y)) + veBW) sin(&(y)),

where v € R?" and &, (3 are any integrals of a and B on I, respectively.

Proof. 1t is easily seen that functions of the form (2.8)) satisfy the differ-
ential equation (2.7)). On the other hand, since ([2.7) is a first order ordinary
differential equation, the Picard—Lindel6f theorem implies that any solution

of (2.7) must be of the form (2.8]). =

3. Almost contact structures. A (2n + 1)-dimensional manifold M
is said to have an almost contact structure if there exist on M a tensor field
v of type (1, 1), a vector field £ and a 1-form 7 which satisfy

PX) = =X +n(X)E,  n(E) =1
for every X € TM.
Let f: M — R?"*2 be a hypersurface with a J-tangent transversal vector
field C'. Then we can define a vector field &, a 1-form n and a tensor field ¢
of type (1, 1) as follows:

§:=JC, nlp=0 and n¢)=1, ¢lp=Jp and (&) =0.
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It is easy to see that (¢, &, n) is an almost contact structure on M; it is said
to be induced by C.
For an induced almost contact structure we have the following theorem:

THEOREM 3.1 ([SS]). If (p,&,n) is an induced almost contact structure
on M then

(3.1) n(VxY) = =h(X, oY) + X(n(Y)) + n(Y)7(X),
(3.2) p(VxY) =VxeY +n(Y)SX — (X, Y)E,
(3.3) (X, Y]) = —h(X,0Y) + h(Y, 0 X) + X(n(Y)) = Y (n(X))

+n(Y)7(X) = n(X)T(Y),

(3.4) p([X,Y]) = VxpV = VypX —n(X)SY +n(Y)SX,
(3.5) n(Vx§) = 7(X),
(3.6) n(SX) = h(X,¢),

for all X, Y € X(M).

LEMMA 3.2. Let C be a J-tangent transversal vector field. Then any
other J-tangent transversal vector field C' has the form

C=¢CH f.2,
where ¢ # 0 and Z € D. Moreover, if (p,€,n) is the almost contact structure
induced by C, then C induces the almost contact structure (p,&,7), where
E=¢E+9Z, 0= ;77, ¢ = so+n(-);Z~
Proof. Since Z € D and J = ¢ on D, we have
E=JC =J(¢C+ f.2) = ¢JC + oZ = ¢ + o Z.

Directly from the definition of n and 7 we get n =7 on D and

(&) = 1=17(€) = 1(¢¢ + ¢Z) = (),

thus .
n(&) = -n(&),

and finally 7 = én. To prove the last equality of the statement, note that

0= (&) = ¢(&) = p(¢€ + 9Z) = $p(€) + p(2).
From the definition of ¢ and ¢ we have ¢ = ¢ on D, which implies that

B(6) = ;Z — (&) + n(é);Z,

since Z € D. The last formula proves that

B(X) = p(X) + n<X>;Z
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is valid for X = &. Clearly, it is also valid for every X € D, and thus for
every X € TM.

4. Parallel induced almost contact structures. In this section we
always assume that (¢,&,n) is an almost contact structure induced by a
J-tangent transversal vector field C'. It is important to note that we do not
assume that the second fundamental form h is non-degenerate.

LEMMA 4.1. Let (p,&,m) be an induced almost contact structure such
that Voo = 0. Then

(4.1) hlpxp = 0,

(4.2) h(&,X)=h(X,§) =0 forall X € D,
(4.3) Slp =0,

(4.4) 5S¢ = h(& &,

(4.5) dr =0.

Proof. From formula (3.2)) we have
(Vxe)(Y) = —n(Y)SX + h(X,Y)¢

for all X,Y € X(M). Since Vo =0 we get h(X,Y) =0 and h({,Y) =0 for
all X,Y € D. Now, taking X € D and Y = ¢ we have SX = 0. Taking X =
Y = £ we easily get S& = h(£,€)E. The last equation follows immediately
from the Ricci equation (2.6[). =

The above lemma implies that if Vo = 0, then C' is a locally equiaffine
transversal vector field, so locally we can find a nowhere vanishing function
@ such that C = ®C is an equiaffine J-tangent vector field. Now, using
Theorem and Lemma we get the following corollary:

COROLLARY 4.2. Let C be a J-tangent transversal vector field such that
Vo =0 and let & be a nowhere vanishing function on M. Denote by C the
transversal vector field ®C. Then V@ = 0. Thus, parallelism of ¢ relative
to V is the direction property. In particular, locally we can always choose C

equiaffine.
We shall prove

LEMMA 4.3. Let (¢,&,n) be an induced almost contact structure such
that V= 0. Then

(4.6) hlpxp =0,
(4.7) h(&,X)=h(X,§) =0 for every X € D,
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(4.8) T=0,

(4.9) VxY eD forall XY € D,

(4.10) Vx¢eD for every X € X(M),

(4.11) VeX €D for every X € D,

(4.12) X(h(£,8) =0 for every X € D.
Proof. Since Vn = 0 we have

(4.13) n(VxY) = X(n(Y))

for all X,Y € X(M). Now, using formula (3.1]) we get

(4.14) WX, oY) =n(Y)r(X)

for all X,Y € X(M). Hence, if X,Y € D, then h(X,¢Y) = 0, which proves

(4.6). Taking X = ¢ and Y € D in (4.14) we easily get (4.7). On the other
hand, taking Y = £ we have 7(X) = 0, that is, (4.8]). Formulas (4.9)—(4.11)
can be obtained directly from (4.13). To prove (4.12) note that from the

Codazzi equation (2.4) for h (and using (4.8])) we have
Now, if we take X € D then because of (4.6)—(4.7]) we get h(X,€&) = 0 and
h(X,Ve¢€) = 0, whereas (4.11)) implies that also h(V¢X, &) = 0. Thus, we
obtain

0= (Vxh)(&&) = X (h(£,£)) = 2n(Vix&, &)
for every X € D. Now, using (4.10) in the above formula leads to

X(h(&,€)) =
for every X € D. This finishes the proof of (4.12)). m

Denote by N the metric normal field for f: M — R?"*2 (relative to the
standard inner product on R?"*2). The metric normal field induces objects
@, h and §Aas the transversal vector field on M. Recall that the induced
connection V is the Levi-Civita connection of the induced Riemannian met-
ric g. It is clear that NV is J-tangent, thus induces an almost contact structure
(,N,7) on M.

THEOREM 4.4. Let f: M — R?>"*2 be an affine immersion. Then the
following conditions are equivalent:

(1) For every point on M there exist a neighborhood U and a J-tangent
transversal vector field C' defined on U such that Vi = 0.

(2) For every point on M there exist a neighborhood U and a J-tangent
transversal vector field C' defined on U such that Vi = 0.

(3) An induced almost contact structure (@, N ,n) is ¥ -parallel.
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Proof. Let x be any point on M. Assume that in some neighborhood U
of x there exists a J-tangent transversal vector field C' such that Vi = 0.
Then, by virtue of Corollary we can assume (possibly shrinking U) that
C is equiaffine. Now, by Theorem (formula (3.1))) we get

(Vxn)(Y) = h(X, pY) = n(Y)7(X) = h(X, ¢Y)
for all X, Y € X(U). Using the first two formulas from Lemma [4.1| we get
Vn =0,

which proves the implication (1)=-(2).

To prove (2)=-(3) note that if (¢,&,n) is an almost contact structure
induced by a J-tangent transversal vector field C' defined on some neighbor-
hood U of x and such that Vn = 0 then

Ny = &€ + ¢Z,

where Z € D and ¢ = const. Also note that the condition Vn = 0 is
invariant under scaling the field C' by a constant. Therefore, we can later
assume that C' is chosen in such a way that

Ny =&+ ¢Z.

By Theorem and Lemma we obtain h = h and i) = 7. Since N is the
metric normal field we see that g, h = h and S are related by the formula

h(X,Y) = g(5X,Y)
for all X, Y € X(U). The above equality and Lemma imply
SX = h(N,X)N

for every X € X(U). Now, using (3.2) and (3.5)) for the structure (3, N, n)
we easily get

P(VxN)=5X —h(N,X)N=0 and #(VxN)=0
for every X € X(U), that is, VxN =0 for every X € X(U). Lemma
implies that

(Vx@)(Y) = h(X,
= (h

~

Y)S§X h(X Y)N — n(Y)h(N, X)N
(X, Jh(&, X))N =0

for all X,Y € X(U). Arbitrariness of z € M gives VN = 0 and V$ = 0
on the whole M. The condition Vn = 0 can easily be obtained from the
equality V@ = 0, the fact that N is equiaffine and the proof of (1)=(2).

To prove (3)=-(1) it is sufficient to take C':= N. m

Y)N - (Y
Y)=n(Y
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From the proof of Theorem [4.4]it follows that if there exists an equiaffine
J-tangent transversal vector field C' with V¢ = 0, then we also have Vi = 0
for C'. Moreover, condition (3) in the above theorem is equivalent to the
global versions of conditions (1) and (2), that is,

(1') There exists a J-tangent transversal vector field C' on M such that

Ve =0.
(2') There exists a J-tangent transversal vector field C' on M such that
Vn=0.

It follows from Lemmas [4.1] and [4.3] that rank f < 1. However, the con-

verse is not true in general since we have the following

EXAMPLE 4.5. Let us consider an affine immersion defined as follows:

f R3S (z,y,2) — c R

IS

w

e

Of course rank f = 1. Let {91, 92,93} be the canonical basis on R? generated
by the coordinate system (x,v,2) on R3. It is not difficult to see that

N:R3> (z,y,2)— |__¢ | eR?

is the metric normal field for f. Now,

- o? -

Vve2z +1
1

N=1"Vet1
0
0
The above implies that
0
0
f*(aii) =f.= 1
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is orthogonal to N , thus it belongs to the distribution D. We will show that
(Vo,©)(03) # 0. By straightforward computations we get

622

68383 = ma{g and @(83) = —81 — ezag.

Now
(Vo,2)(85) = Vi, ($(03)) — 3(V,05)

R R eZz
= V33(—81 — 6282) — (,0<83>

e?? +1
N R 622 e3Z
= —Vagal —e v8382 — 83(6 )62 + 022 n 181 + o2z i 182
2z 3z
e €
-, —e* )y £ 0
622+1 1+(622—|—1 6)2%7

since 683 o0 = %agag = 0 and 91, 0y are linearly independent.

In later parts of this paper we will give a local characterization of affine
hypersurfaces satisfying any (thus all) of the conditions from Theorem
We need the following lemma:

LEMMA 4.6. Let f: M — R?"*2 be a hypersurface with a metric normal
field N. Assume that an almost contact structure (p, N,n) induced by N
18 @—pamllel. Then, for every point x of M and for any nowhere vanishing
smooth function « defined in some meighborhood of x and constant in the
direction of D (i.e. X(a) =0 for every X € D), there exist a neighborhood
of x and a map Y(y,x1,...,T2,) defined on this neighborhood such that the
vector fields 0/0y,0/0z1,...,0/0xa, satisfy

0 ~ 0 0
a—y =alN and or " O €D.

Proof. Since (@, N, ) is @—parallel, in particular (by ) the distribu-
tion D is involutive. Let x be any point on M and let o be a nowhere
vanishing smooth function defined in some neighborhood of z and con-
stant in the direction of D. The Frobenius theorem implies that for x
there exist an open neighborhood U C M and linearly independent vec-
tor fields X1,..., Xon, Xont1 = aN € X(U) such that [X;, X;] = 0 for
i,7=1,...,2n+ 1. For every ¢ = 1,...,2n we have

~

Xi = Di + OZZ'N,
where D; € D and o; € C*°(U). Thus
(4.15) 0 = [Xi, Xont1] = [Ds, Xong1] — X2n+1(04i)]\7-

From (4.10) and (4.11) it is clear that [D;, N] € D. Since D;(a) = 0 we also
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have
[Di,X2n+1] = Oé[D,L,N] + Dz(a)N = OL[DZ,N] e D.

Now ({4.15]) implies that [D;, Xo,41] = 0 and X9, 11(a;) =0fori =1,...,2n.

Moreover, for all 4,5 =1,...,2n we have
[Di,Dj] = [XZ,X]} — [a,-]/\ﬁXj] — [Xi,ozj]/\?] + [Oéi]/\},aj]/\}].
Since [X;, X;] = 0, D is involutive and the last three terms in the above

equality are proportional to N , we obtain

[D;, Dj] =0
for all 7,5 = 1,...,2n. Of course the vector fields Dy,..., Doy, Xop41 are
linearly independent over C°°(U), so we can find a map (y, z1,...,Top)

on U such that 0/0y = X941 and 0/0z; = D; for i =1,...,2n. =

In the next two theorems we give a local characterization of hypersurfaces
for which there exists a J-tangent transversal vector field inducing an almost
contact structure (¢, &,n) such that Vi =0 or Vi = 0.

THEOREM 4.7. Let f: M — R2”+2 be a hypersurface such that the al-
most contact structure (gp,N n) is v -parallel. Let U be a non-empty open
subset of M. If rank f =0 on U then f(U) is a piece of a hyperplane.

Proof. Since rank h = 0 and %gﬁ =0on U, Lemma implies
DxN =-SX =0

for every X € X(U). It follows that a metric normal field N is constant
on U, thus f(U) is a hyperplane in R?*"2, a

THEOREM 4.8. Let f: M — RQ"” be a hypersurface such that the al-
most contact structure (<,0,N n) is V-pamllel Let x be a point on M such
that rank f = 1 at . Then there exists an open neighborhood U of x such
that f can be expressed on U in the form

(4.16) f(x1, ... 2o, y) = x1b1 + - -+ + 22boy — vga(y) cosy dy

+ JUSa(y) siny dy,
where v € R?"2 |jv|| = 1, a is some nowhere vanishing smooth func-
tion on U and by, ..., by, € R2"2 are lmearly independent vectors from

{v, Ju}*+. Moreover, every hypersurface (4 has a V -parallel almost con-
tact structure (3, N, 7).

Proof. First, note that since ranklAlm =1, we have sz(ﬁm, N) # 0. Since

ﬁ(]/\\f, N) is smooth we can find a neighborhood U of x such that a(N, ]/\\f)

on U, thus rank 7 = 1 on U. Moreover, by (4.12) the function h(N ]/\\f)
constant in a direction of the distribution D.



Real hypersurfaces 213

Let us define a new function on U,
1
o= <—=—="-
h(N,N)
It is clear that a@ # 0 and « is constant in a direction of D. Using Lemma
and possibly shrinking U we deduce that there exists a map ¢ on U such

that 5 5 5
~ =aN and —,...,——
oy @ an Ox1’ 7 Oz,

By the Weingarten formula (2.2]) and formulas (4.3]), (4.4]) we get

~( 0
o= -5(2) =0

eD.

fori=1,...,2n and
) . PN N
DyjoyN = —S<8> = —aS(N) = —ah(N,N)N = —N = —JN,
Y
thus N, = 0 for i = 1,...,2n and N, = —JN. Now, Lemma [2.3] implies
that
N = Jvcosy + vsiny,
where v € R?"*2. Since N is a metric normal field, we see that
1=||N| =||Jvcosy + vsiny| = ||v].
Let by,..., by, be any linearly independent vectors from R?"*2? such that
b; € {v, Ju}t. We have
N-bj=0 and N-b; =0,
for every i = 1,...,2n, therefore the vectors by,...,bs, span f.«(D). Let
01, -..,00, be vector fields on U such that f,(9;) = b; fori =1,...,2n. Of

course 01, ..., 0oy, are linearly independent and span the distribution D. For
every X € TU and for every ¢ = 1,...,2n we have

Dx f.0; = Dxb; = 0.

On the other hand by the Gauss formula (2.1) and due to the fact that
h|pxp = 0 we obtain

DXf*az = f*(§Xaz)7

thus R
Vx0;=0

for every X € TU. In particular, we have
@ai 0; =0

for all4,j € {1,...,2n} and
§8/8yai =0
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fori=1,...,2n. Moreover

U T N P

Vaiaf = Vp,(aN) = 0;(a)N +aVy N =0,

Y
since « is constant in a direction of D and VN = 0. To sum up, the vector
fields 5
ala"'aa2naaiy
are associated with some map 1. Denoting again 01, ...,0, by 0/0x1,...
...,0/0x9, we see that the immersion f satisfies the differential equations
f i — b;

fori=1,...,2n and
fy = a(y)N = a(y)(—vcosy + Jusiny).
Solving the above we get a local form of f as follows:
flx1,. .., xon,Y)
=x1b1 + - + T2nb2y — USoz(y) cosydy + vaoz(y) siny dy.

To prove the second part of the theorem note that the function described
by is an immersion, since by, ..., ba, and —va(y) cosy + Jva(y)siny
are linearly independent. Now, it is enough to show that @77 = 0. It is not
difficult to see that N = Jvcosy + vsiny, thus

N = —vcosy + Jusiny;
moreover 0/0x; € D and ﬁx(a/axi) = 0 for ¢ = 1,...,2n, which imply
(Vxn)(Y)=0forall X € TM and Y € D. To complete the proof note that
(Vx)(N) = X(H(N)) = i(VxN) = =H(VxN)
for every X € TM. If X € D then @XN = 0, because
DxN = Dx(—vcosy + Jusiny) =0

for every X € D. If X = 0/0y then

Da/ay]/\\f = Jvcosy +vsiny = N,

thus 63/@]?7 = 0. Summarizing, we have shown that @ﬁ = 0, which com-
pletes the proof. m
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