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Abstract. The homogeneous quaternionic Kähler structures on the Alekseevskian
W-spaces with their natural quaternionic structures, each of these spaces described as a
solvable Lie group, and the type of such structures in Fino’s classification, are found.

1. Introduction. Quaternion-Kähler manifolds have attracted much
attention since the classical papers by Wolf [W], Ishihara [I] and others to
the present day: see for instance [J] and [V], among many papers.

A quaternion-Kähler manifold is said to be negative if it is complete
and has negative scalar curvature. Homogeneous quaternion-Kähler spaces
admitting a simply transitive completely solvable Lie group of isometries
were classified by Alekseevsky [A] (see also de Wit and van Proeyen [WP]
and Cortés [Co]). No other homogeneous negative quaternion-Kähler spaces
are known. Alekseevsky conjectured in [A, p. 300] that the only homogeneous
negative quaternion-Kähler manifolds are Alekseevskian spaces.

Homogeneous quaternionic Kähler structures, i.e., the Sp(n)Sp(1) case
of Tricerri and Vanhecke [TV] homogeneous Riemannian structures, have
been studied in [BGO1, BGO2, CGO1, CGO2, CGS, F]. Fino gave in [F,
Lem. 5.1] a representation-theoretical classification of such structures into
five basic geometric types QK1, . . . ,QK5. (We denote the type QKi ⊕QKj
by QKij , and so on.) A classification by real tensors was given in [CGS, Th.
1.1], and it was also proved that a connected, simply-connected and complete
homogeneous quaternion-Kähler manifold of dim ≥ 8, admitting a nonvan-
ishing structure in QK123 with nonzero projection to QK3, is isometric to
the quaternionic hyperbolic space HH(n). Furthermore, a structure of type
QK134 on HH(n), corresponding to its description as a solvable Lie group,
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has been given in [CGS, Prop. 5.3]. Then, in [CGO1, Th. 3.4] and [CGO2,
Th. 5] it has been shown that the quaternion-Kähler symmetric spaces of
dimension 8 or 12 furnish proper realisations of the types QK134,QK135,
QK1345, QK12345. Fino’s classification has been extended to any signature
of the metric in [BGO1, Th. 4.4], and the structures on rank-three Alek-
seevskian spaces, T (p), p ≥ 0, endowed with their natural structure as
solvable Lie groups, have been found in [BGO2, Th. 3.1].

Negative quaternion-Kähler spaces appear in N = 2 supergravity. If
gravity is considered as a dynamical field, the holonomy group of the man-
ifold is a subgroup of Sp(n)Sp(1) and M is a negative quaternion-Kähler
manifold (Bagger and Witten [BW]). Cecotti [Ce] proved that Alekseevskian
spaces naturally appear in the context of the c-map and that nonsymmetric
ones are related to Vinberg T -algebras as symmetric ones are related to Jor-
dan algebras. De Wit and van Proeyen [WP] completed Alekseevsky’s clas-
sification by using supergravity considerations. That Alekseevskian spaces
do appear in three series, T -, W-, V-spaces, was proved by Cortés [Co, Th.
II.28] with geometric arguments.

Our aim is to give the expression of the homogeneous quaternionic Kähler
structures carried by the rank-four Alekseevskian spaces W(p, q), each of
them described as a solvable Lie group, and then their type in Fino’s clas-
sification. To this end, we make calculations which are crucially based on
the explicit description of the spaces W(p, q) as completely solvable Lie
groups with a left-invariant quaternionic Kähler structure, given by Cortés
in [Co].

After some preliminaries in §2, we obtain Theorem 3.1, giving the ho-
mogeneous quaternionic Kähler structure corresponding to the description
of each space W(p, q) as a solvable Lie group. Theorem 4.1 gives the type of
such structure, proving that it has nonzero components in each basic Fino
type.

2. Preliminaries. Ambrose and Singer [AS] proved that a connected,
simply-connected and complete Riemannian manifold (M, g) is Riemannian
homogeneous if and only if it admits a homogeneous Riemannian structure,
i.e., a (1, 2) tensor field S satisfying ∇̃g = 0, ∇̃R = 0, ∇̃S = 0, where

∇̃ = ∇ − S, ∇ denotes the Levi-Civita connection and R the curvature
tensor of ∇. We write as usual SXY Z = g(SXY, Z). From ∇g = 0 it follows

that the condition ∇̃g = 0 is equivalent to SXZY = −SXY Z .

Let (M, g, υ3) be an almost quaternion-Hermitian manifold. Let J1, J2, J3
be a standard local basis of υ3 and let ωa(X,Y ) = g(JaX,Y ), a = 1, 2, 3.
The differential 4-form Ω =

∑3
a=1 ωa ∧ ωa is known to be globally defined.

The manifold is said to be quaternion-Kähler if locally (cf. Ishihara [I])
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(2.1) ∇XJ1 = τ3(X)J2 − τ2(X)J3, etc.,

for certain differential 1-forms τ1, τ2, τ3 (‘etc.’ denoting the equations ob-
tained by cyclically permuting 1, 2, 3); or, equivalently, if ∇Ω = 0.

We shall consider negative quaternion-Kähler manifolds of dimension
≥ 8. A quaternion-Kähler manifold (M, g, υ3) of dimension ≥ 8 is said to
be a homogeneous quaternion-Kähler manifold if ([AC, p. 218], cf. [CGS,
Rem. 2.2]) it admits a transitive group of isometries. As a corollary to
Kiričenko’s Theorem [K], a connected, simply-connected and complete qua-
ternion-Kähler manifold (M, g, υ3) is homogeneous if and only if there exists
a tensor field S of type (1, 2) on M satisfying

(2.2) ∇̃g = 0, ∇̃R = 0, ∇̃S = 0, ∇̃Ω = 0,

where ∇̃ = ∇ − S. Such a tensor S is called a homogeneous quaternionic
Kähler structure on M . The equation ∇̃Ω = 0 is equivalent to conditions
similar to (2.1).

Fino [F, Lem. 5.1] gave a representation-theoretical classification of ho-
mogeneous quaternionic Kähler structures into five basic geometric types,
which we denote by QK1, . . . ,QK5.

Let (V, 〈 , 〉, q) be a quaternion-Hermitian vector space, i.e., a 4n-dimen-
sional real vector space endowed with an inner product 〈 , 〉 and a quater-
nionic structure q generated by suitable operators J1, J2, J3. Consider the
space of tensors T (V ) = {S ∈ ⊗3V ∗ : SXY Z = −SXZY } and its vector
subspace

QK(V ) = {S ∈ ⊗3V ∗ : SXY Z = −SXZY , ∃ θa ∈ V ∗ such that S satisfies

SXJ1Y J1Z − SXY Z = θ3(X)g(J2Y, J1Z)− θ2(X)g(J3Y, J1Z), etc.}.

Any homogeneous Riemannian structure on M belongs to T (TpM) point-
wise, but homogeneous quaternionic Kähler structures are pointwise in the
space QK(TpM).

Consider the subspaces V̌ and V̂ of QK(V ) consisting of elements Θ
and T, respectively, such that ΘXY Z =

∑3
a=1α

a(X)〈JaY,Z〉, αa ∈ V ∗, and

TXJaY JaZ = TXY Z , a = 1, 2, 3. Then one has QK(V ) = V̌ ⊕ V̂, and each
element S ∈ QK(V ) decomposes as SXY Z = ΘXY Z + TXY Z , where

(2.3) ΘXY Z = 1
2

3∑
a=1

αa(X)〈JaY, Z〉.

The classification by real tensors is ([CGS, Th. 3.15]) as follows: If n ≥ 2, the
space QK(V ) decomposes into the direct sum of the following Sp(n)Sp(1)-
invariant and irreducible subspaces:
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(2.4)

QK1 = {Θ ∈ V̌ : ΘXY Z =
∑3

a=1α(JaX)〈JaY, Z〉, α ∈ V ∗},
QK2 = {Θ ∈ V̌ : ΘXY Z =

∑3
a=1α

a(X)〈JaY,Z〉,∑3
a=1α

a ◦ Ja = 0, αa ∈ V ∗},
QK3 =

{
T ∈ V̂ : TXY Z = 〈X,Y 〉β(Z)− 〈X,Z〉β(Y )

+
∑3

a=1

(
〈X,JaY 〉β(JaZ)− 〈X, JaZ〉β(JaY )

)
, β ∈ V ∗

}
,

QK4 =
{
T ∈ V̂ :TXY Z = 1

6

(
S
XY Z

TXY Z+ S
XJaY JaZ

∑
a TXJaY JaZ

)
,

c12(T) = 0
}
,

QK5 =
{
T ∈ V̂ : S

XY Z
TXY Z = 0

}
,

where c12(T)(Z) =
∑4n

i=1TeieiZ for any local orthonormal basis {ei} of V .

We now recall some definitions and results by Alekseevsky [A] (cf. [AC],
[Co]). A quaternion-Kähler manifold of nonzero scalar curvature is said to be
an Alekseevskian space if it admits a simply transitive, completely solvable
Lie group of isometries. An Alekseevskian space is simply-connected and
it can be regarded as a completely solvable Lie group with a left-invariant
metric. The corresponding metric Lie algebra with the quaternionic struc-
ture inherited from that of the manifold is a quaternion-Hermitian vector
space (s, 〈 , 〉, q), which is called a quaternionic or Alekseevskian Lie algebra.
A metric Lie algebra f with an orthonormal basis {G,H} and a complex
structure J is said to be a key algebra with root µ if G = JH, [H,G] = µG,
µ > 0. A metric Lie algebra f + x with a complex structure J is said to be
an elementary Kählerian Lie algebra with root µ if f = Span{G,H} is a key
subalgebra with root µ and adH |x = 1

2µI, adG|x = 0, [X,Y ] = µ〈JX, Y 〉G,
X,Y ∈ x. A representation U 7→ TU of a Lie algebra u with a complex struc-
ture J on a Euclidean space (x, 〈 , 〉) with a complex structure J1 is said to be
symplectic if it satisfies the two conditions given in [A, Def. 6.3]. If Tux = x,
T is called nondegenerate. If T is a nondegenerate symplectic representation
of a key algebra f = Span{G,H} with root µ on a space (x, 〈 , 〉, J1), then x
admits a weight decomposition x = x+ + x− such that

(2.5) x− = J1x+, TG|x+ = 0, TG|x− = −µJ1, TH |x± = ±1
2µI.

Any Alekseevskian algebra (s, 〈 , 〉, q), with q = Span{Ja : a = 1, 2, 3},
contains a unique (up to scaling) one-dimensional quaternionic subalgebra s′

(i.e., a subalgebra s′ such that qs′ ⊂ s′), corresponding either to the complex
hyperbolic plane CH(2) or to the quaternionic hyperbolic line HH(1). In the
former case it is of the form s = u + J2u (orthogonal sum), and (u, J1|u) is
the so-called principal Kählerian subalgebra of s. The Lie algebra u contains
a key subalgebra f0 = Span{G0, H0} with root 1 such that f0 + J2f0 is
the canonical one-dimensional quaternionic subalgebra of s, and the adjoint
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representation of s induces a representation of u on u⊥ = J2u. A Kählerian
Lie algebra (u, J), that is, a metric Lie algebra which corresponds to a
Kählerian homogeneous space, is said to be admissible if u = f0 + u0 is a
direct orthogonal sum of a key algebra f0 = Span{G0, H0} with root 1 and

a completely solvable Kählerian Lie algebra u0. Write Ũ = ϕ(U) for each
U ∈ u, and denote by J1 and Ĵ the complex structures on ũ given by

(2.6) J1 = −ϕJϕ−1, Ĵ |̃
f0

= −J1 |̃f0 , Ĵ |ũ0 = J1|ũ0 .

Then a representation U 7→ TU of such a Lie algebra u on a Euclidean
space ũ together with a vector space isometry ϕ : u → ũ is said to be a
Q-representation if it satisfies the eight conditions (Q1–8) given in [A, Lem.
5.5 and Def. 5.3] (cf. also Cortés [Co, Def. 1.8]).

If s is an Alekseevskian Lie algebra with principal Kählerian subalgebra
(u, J), then the representation of u on J2u induced by the adjoint represen-
tation of s is a Q-representation with ϕ = J2|u : u → u⊥. Conversely, let
(T, ϕ) be a Q-representation of an admissible Kählerian Lie algebra (u, J)

on the Euclidean vector space ũ = ϕ(u) = f̃0 + ũ0. Then a quaternionic
structure q = Span{Ja : a = 1, 2, 3} on the Euclidean vector space s = u+ ũ
(orthogonal sum) is defined by

(2.7)
J1|u = J, J1|ũ = −ϕJϕ−1,

J2|u = ϕ, J2|ũ = −ϕ−1, J3 = J1J2.

Let Ĵ be the complex structure on ũ defined as in (2.6), and let ω̂ denote the

Kähler form on ũ given by ω̂(Ũ , Ṽ ) = 〈Ĵ Ũ , Ṽ 〉. Then the following conditions
define the structure of Lie algebra of s:

(2.8) u is a subalgebra of s, adU |ũ = TU , [Ũ , Ṽ ] = ω̂(Ũ , Ṽ )G0,

for all U, V ∈ u.
The rank of a solvable Lie algebra s is the dimension of a Cartan sub-

algebra of s. The rank of an Alekseevskian space S is the rank of its Alek-
seevskian Lie algebra s, which is proved to be at most 4. An admissible
Kählerian Lie algebra u = f0 + u0 which admits a Q-representation de-
composes as a semidirect sum of elementary Kählerian Lie algebras, with
u0 =

∑
i≥1(fi + xi), that is, [fi + xi, fj + xj ] ⊂ fj + fj , i ≥ j, with symplectic

representation adfi |xj for i > j and commuting key algebras, [fi, fj ] = 0, for
i 6= j (see [Co, p. 134]). The rank of u = f0 +

∑
i≥1(fi+ xi) coincides with the

number of key algebras of u. There are three types of admissible Kählerian
Lie algebras, the first type corresponding to the case with smallest root 1.

3. Homogeneous quaternionic Kähler structures on W(p, q).
Now we focus on the rank-four W-case. We shall make calculations essen-
tially based on the explicit description, found by Cortés [Co], of the spaces
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W(p, q), 0 ≤ p ≤ q, as completely solvable Lie groups with a left-invariant
quaternionic Kähler structure.

We recall that given Euclidean spaces x, y, z, a bilinear map ψ : x×z → y
is said to be isometric if 〈ψ(X,Z), ψ(X,Z)〉 = 〈X,X〉〈Z,Z〉, X ∈ x, Z ∈ z.
Let x−, z−, y− be Euclidean vector spaces. Every isometric map ψ : x− ×
z− → y− defines a Kählerian Lie algebra u(ψ) = (f0 + u0, J) of type 1 and
rank 4 by means of a recipe given in [A, Prop. 9.3]. According to [A, Props.
9.2–9.4], there are two possibilities for Kählerian Lie algebras u = u(ψ) of
type 1 and rank > 2 which admit a Q-representation. These two possibilities
originate the series of AlekseevskianW- and V-spaces, respectively. TheW-
spaces correspond to the case x− = 0 (hence ψ = 0), and u = u(p, q) ∼=
u(q, p) is completely determined by the parameters p = dim y− ≥ 0 and
q = dim z− ≥ 0. Any such Lie algebra u has a unique Q-representation T
and the corresponding Alekseevskian spaces are denoted by W(p, q). In this
case the set of rules of the aforementioned recipe reduces to:

1. The space u0 is a semidirect sum u0 = (f1 + x1) + f2 + f3 of elementary
Kählerian key algebras with commuting Lie algebras with root 1.

2. The space x1 admits a J-invariant decomposition x1 = y+ z such that
adf3 |y and adf2 |z are nondegenerate symplectic representations with weight
decompositions y = y++y− and z = z++z−, where y+ = Jy− and z+ = Jz−.
Furthermore, [f2, y] = [f3, z] = [y, z] = 0.

Let {Yj+}, j = 1, . . . , p, and {Zk+}, k = 1, . . . , q, be orthonormal bases
of y+ and z+, respectively, and let Yj− = JYj+, Zk− = JZk+. Then, as
adG0u0 = 0 ([A, Lem. 4.6]) and adH0u0 = 0 ([A, (5.2)]), we have the Lie
brackets on u given in Table 1.

Table 1. Lie brackets on u

G0 H0 G1 H1 G2 H2 G3 H3 Yj′+ Yj′− Zk′+ Zk′−

G0 0 −G0 0 0 0 0 0 0 0 0 0 0

H0 G0 0 0 0 0 0 0 0 0 0 0 0

G1 0 0 0 −G1 0 0 0 0 0 0 0 0

H1 0 0 G1 0 0 0 0 0 1
2
Yj′+

1
2
Yj′−

1
2
Zk′+

1
2
Zk′−

G2 0 0 0 0 0 −G2 0 0 0 0 0 Zk′+

H2 0 0 0 0 G2 0 0 0 0 0 1
2
Zk′+ − 1

2
Zk′−

G3 0 0 0 0 0 0 0 −G3 0 Yj′+ 0 0

H3 0 0 0 0 0 0 G3 0 1
2
Yj′+ − 1

2
Yj′− 0 0

Yj+ 0 0 0 − 1
2
Yj+ 0 0 0 − 1

2
Yj+ 0 δjj′G1 0 0

Yj− 0 0 0 − 1
2
Yj− 0 0 −Yj+ 1

2
Yj− −δjj′G1 0 0 0

Zk+ 0 0 0 − 1
2
Zk+ 0 − 1

2
Zk+ 0 0 0 0 0 δkk′G1

Zk− 0 0 0 − 1
2
Zk− −Zk+ 1

2
Zk− 0 0 0 0 −δkk′G1 0
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Furthermore, the Kählerian Lie algebra (u, J) has a unique Q-repre-

sentation on the Euclidean vector space ũ = f̃0 + ũ0, T : u→ End(ũ), where˜ : u→ ũ denotes the corresponding isometry of Euclidean vector spaces.

Consider the quaternion-Hermitian vector space (w(p, q), 〈 , 〉, q), where
the space w(p, q) = u+ ũ is a direct orthogonal sum, and q = Span{Ja : a =
1, 2, 3} is the quaternionic structure on w(p, q) defined by (2.7). Then

(3.1) B = {Gi, Hi, Yj+, Yj−, Zk+, Zk−, G̃i, H̃i, Ỹj+, Ỹj−, Z̃k+, Z̃k−},
for 0 ≤ i ≤ 3, 1 ≤ j ≤ p, 1 ≤ k ≤ q, is an orthonormal basis of w(p, q).

Table 2. The action of Ja, a = 1, 2, 3, on w(p, q)

Gi Hi Yj+ Yj− Zk+ Zk− G̃i H̃i Ỹj+ Ỹj− Z̃k+ Z̃k−

J1 −Hi Gi Yj− −Yj+ Zk− −Zk+ H̃i −G̃i −Ỹj− Ỹj+ −Z̃k− Z̃k+

J2 G̃i H̃i Ỹj+ Ỹj− Z̃k+ Z̃k− −Gi −Hi −Yj+ −Yj− −Zk+ −Zk−
J3 H̃i −G̃i −Ỹj− Ỹj+ −Z̃k− Z̃k+ Hi −Gi −Yj− Yj+ −Zk− Zk+

Table 3. The complex structure Ĵ on ũ

G̃0 H̃0 G̃i H̃i Ỹj+ Ỹj− Z̃k+ Z̃k−

Ĵ −H̃0 G̃0 H̃i −G̃i −Ỹj− Ỹj+ −Z̃k− Z̃k+

The action of Ja, a = 1, 2, 3, on w(p, q) = u+ ũ is given in Table 2. More-
over, the vector space w(p, q) has a structure of Lie algebra given by (2.8),
with s = w(p, q), where the complex structure Ĵ on ũ is defined by Table 3.
Hence, by the third condition in (2.8), the nonnull brackets of the elements
of ũ are

[H̃0, G̃0] = −[H̃i, G̃i](3.2)

= −[Ỹj+, Ỹj−] = −[Z̃k+, Z̃k−] = G0, i = 1, 2, 3.

If U ∈ u and Ṽ ∈ ũ, then by the second condition in (2.8), one has [U, Ṽ ] =

TU Ṽ , and the values of TU Ṽ are given in Tables 4–7, where T : u→ End(ũ)

is expressed in terms of the orthonormal basis {G̃i, H̃i, Ỹj+, Ỹj−, Z̃k+, Z̃k−}
of ũ, from the conditions (Q1–8) of a Q-representation (cf. [Co, Prop. 2.1]).
Table 6 follows from the properties of a weight decomposition with respect
to a nondegenerate symplectic representation (2.5) and the properties in [A,
Prop. 9.3].

The Lie algebra w(p, q) is 4-step solvable with dimRw(p, q) = 4(4+p+q),
and the corresponding simply-connected Lie group with left-invariant metric
is the Alekseevskian space W(p, q).

We have w(p, q)∗ = u∗ + ũ∗. Let

B∗ = {γi, ηi, ξj+, ξj−, ζk+, ζk−, γ̃i, η̃i, ξ̃j+, ξ̃j−, ζ̃k+, ζ̃k−}
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be the basis of w(p, q)∗ dual to the basis (3.1) of w(p, q), and denote by SX
the 2-form defined by SX(Y, Z) = SXY Z .

Theorem 3.1. The homogeneous quaternionic Kähler structure S on
each rank-four Alekseevskian space W(p, q), 0 ≤ p ≤ q, which gives its de-
scription as the simply-connected solvable Lie group with Lie algebra w(p, q),
is given, in terms of the basis B∗ of w(p, q)∗, by

S|u∗⊗
∧2 u∗ =

∑3
i=0γ

i ⊗ (γi ∧ ηi)− 1
2

(
γ1 ⊗ (ξj+ ∧ ξj− + ζk+ ∧ ζk−)

+ γ2 ⊗ ζk+ ∧ ζk− + γ3 ⊗ ξj+ ∧ ξj−
)

+ 1
2

∑p
j=1ξ

j+ ⊗
(
ξj+ ∧ (η1 + η3) + ξj− ∧ (γ1 + γ3)

)
+ 1

2

∑p
j=1ξ

j− ⊗
(
ξj+ ∧ (γ3 − γ1) + ξj− ∧ (η1 − η3)

)
+ 1

2

∑q
k=1ζ

k+ ⊗
(
ζk+ ∧ (η1 + η2) + ζk− ∧ (γ1 + γ2)

)
+ 1

2

∑q
k=1ζ

k− ⊗
(
ζk+ ∧ (γ2 − γ1) + ζk− ∧ (η1 − η2)

)
,

S|u∗⊗
∧2 ũ∗ = 1

2γ
0 ⊗

(
γ̃0 ∧ η̃0 −

∑3
i=1γ̃

i ∧ η̃i

+
∑p

j=1ξ̃
j+ ∧ ξ̃j− +

∑q
k=1ζ̃

k+ ∧ ζ̃k−
)

− 1
2γ

1 ⊗ (γ̃0 ∧ η̃0 − γ̃1 ∧ η̃1 + γ̃2 ∧ η̃2 + γ̃3 ∧ η̃3)
− 1

2γ
2 ⊗

(
γ̃0 ∧ η̃0 + γ̃1 ∧ η̃1 − γ̃2 ∧ η̃2

+ γ̃3 ∧ η̃3 −
∑p

j=1ξ̃
j+ ∧ ξ̃j−

)
− 1

2γ
3 ⊗

(
γ̃0 ∧ η̃0 + γ̃1 ∧ η̃1 + γ̃2 ∧ η̃2

− γ̃3 ∧ η̃3 −
∑q

k=1ζ̃
k+ ∧ ζ̃k−

)
+ 1

2

∑p
j=1ξ

j+ ⊗
(
ξ̃j+ ∧ (η̃1 + η̃3) + ξ̃j− ∧ (γ̃1 + γ̃3)

)
− 1

2

∑p
j=1ξ

j− ⊗
(
ξ̃j+ ∧ (γ̃1 − γ̃3)− ξ̃j− ∧ (η̃1 − η̃3)

)
+ 1

2

∑q
k=1ζ

k+ ⊗
(
ζ̃k+ ∧ (η̃1 + η̃2) + ζ̃k− ∧ (γ̃1 + γ̃2)

)
− 1

2

∑q
k=1ζ

k− ⊗
(
ζ̃k+ ∧ (γ̃1 − γ̃2)− ζ̃k− ∧ (η̃1 − η̃2)

)
,

S
G̃0

= 1
2

(∑3
i=0(γ̃

i ∧ ηi − η̃i ∧ γi)

−
∑p

j=1(ξ̃
j+ ∧ ξj− − ξ̃j− ∧ ξj+)

−
∑q

k=1(ζ̃
k+ ∧ ζk− − ζ̃k− ∧ ζk−)

)
,

S
H̃0

= 1
2

(∑3
i=0(γ̃

i ∧ γi + η̃i ∧ ηi)

+
∑p

j=1(ξ̃
j+ ∧ ξj+ + ξ̃j− ∧ ξj−)

+
∑q

k=1(ζ̃
k+ ∧ ζk+ + ζ̃k− ∧ ζk−)

)
,
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S
G̃1

= 1
2(γ̃0 ∧ η1 + η̃0 ∧ γ1 + γ̃1 ∧ η0 + η̃1 ∧ γ0

− γ̃2 ∧ η3 − η̃2 ∧ γ3 − γ̃3 ∧ η2 − η̃3 ∧ γ2),

S
H̃1

= − 1
2(γ̃0 ∧ γ1 − η̃0 ∧ η1 + γ̃1 ∧ γ0 − η̃1 ∧ η0

+ γ̃2 ∧ γ3 − η̃2 ∧ η3 + γ̃3 ∧ γ2 − η̃3 ∧ η2),

S
G̃2

= 1
2

(
γ̃0 ∧ η2 + η̃0 ∧ γ2 − γ̃1 ∧ η3 − η̃1 ∧ γ3

+ γ̃2 ∧ η0 + η̃2 ∧ γ0 − γ̃3 ∧ η1 − η̃3 ∧ γ1

−
∑p

j=1(ξ̃
j+ ∧ ξj− + ξ̃j− ∧ ξj+)

)
,

S
H̃2

= − 1
2

(
γ̃0 ∧ γ2 − η̃0 ∧ η2 + γ̃1 ∧ γ3 − η̃1 ∧ η3

+ γ̃2 ∧ γ0 − η̃2 ∧ η0 + γ̃3 ∧ γ1 − η̃3 ∧ η1

−
∑p

j=1(ξ̃
j+ ∧ ξj+ − ξ̃j− ∧ ξj−)

)
,

S
G̃3

= 1
2

(
γ̃0 ∧ η3 + η̃0 ∧ γ3 − γ̃1 ∧ η2 − η̃1 ∧ γ2

− γ̃2 ∧ η1 − η̃2 ∧ γ1 + γ̃3 ∧ η0 + η̃3 ∧ γ0

−
∑q

k=1(ζ̃
k+ ∧ ζk− + ζ̃k− ∧ ζk+)

)
,

S
H̃3

= − 1
2

(
γ̃0 ∧ γ3 − η̃0 ∧ η3 + γ̃1 ∧ γ2 − η̃1 ∧ η2

+ γ̃2 ∧ γ1 − η̃2 ∧ η1 + γ̃3 ∧ γ0 − η̃3 ∧ η0

−
∑q

k=1(ζ̃
k+ ∧ ζk+ − ζ̃k− ∧ ζk−)

)
,

S
Ỹj+

= − 1
2

∑p
j=1

(
(γ̃0 + γ̃2) ∧ ξj− − (η̃0 + η̃2) ∧ ξj+

+ ξ̃j− ∧ (γ0 + γ2)− ξ̃j+ ∧ (η0 + η2)
)
,

S
Ỹj−

= 1
2

∑p
j=1((γ̃

0 − γ̃2) ∧ ξj+ + (η̃0 − η̃2) ∧ ξj−

+ ξ̃j+ ∧ (γ0 − γ2) + ξ̃j− ∧ (η0 − η2)
)
,

S
Z̃k+

= − 1
2

∑q
k=1

(
(γ̃0 + γ̃3) ∧ ζk− − (η̃0 + η̃3) ∧ ζk+

+ ζ̃k− ∧ (γ0 + γ3)− ζ̃k+ ∧ (η0 + η3)
)
,

S
Z̃k−

= 1
2

∑q
k=1

(
(γ̃0 − γ̃3) ∧ ζk+ + (η̃0 − η̃3) ∧ ζk−

+ ζ̃k+ ∧ (γ0 − γ3) + ζ̃k− ∧ (η0 − η3)
)
.

Proof. Consider the tensor field S on W(p, q), 0 ≤ p ≤ q, given by

(3.3) 2〈SXY,Z〉 = 〈[X,Y ], Z〉 − 〈[X,Z], Y 〉 − 〈[Y, Z], X〉
for X,Y, Z ∈ w(p, q). Let ∇ be the Levi-Civita connection on W(p, q) with

respect to the invariant metric defined by 〈 , 〉. Then ∇̃ = ∇− S is the con-
nection on the Lie groupW(p, q) for which every left-invariant vector field is
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parallel. Thus, conditions (2.2) are satisfied and S is a homogeneous quater-
nionic Kähler structure. Moreover, the holonomy algebra of the connection
∇̃ is trivial, and then S provides the description of W(p, q) as a Lie group
(see [TV, p. 32, Eqs. (1.79)]).

Table 4. The Q-representation T : u→ End(ũ)

G̃0 H̃0 G̃1 H̃1

G0 0 0 0 0

H0
1
2
G̃0

1
2
H̃0

1
2
G̃1

1
2
H̃1

G1 − 1
2
(H̃0 + H̃1) 1

2
(G̃0 + G̃1) 1

2
(H̃0 + H̃1) − 1

2
(G̃0 + G̃1)

H1
1
2
G̃1

1
2
H̃1

1
2
G̃0

1
2
H̃0

G2 − 1
2
(H̃0 + H̃2) 1

2
(G̃0 + G̃2) − 1

2
(H̃3 + H̃1) − 1

2
(G̃3 − G̃1)

H2
1
2
G̃2

1
2
H̃2 − 1

2
G̃3

1
2
H̃3

G3 − 1
2
(H̃0 + H̃3) 1

2
(G̃0 + G̃3) − 1

2
(H̃1 + H̃2) 1

2
(G̃1 − G̃2)

H3
1
2
G̃3

1
2
H̃3 − 1

2
G̃2

1
2
H̃2

Yj+
1
2
Ỹj−

1
2
Ỹj+ − 1

2
Ỹj− − 1

2
Ỹj+

Yj− − 1
2
Ỹj+

1
2
Ỹj−

1
2
Ỹj+ − 1

2
Ỹj−

Zk+
1
2
Z̃k−

1
2
Z̃k+ − 1

2
Z̃k− − 1

2
Z̃k+

Zk− − 1
2
Z̃k+

1
2
Z̃k−

1
2
Z̃k+ − 1

2
Z̃k−

Table 5. The Q-representation T : u→ End(ũ)

G̃2 H̃2 G̃3 H̃3

G0 0 0 0 0

H0
1
2
G̃2

1
2
H̃2

1
2
G̃3

1
2
H̃3

G1 − 1
2
(H̃2 + H̃3) 1

2
(G̃2 − G̃3) − 1

2
(H̃2 + H̃3) − 1

2
(G̃2 − G̃3)

H1 − 1
2
G̃3

1
2
H̃3 − 1

2
G̃2

1
2
H̃2

G2
1
2
(H̃0 + H̃2) − 1

2
(G̃0 + G̃2) − 1

2
(H̃3 + H̃1) 1

2
(G̃3 − G̃1)

H2
1
2
G̃0

1
2
H̃0 − 1

2
G̃1

1
2
H̃1

G3 − 1
2
(H̃1 + H̃2) − 1

2
(G̃1 − G̃2) 1

2
(H̃0 + H̃3) − 1

2
(G̃0 + G̃3)

H3 − 1
2
G̃1

1
2
H̃1

1
2
G̃0

1
2
H̃0

Yj+ − 1
2
Ỹj−

1
2
Ỹj+ − 1

2
Ỹj− − 1

2
Ỹj+

Yj− − 1
2
Ỹj+ − 1

2
Ỹj− − 1

2
Ỹj+

1
2
Ỹj−

Zk+ − 1
2
Z̃k− − 1

2
Z̃k+ − 1

2
Z̃k−

1
2
Z̃k+

Zk− − 1
2
Z̃k+

1
2
Z̃k− − 1

2
Z̃k+ − 1

2
Z̃k−
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Since (see (2.8)) we have [u, u] ⊂ u, [u, ũ] ⊂ ũ, [ũ, ũ] ⊂ u, and u and ũ are
orthogonal, from (3.3) we have

(3.4) S
UV W̃

= 0, S
ŨV W

= 0, S
UṼ W

= 0, S
Ũ Ṽ W̃

= 0.

Table 6. The Q-representation T : u→ End(ũ)

Ỹj′+ Ỹj′− Z̃k′+ Z̃k′−

G0 0 0 0 0

H0
1
2
Ỹj′+

1
2
Ỹj′−

1
2
Z̃k′+

1
2
Z̃k′−

G1 0 0 0 0

H1 0 0 0 0

G2 0 −Ỹj′+ 0 0

H2
1
2
Ỹj′+ − 1

2
Ỹj′− 0 0

G3 0 0 0 −Z̃k+
H3 0 0 1

2
Z̃k′+ − 1

2
Z̃k′−

Table 7. The Q-representation T : u→ End(ũ)

Ỹj′+ Ỹj′− Z̃k′+ Z̃k′−

Yj+
δjj′
2

(H̃0 + H̃1
δjj′
2

(G̃0 + G̃1 0 0

+ H̃2 + H̃3) − G̃2 + G̃3)

Yj− − δjj′
2

(G̃0 + G̃1
δjj′
2

(H̃0 + H̃1 0 0

+ G̃2 − G̃3) − H̃2 − H̃3)

Zk+ 0 0
δkk′
2

(H̃0 + H̃1
δkk′
2

(G̃0 + G̃1

+ H̃2 + H̃3) + G̃2 − G̃3)

Zk− 0 0 − δkk′
2

(G̃0 + G̃1
δkk′
2

(H̃0 + H̃1

− G̃2 + G̃3) − H̃2 − H̃3)

On account of (3.3), Table 1, and the equation S
UV W̃

= 0 in (3.4), one
obtains the nonzero values of SUVW for U , V andW in the orthonormal basis
B. In order to obtain S|u∗⊗

∧2 ũ∗ , we use (3.2), (3.3), the equation S
UṼ W

= 0

in (3.4) and Tables 4 to 7, since [U, Ṽ ] = TU Ṽ . From (3.3), by using (3.2),
Tables 4 to 7, and the equations S

ŨV W
= S

Ũ Ṽ W̃
= 0 in (3.4), we obtain the

values of S
Ũ

for each Ũ = G̃i, H̃i, Ỹj+, Ỹj−, Z̃k+, Z̃k−.

4. The type of the structure on W(p, q). We now determine the
type of the previous structure S.

Theorem 4.1. The homogeneous quaternionic Kähler structure on each
rank-four Alekseevskian space W(p, q), given in Theorem 3.1, has a nonzero
component in each basic Fino type.
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Proof. From the expression of S in Theorem 3.1 and from Table 1 we
find that the forms αa, a = 1, 2, 3, in (2.3) corresponding to S are given by

(4.1) α1 = −1
2

3∑
i=0

γi, α2 = −η̃0, α3 = γ̃0.

Hence, since S = Θ + T, where Θ is given by (2.3), from (4.1) and using
Table 1, it follows that the tensor field Θ on W(p, q) corresponding to S is
given by

(4.2) 1
4

∑3
i=0γ

i ⊗
{∑3

l=0(γ
l ∧ ηl − γ̃l ∧ η̃l)

−
∑p

j=1(ξ
j+ ∧ ξj− − ξ̃j+ ∧ ξ̃j−)−

∑q
k=1(ζ

k+ ∧ ζk− − ζ̃k+ ∧ ζ̃k−)
}

+ 1
2 γ̃

0 ⊗
{∑3

l=0(γ
l ∧ η̃l + γ̃l ∧ ηl)

−
∑p

j=1(ξ
j+ ∧ ξ̃j− + ξ̃j+ ∧ ξj−)−

∑q
k=1(ζ

k+ ∧ ζ̃k− + ζ̃k+ ∧ ζk−)
}

− 1
2 η̃

0 ⊗
{∑3

l=0(γ
l ∧ γ̃l + ηl ∧ η̃l)

+
∑p

j=1(ξ
j+ ∧ ξ̃j+ + ξj− ∧ ξ̃j−) +

∑q
k=1(ζ

k+ ∧ ζ̃k+ + ζk− ∧ ζ̃k−)
}
.

On the other hand, considering again that the structure decomposes as
S = Θ+T, and the values of the 1-forms αa are those in (4.1), we infer that
as, for instance,

3∑
a=1

αa(JaH2) = −1/2 6= 0,

the component Θ of the structure S does not belong to QK2.

From (4.2), the nonzero values of ΘXY Z are those with X = G0, G1,

G2, G3, G̃0, H̃0. In particular one has the next nonzero values of type ΘXXY :

(4.3)
ΘG0G0H0 = ΘG1G1H1 = ΘG2G2H2 = ΘG3G3H3 = 1/4,

Θ
G̃0G̃0H0

= Θ
H̃0H̃0H0

= 1/2.

Suppose next that Θ ∈ QK1. Then there would be a 1-form α as that in
expressions (2.4), and in particular we would have

1/4 = ΘG0G0H0 = α(H0), 1/2 = Θ
G̃0G̃0H0

= α(H0),

which is absurd. Hence Θ ∈ QK12 \ {QK1 ∪QK2}.
Furthermore, as dimW(p, q) = 4(4 + p+ q) and on account of (4.3), the

form β defining the QK3-component (see expressions (2.4)), that is,

β =
1

2 + dimw(p, q)
c12(T) =

1

18 + 4(p+ q)
c12(T),

is given by
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(4.4) β =
1

18 + 4(p+ q)

{(
15

4
+p+q

)
η0+

(
3

4
+p+q

)
η1+

3

4
(η2+η3)

}
.

Hence S has a nonzero component in QK3 for all 0 ≤ p ≤ q.
Consider now the operator Ψ : V̂ → V̂ defined by

Ψ(T)XY Z = TY ZX + TZXY +

3∑
a=1

(TJaY JaZX + TJaZXJaY ),

having eigenvalues 2 and −4, with corresponding eigenspaces QK34 and
QK5, respectively (see expressions (2.4)). Consider T β ∈ QK3, given by

T
β
XY Z = 〈X,Y 〉β(Z)− 〈X,Z〉β(Y )

+

3∑
a=1

(
〈X, JaY 〉β(JaZ)− 〈X, JaZ〉β(JaY )

)
,

where β stands for the 1-form (4.4). Then T − T β ∈ QK45, so that we have

Ψ(T − T β)XY Z = Ψ(T)XY Z − 2T βXY Z . Taking then for instance the vectors
X = Y = G0, Z = H0, we get

(T − T β)G0G0H0 =
6 + p+ q

2
(
9 + 2(p+ q)

) , Ψ(T − T β)G0G0H0 = −21 + 5(p+ q)

9 + 2(p+ q)
,

hence T − T β ∈ QK45 \ {QK4 ∪ QK5} for all 0 ≤ p ≤ q. That is, S has, for
all 0 ≤ p ≤ q, a nonzero component in each basic type.

As the simplest examples, consider the 4(4+q)-dimensional spacesW(0, q)
∼= SO0(4 + q, 4)/

(
SO(4 + q) × SO(4)

)
, q ≥ 0, which (cf. [Co, Table 1])

are the Alekseevskian W-spaces which are symmetric. As such, they admit
the structure S = 0. Moreover, being solvable Lie groups with Lie algebra
w(0, q), they admit the corresponding structure given by Theorem 3.1, when
p = 0.
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Instituto de Seguridad de la Información, CSIC
Serrano 144, 28006 Madrid, Spain
E-mail: jaime@iec.csic.es

P. M. Gadea
Instituto de F́ısica Fundamental, CSIC

Serrano 113-bis, 28006 Madrid, Spain
E-mail: pmgadea@iff.csic.es

Received 25.3.2011
and in final form 9.9.2011 (2412)

http://dx.doi.org/10.1016/j.geomphys.2010.12.006
http://dx.doi.org/10.5486/PMD.2011.4980
http://dx.doi.org/10.1007/s11040-008-9051-x
http://dx.doi.org/10.1016/j.geomphys.2007.05.007
http://dx.doi.org/10.1007/s00031-005-1124-3
http://dx.doi.org/10.1007/BF01218467
http://dx.doi.org/10.1016/0926-2245(96)89146-7
http://dx.doi.org/10.4064/ap98-3-9
http://dx.doi.org/10.1007/BF02097627

	Introduction
	Preliminaries
	Homogeneous quaternionic Kähler structures on W(p,q).
	The type of the structure on W(p,q)

