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Opial’s type inequalities on time scales and some
applications

by S. H. Saker (Riyadh)

Abstract. We prove some new Opial type inequalities on time scales and employ
them to prove several results related to the spacing between consecutive zeros of a solution
or between a zero of a solution and a zero of its derivative for second order dynamic
equations on time scales. We also apply these inequalities to obtain a lower bound for the
smallest eigenvalue of a Sturm–Liouville eigenvalue problem on time scales. The results
contain as special cases some results obtained for second order differential equations, give
some new results for difference equations and yield conditions for disfocality for second
order dynamic equations on time scales.

1. Introduction. During the past decade a number of dynamic inequal-
ities have been established by several authors which are motivated by some
applications (see [5], [14], [20] and [22] and the references cited therein). The
general idea is to prove a result for a dynamic inequality where the domain
of the unknown function is a so-called time scale T, which may be an ar-
bitrary closed subset of the real numbers R, to avoid proving results twice,
once on a continuous time scale which leads to a differential inequality and
once again on a discrete time scale which leads to a difference inequality.
The three most popular examples of calculus on time scales are differential
calculus, difference calculus, and quantum calculus (see Kac and Cheung
[13]), i.e., when T = R, T = N and T = qN0 = {qt : t ∈ N0} where q > 1.
A cover story article in New Scientist [21] discusses several possible appli-
cations of time scales. In this paper, we will assume that supT = ∞, and
define the time scale interval [a, b]T by [a, b]T := [a, b] ∩ T.

In 1960 Z. Opial [16] proved the inequality

(1.1)

b�

a

|y(t)| |y′(t)| dt ≤ b− a
4

b�

a

|y′(t)|2 dt,
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where y(a) = y(b) = 0 with the best constant (b − a)/4. This inequality,
known in the literature as Opial’s inequality, is one of the most important
and fundamental integral inequalities in the qualitative analysis of proper-
ties of solutions of differential equations. Since its discovery an enormous
amount of related work has been done, and many papers with new proofs,
generalizations, extensions and discrete analogues have appeared. For more
details, we refer the reader to the book [3]. Since continuous and discrete
inequalities of Opial’s type are important in the analysis of qualitative prop-
erties of solutions of differential and difference equations, we believe that
dynamic inequalities of Opial’s type on time scales will play the same role
in the analysis of qualitative properties of solutions of dynamic equations.
For different types of dynamic inequalities on time scales, we refer the reader
to [1, 17, 18, 19] and the references cited therein. In [5] the authors extended
(1.1) to time scales and proved that if y : [0, b]T → R is delta differentiable
with y(0) = 0, then

(1.2)

b�

0

|y(t) + yσ(t)| |y∆(t)|∆t ≤ b
b�

0

|y∆(t)|2 ∆t.

They also proved that if r and q are positive rd-continuous functions on

[0, b]T,
	b
0(∆t/r(t)) < ∞, q is nonincreasing and y : [0, b]T → R is delta

differentiable with y(0) = 0, then

(1.3)

b�

0

qσ(t)|(y(t) + yσ(t))y∆(t)|∆t ≤
b�

0

∆t

r(t)

b�

0

r(t)q(t)|y∆(t)|2 ∆t.

A function g : T→ R is said to be right-dense continuous (rd-continuous)
provided g is continuous at right-dense points and at left-dense points in T,
left hand limits exist and are finite. The set of all rd-continuous functions is
denoted by Crd(T). Recently Karpuz, Kaymakçalan and Öcalan [14] proved
an inequality similar to (1.3),

(1.4)

b�

a

q(t)|(y(t) + yσ(t))y∆(t)|∆t ≤ Kq(a, b)

b�

a

|y∆(t)|2 ∆t,

where q ∈ Crd([a, b]T,R) and y : [a, b]T → R is delta differentiable with
y(a) = 0, and

(1.5) Kq(a, b) =
(

2

b�

a

q2(u)(σ(u)− a)∆u
)1/2

.

They applied (1.4) to the second order dynamic equation

(1.6) y∆∆(t) + q(t)yσ(t) = 0,
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and proved that if y(t) is a solution of (1.6) with y(a) = y∆σ(b) = 0, then

(1.7)
(

2

σ(b)�

a

Q2(u)(σ(u)− a) ∆u
)1/2

≥ 1, where Q(u) =

σ(b)�

u

q(t) ∆t.

One can easily see that the inequalities of Opial’s type established in [5] and
[14] cannot be applied to the general equation

(1.8) (r(t)y∆(t))∆ + q(t)yσ(t) = 0, t ∈ [α, β]T,

on an arbitrary time scale T, where r is a positive rd-continuous function,
q is an rd-continuous function and

(1.9)

β�

α

(1/r(t)) ∆t <∞ and

β�

α

|q(t)|∆t <∞.

Our aim in this paper is to prove some new dynamic inequalities of Opial’s
type on time scales and apply these inequalities to prove several results
related to the following problems:

(i) obtain lower bounds for the spacing β − α where y is a solution of
(1.8) satisfying y(α) = y∆(β) = 0 or y∆(α) = y(β) = 0,

(ii) obtain lower bounds for the spacing of generalized zeros of a solu-
tion of (1.8), and

(iii) obtain a lower bound for the smallest eigenvalue of the Sturm–
Liouville eigenvalue problem

−y∆∆(t) + q(t)yσ(t) = λyσ(t), y(α) = y(β) = 0.

By a solution of (1.8) on an interval I, we mean a nontrivial real-valued func-
tion y ∈ Crd(I) which has the property that r(t)y∆(t) ∈ C1

rd(I) and satisfies
equation (1.8) on I. We say that a solution y of (1.8) has a generalized zero at
t if y(t) = 0, and has a generalized zero in (t, σ(t)) in case y(t)yσ(t) < 0 and
µ(t) > 0. Equation (1.8) is disconjugate on [t0, b]T if there is no nontrivial
solution of (1.8) with two (or more) generalized zeros in [t0, b]T. Equation
(1.8) is said to be nonoscillatory on [t0,∞)T if there exists c ∈ [t0,∞)T such
that the equation is disconjugate on [c, d]T for every d > c. In the oppo-
site case, (1.8) is said to be oscillatory on [t0,∞)T. Oscillation of solutions
of (1.8) may equivalently be defined as follows: A nontrivial solution y(t)
of (1.8) is called oscillatory if it has infinitely many (isolated) generalized
zeros in [t0,∞)T; otherwise it is called nonoscillatory. So a solution y(t) of
(1.8) is said to be oscillatory if it is neither eventually positive nor eventu-
ally negative, otherwise it is nonoscillatory. This means that the property
of oscillation or nonoscillation concerns the behavior in the neighborhood of
the infinite points. We say that (1.8) is right disfocal (resp. left disfocal) on
[α, β]T if the solutions of (1.8) such that y∆(α) = 0 (resp. y∆(β) = 0) have
no generalized zeros in [α, β]T.
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We will frequently use the following notions and results due to Hilger [10].
A time scale T is an arbitrary nonempty closed subset of the real numbers R.
The forward jump operator and the backward jump operator are defined by
σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t}, where sup ∅ = inf T.
A point t ∈ T, is said to be left-dense if ρ(t) = t and t > inf T, it is right-
dense if σ(t) = t, it is left-scattered if ρ(t) < t and right-scattered if σ(t) > t.
The graininess function µ for a time scale T is defined by µ(t) := σ(t) − t,
and for any function f : T → R the notation fσ(t) stands for f(σ(t)). Fix
t ∈ T and let y : T → R. Define y∆(t) to be the number (if it exists) with
the property that given any ε > 0 there is a neighborhood U of t with

|[y(σ(t))− y(s)]− y∆(t)[σ(t)− s]| ≤ ε|σ(t)− s| for all s ∈ U.
In this case, we say that y∆(t) is the (delta) derivative of y at t and that y
is (delta) differentiable at t. Assume that g : T→ R and let t ∈ T.

• If g is differentiable at t, then g is continuous at t.
• If g is continuous at t and t is right-scattered, then g is differentiable

at t with

g∆(t) =
g(σ(t))− g(t)

µ(t)
.

• If g is differentiable and t is right-dense, then

g∆(t) = lim
s→t

g(t)− g(s)

t− s
.

• If g is differentiable at t, then g(σ(t)) = g(t) + µ(t)g∆(t).

We will refer to the (delta) integral which we can define as follows: If

G∆(t) = g(t), then the Cauchy (delta) integral of g is defined by
	t
a g(s) ∆s :=

G(t)−G(a). It can be shown (see [6]) that if g ∈ Crd(T), then the Cauchy

integral G(t) :=
	t
t0
g(s) ∆s exists for all t0 ∈ T, and satisfies G∆(t) = g(t),

t ∈ T. The integration on discrete time scales is defined by
	b
a f(t) ∆t =∑

t∈[a,b) µ(t)f(t). For more details of the analysis on time scales, we refer

the reader to the two books by Bohner and Peterson [6, 7] which summarize
and organize much of the time scale calculus.

The rest of the paper is organized as follows: In Section 2, we will prove
some new inequalities of Opial’s type by making use of the Cauchy–Schwarz
inequality ([6, Theorem 5.15]) on time scales and a simple consequence of
Keller’s chain rule. In Section 3, we will apply these inequalities to prove
several results related to problems (i)–(iii) above. In particular, we obtain
some results different from those in [14]. Also when T = R some of our
results reduce to those of Harris and Kong [9] and Brown and Hinton [8];
when T = N our results are new for second order difference equations. Of
particular interest in this paper is the case when q is oscillatory.
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2. Opial’s type inequalities. In this section, we prove some new in-
equalities of Opial’s type on time scales. This will be done by making use of
the Cauchy–Schwarz inequality ([6, Theorem 5.15])

(2.1)

b�

a

|f(t)g(t)|∆t ≤
[b�
a

|f(t)|2 ∆t
]1/2[b�

a

|g(t)|2 ∆t
]1/2

,

where a, b ∈ T and f, g ∈ Crd(I,R) and the formula

(2.2) (yβ(t))∆ = β

1�

0

[hyσ(t) + (1− h)y(t)]β−1 dh y∆(t) for β > 0,

which is a simple consequence of Keller’s chain rule [6, Theorem 1.90].

Theorem 1. Let T be a time scale with a,X ∈ T. Assume that s ∈
Crd([a,X]T,R) and r is a positive rd-continuous function on (a,X)T such

that
	X
a r
−1(t) ∆t <∞. If y : [a,X]T → R is delta differentiable with y(a) = 0

and y∆ does not change sign in (a,X)T, then

(2.3)

X�

a

s(x)|y(x) + yσ(x)| |y∆(x)|∆x ≤ K1(a,X)

X�

a

r(x)|y∆(x)|2 ∆x,

where

(2.4) K1(a,X) =
√

2

(X�

a

s2(x)

r(x)

( x�

a

∆t

r(t)

)
∆x

)1/2

+ sup
a≤x≤X

µ(x)
|s(x)|
r(x)

.

Proof. Since y∆(t) does not change sign in (a,X)T, we have

|y(x)| =
x�

a

|y∆(t)|∆t for x ∈ [a,X]T.

This implies that

|y(x)| =
x�

a

1√
r(t)

√
r(t) |y∆(t)|∆t.

It follows by the Cauchy–Schwarz inequality (2.1) with

f(t) =
1√
r(t)

, g(t) =
√
r(t)|y∆(t)|

that
x�

a

|y∆(t)|∆t ≤
( x�

a

1

r(t)
∆t

)1/2(x�
a

r(t)|y∆(t)|2 ∆t
)1/2

.

Then, for a ≤ x ≤ X (noting y(a) = 0), we get

(2.5) |y(x)| ≤
( x�

a

1

r(t)
∆t

)1/2(x�
a

r(t)|y∆(t)|2 ∆t
)1/2

.
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Since yσ = y + µy∆, we have

(2.6) y(x) + yσ(x) = 2y(x) + µy∆(x).

Setting

(2.7) z(x) :=

x�

a

r(t)|y∆(t)|2 ∆t,

we see that z(a) = 0, and

(2.8) z∆(x) = r(x)|y∆(x)|2 > 0.

From this, we get

(2.9) |y∆(x)|2 =
z∆(x)

r(x)
and |y∆(x)| =

(
z∆(x)

r(x)

)1/2

.

From (2.5)–(2.9), we have

s(x)|y(x) + yσ(x)| |y∆(x)|
≤ 2|s(x)| |y(x)| |y∆(x)|+ µ(x)s(x)|y∆|2

≤ 2|s(x)|
(

1

r(x)

)1/2( x�

a

1

r(t)
∆t

)1/2

(z(x))1/2(z∆(x))1/2

+ µ(x)|s(x)|z
∆(x)

r(x)
.

This implies that

(2.10)

X�

a

s(x)|y(x) + yσ(x)| |y∆(x)|∆x

≤ 2

X�

a

|s(x)|
(

1

r(x)

)1/2( x�

a

1

r(t)
∆t

)1/2

(z(x))1/2(z∆(x))1/2 ∆x

+

X�

a

µ(x)
|s(x)|
r(x)

z∆(x) ∆x

≤ 2

X�

a

|s(x)|
(

1

r(x)

)1/2( x�

a

1

r(t)
∆t

)1/2

(z(x))1/2(z∆(x))1/2 ∆x

+ max
a≤x≤X

(
µ(x)

|s(x)|
r(x)

)X�

a

z∆(x) ∆x.

Supposing that the integrals in (2.10) exist and again applying the Cauchy–
Schwarz inequality (2.1) to the first integral on the right hand side, we have
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(2.11)

X�

a

s(x)|y(x) + yσ(x)| |y∆(x)|∆x

≤ 2

(X�

a

s2(x)
1

r(x)

( x�

a

1

r(t)
∆t

)
∆x

)1/2(X�
a

z(x)z∆(x) ∆x
)1/2

+ sup
a≤x≤X

(
µ(x)

|s(x)|
r(x)

)X�

a

z∆(x) ∆x.

From (2.8), and the chain rule (2.2), we obtain

(2.12) 2z(x)z∆(x) ≤ (z2(x))∆.

Substituting (2.12) into (2.11) and using the fact that z(a) = 0, we see that

X�

a

s(x)|y(x) + yσ(x)| |y∆(x)|∆x

≤ 2

(X�

a

s2(x)
1

r(x)

( x�

a

1

r(t)
∆t

)2

∆x

)1/2(1

2

)1/2(X�
a

(z2(t))∆ ∆t
)1/2

=
√

2

(X�

a

s2(x)
1

r(x)

( x�

a

1

r(t)
∆t

)
∆x

)1/2

z(X) + sup
a≤x≤X

(
µ(x)

|s(x)|
r(x)

)
z(X).

Using (2.7), we obtain (2.3).

We omit the proof of the following theorem, since it is similar to the proof

of Theorem 1, with [a,X]T replaced by [b,X]T and |y(x)| =
	b
x |y

∆(t)|∆t.

Theorem 2. Let T be a time scale with X, b ∈ T. Assume that s ∈
Crd([a,X]T,R) and r is a positive rd-continuous function on (a,X)T such

that
	X
a r
−1(t) ∆t <∞. If y : [X, b]T → R is delta differentiable with y(b) = 0

and y∆ does not change sign in (X, b)T, then

(2.13)

b�

X

s(x)|y(x) + yσ(x)| |y∆(x)|∆x ≤ K2(X, b)

b�

X

r(x)|y∆(x)|2 ∆x,

where

(2.14) K2(X, b) =
√

2

( b�

X

s2(x)

r(x)

( b�

x

∆t

r(t)

)
∆x

)1/2

+ sup
X≤x≤b

µ(x)
|s(x)|
r(x)

.

In the following, we assume that there exists h ∈ (a, b) which is the
unique solution of the equation
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(2.15) K(a, b) = K1(a, h) = K2(h, b) <∞,
where K1(a, h) and K2(h, b) are defined in Theorems 1 and 2, and establish
a new inequality of Opial’s type when y(a) = 0 = y(b).

Theorem 3. Let T be a time scale with a, b ∈ T. Assume that s ∈
Crd([a, b]T,R) and r is a positive rd-continuous function on [a, b]T such that	b
a r
−1(t) ∆t < ∞. If y : [a, b]T → R is delta differentiable with y(a) = 0 =

y(b) and y∆ does not change sign in (a, b)T, then

(2.16)

b�

a

s(x)|y(x) + yσ(x)| |y∆(x)|∆x ≤ K(a, b)

b�

a

r(x)|y∆(x)|2 ∆x,

where K(a, b) is as in (2.15).

Proof. Since

b�

a

s(x)|y(x) + yσ(x)| |y∆(x)|∆x =

X�

a

s(x)|y(x) + yσ(x)| |y∆(x)|∆x

+

b�

X

s(x)|y(x) + yσ(x)| |y∆(x)|∆x,

the rest of the proof is a combination of Theorems 1 and 2; we omit the
details.

Setting r = s in Theorems 1 and 2 give us the following results.

Corollary 4. Let T be a time scale with a,X ∈ T, and let r be a

positive rd-continuous function on [a,X]T such that
	X
a r
−1(t) ∆t < ∞. If

y : [a,X]T → R is delta differentiable with y(a) = 0 and y∆ does not change
sign in (a,X)T, then

(2.17)

X�

a

r(x)|y(x) + yσ(x)| |y∆(x)|∆x ≤ K∗1 (a,X)

X�

a

r(x)|y∆(x)|2 ∆x,

where

(2.18) K∗1 (a,X) =
√

2

(X�

a

r(x)

( x�

a

∆t

r(t)

)
∆x

)1/2

+ sup
a≤x≤X

µ(x).

Corollary 5. Let T be a time scale with X, b ∈ T, and let r be a

positive rd-continuous function on (X, b)T such that
	b
X r
−1(t) ∆t < ∞. If

y : [X, b]T → R is delta differentiable with y(b) = 0 and y∆ does not change
sign in (X, b)T, then

(2.19)

b�

X

r(x)|y(x) + yσ(x)| |y∆(x)|∆x ≤ K∗2 (X, b)

b�

X

r(x)|y∆(x)|2 ∆x,
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where

(2.20) K∗2 (X, b) =
√

2

( b�

X

r(x)

( b�

x

∆t

r(t)

)
∆x

)1/2

+ sup
X≤x≤b

µ(x).

Now assume that there exists h ∈ (a, b) which is the unique solution of
the equation

K∗(a, b) = K∗1 (a, h) = K∗2 (h, b) <∞,

where K∗1 (a, h) and K∗2 (h, b) are defined in Corollaries 4 and 5. Theorem 3
gives the following result when r = s.

Corollary 6. Let T be a time scale with a, b ∈ T and let r be a positive

rd-continuous function on (a, b)T such that
	b
a r
−1(t) ∆t <∞. If y : [a, b]T →

R is delta differentiable with y(a) = 0 = y(b) and y∆ does not change sign
in (a, b)T, then

(2.21)

b�

a

r(x)|y(x) + yσ(x)| |y∆(x)|∆x ≤ K∗(a, b)
b�

a

r(x)|y∆(x)|2 ∆x.

On a time scale T, we note from the chain rule (2.2) that

((t− a)2)∆ = 2

1�

0

[h(σ(t)− a) + (1− h)(t− a)] dh

≥ 2

1�

0

[h(t− a) + (1− h)(t− a)] dh = 2(t− a).

This implies that

(2.22)

X�

a

(x− a) ∆x ≤
X�

a

1

2
((x− a)2)∆ ∆x =

(X − a)2

2
.

From this and (2.19) (by putting r(t) = 1), we get

K∗1 (a,X) =
√

2
(X�
a

(x− a) ∆x
)1/2

(2.23)

≤
√

2

(
(X − a)2

2

)1/2

+ max
a≤x≤X

µ(x)

= max
a≤x≤X

µ(x) + (X − a).

So by setting r = 1 in (2.17) and using (2.23), we have the following result.

Corollary 7. Let T be a time scale with a,X ∈ T. If y : [a,X]T → R
is delta differentiable with y(a) = 0 and y∆ does not change sign in (a,X)T,
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then

(2.24)

X�

a

|y(x)+yσ(x)| |y∆(x)|∆x ≤
(

(X−a)+ sup
a≤x≤X

µ(x)
)X�
a

|y∆(x)|2 ∆x.

Remark 1. One can put r(t) = 1 in Corollary 5 to obtain a result
similar to Corollary 7. The details are left to the interested reader.

In Corollary 6, we note that if r(t) = 1, then the unique solution of (2.15)
is h = (a+ b)/2. This gives the following result.

Corollary 8. Let T be a time scale with a, b ∈ T. If y : [a, b]T → R
is delta differentiable with y(a) = 0 = y(b) and y∆ does not change sign in
(a, b)T, then

(2.25)

b�

a

|y(x) + yσ(x)| |y∆(x)|∆x ≤
(
b− a

2
+ sup
a≤x≤b

µ(x)

) b�

a

|y∆(x)|2 ∆x.

Remark 2. In Corollary 8 if T = R, then µ(x) = 0, σ(x) = x, y(x) =
yσ(x) and the inequality (2.25) reduces to the original Opial inequality (1.1).

3. Applications. In this section, we will apply the Opial inequalities
proved in Section 2 to obtain some results related to problems (i)–(iii) above
for equation (1.8).

Theorem 9. Assume that r is a positive rd-continuous function on

(α, β)T such that
	X
a r
−1(t) ∆t < ∞. Suppose y is a nontrivial solution

of (1.8). If y(α) = y∆(β) = 0, then

(3.1)
√

2

( β�

α

Q2(t)

r(t)

( t�

α

∆u

r(u)

)
∆t

)1/2

+ sup
α≤t≤β

µ(t)

∣∣∣∣Q(t)

r(t)

∣∣∣∣ ≥ 1,

where Q(t) =
	β
t q(s) ∆s. If y∆(α) = y(β) = 0, then

(3.2)
√

2

( β�

α

Q2(t)

r(t)

( β�

t

∆u

r(u)

)
∆t

)1/2

+ sup
α≤t≤β

µ(t)

∣∣∣∣Q(t)

r(t)

∣∣∣∣ ≥ 1,

where Q(t) =
	t
α q(s) ∆s.

Proof. We prove (3.1). Multiplying (1.8) by yσ and integrating by parts,
we have

β�

α

yσ(t)(r(t)y∆(t))∆ ∆t = y(t)r(t)y∆(t)
∣∣β
α
−
β�

α

r(t)(y∆(t))2 ∆t

= −
β�

α

q(t)(yσ(t))2 ∆t.
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Using the assumptions y(α) = y∆(β) = 0 and Q(t) =
	β
t q(s) ∆s, we get

β�

α

r(t)(y∆(t))2 ∆t =

β�

α

q(t)(yσ(t))2 ∆t = −
β�

α

Q∆(t)(yσ(t)) 2 ∆t.

Integrating the right hand side by parts and using the fact that y(α) = 0
= Q(β), we see that

β�

α

r(t)(y∆(t))2 ∆t =

β�

α

Q(t)(y(t) + yσ(t))y∆(t) ∆t

≤
β�

α

|Q(t)| |y(t) + yσ(t)| |y∆(t)|∆t.

Applying the inequality (2.3) with s = Q, we have

β�

α

r(t)(y∆(t))2 ∆t ≤
[√

2

( β�

α

Q2(t)

r(t)

( t�

α

∆u

r(u)

)
∆t

)1/2

+ sup
α≤t≤β

µ(t)

∣∣∣∣Q(t)

r(t)

∣∣∣∣]

×
β�

α

r(t)|y∆(t)|2 ∆t.

This implies (3.1). The proof of (3.2) is similar by using Theorem 2 instead
of Theorem 1.

As a special case of Theorem 9, when r(t) = 1, we have the following
results for equation (1.6), different from those results obtained by Karpuz,
Kaymakçalan and Öcalan in [14].

Corollary 10. Suppose y is a nontrivial solution of (1.6). If y(α) =
y∆(β) = 0, then

√
2
(β�
α

Q2(t)(t− α) ∆t
)1/2

+ sup
α≤t≤β

µ(t)|Q(t)| ≥ 1,

where Q(t) =
	β
t q(s)∆s. If y∆(α) = y(β) = 0, then

√
2
(β�
α

Q2(t)(β − t) ∆t
)1/2

+ sup
α≤t≤β

µ(t)|Q(t)| ≥ 1,

where Q(t) =
	t
α q(s) ∆s.

Remark 3. Note that if T = R, then µ(t) = 0 and equation (1.8) (when
r(t) = 1) becomes

(3.3) y′′(t) + q(t)y(t) = 0.
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In this case Corollary 10 reduces to the following result obtained by Brown
and Hinton [8].

Corollary 11 ([8]). If y is a solution of (3.3) such that y(α) = y′(β)
= 0, then

(3.4) 2

β�

α

Q2(s)(s− α) ds > 1,

where Q(t) =
	β
t q(s) ds. If instead y′(α) = y(β) = 0, then

(3.5) 2

β�

α

Q2(s)(β − s) ds > 1,

where Q(t) =
	t
α q(s) ds.

Remark 4. Note that if T = N, then µ(t) = 1 and equation (1.8) (when
r(t) = 1) becomes

(3.6) ∆2y(n) + q(n)y(n+ 1) = 0,

and Corollary 10 reduces to the following result.

Corollary 12. If y is a solution of (3.6) such that y(α) = ∆y(β) = 0,
then

√
2
( β−1∑
n=α+1

(Q(n))2(n− α)
)1/2

+ sup
α≤n≤β

|Q(n)| > 1,

where Q(n) =
∑β−1

s=n q(s). If instead ∆y(α) = y(β) = 0, then

√
2
(β−1∑
n=α

(Q(n))2(β − n)
)1/2

+ sup
α≤n≤β

|Q(n)| > 1,

where Q(n) =
∑n−1

s=α q(s).

Theorem 13. Assume that r is a positive rd-continuous function on

(α, β)T such that
	X
a r
−1(t) ∆t <∞. Suppose that y is a nontrivial solution

of (1.8). If y(α) = y∆(β) = 0, then

(3.7) sup
α≤t≤β

∣∣∣∣Q(t)

r(t)

∣∣∣∣[√2

( β�

α

1

r(t)

( t�

α

∆u

r(u)

)
∆t

)1/2

+ sup
α≤t≤β

µ(t)

]
≥ 1,

where Q(t) =
	β
t q(s) ∆s. If y∆(α) = y(β) = 0, then

(3.8) sup
α≤t≤β

∣∣∣∣Q(t)

r(t)

∣∣∣∣[√2

( β�

α

1

r(t)

( β�

t

∆u

r(u)

)
∆t

)1/2

+ sup
α≤t≤β

µ(t)

]
≥ 1,

where Q(t) =
	t
α q(s) ∆s.
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Proof. We prove (3.7). Multiplying (1.8) by yσ and integrating by parts
as in the proof of Theorem 9 we get

β�

α

r(t)(y∆(t))2 ∆t =

β�

α

q(t)(yσ(t))2 ∆t = −
β�

α

Q∆(t)(yσ(t))2 ∆t.

Integrating the right hand side by parts and using the fact that y(α) = 0
= Q(β), we see that

β�

α

r(t)(y∆(t))2 ∆t ≤
β�

α

|Q(t)| |y(t) + yσ(t)| |y∆(t)|∆t

≤ sup
α≤t≤β

∣∣∣∣Q(t)

r(t)

∣∣∣∣ β�
α

r(t)|y(t) + yσ(t)| |y∆(t)|∆t.

Applying (2.17) with (2.18) and cancelling the term
	β
α r(t)(y

∆(t))2 ∆t, we
get (3.7). The proof of (3.8) is similar by using Corollary 5 instead of Corol-
lary 4.

As a special case of Theorem 13, when r(t) = 1, we have the following
result.

Corollary 14. Suppose that y is a nontrivial solution of (1.6). If y(α)
= y∆(β) = 0, then

sup
α≤t≤β

|Q(t)|
[
(β − α) + sup

α≤t≤β
µ(t)

]
≥ 1,

where Q(t) =
	β
t q(s) ∆s. If y∆(α) = y(β) = 0, then

sup
α≤t≤β

|Q(t)|
[
(β − α) + sup

α≤t≤β
µ(t)

]
≥ 1,

where Q(t) =
	t
α q(s) ∆s.

When T = R we see that µ(t) = 0, and as a special case of Corollary 14,
we have the following result due to Harris and Kong [9] for the second order
differential equation (3.3).

Corollary 15 ([9]). Suppose that y is a nontrivial solution of (3.3). If
y(α) = y′(β) = 0, then

(3.9) (β − α) sup
α≤t≤β

∣∣∣β�
t

q(s) ds
∣∣∣ ≥ 1.

If y′(α) = y(β) = 0, then

(3.10) (β − α) sup
α≤t≤β

∣∣∣ t�
α

q(s) ds
∣∣∣ ≥ 1,
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When T = N, we see that µ(t) = 1 and as a special case of Corollary 14
we have the following result for the second order difference equation (3.6).

Corollary 16. If y is a solution of (3.6) such that y(α) = ∆y(β) = 0,
then

sup
α≤n≤β

|Q(n)|(β + 1− α) > 1,

where Q(n) =
∑β−1

s=n q(s). If instead ∆y(a) = y(b) = 0, then

sup
α≤n≤β

|Q(n)|(β + 1− α) > 1,

where Q(n) =
∑n−1

s=α q(s).

Remark 5. Note that application of (2.3) allows us to use an arbitrary
anti-derivative Q in the above arguments.

Remark 6. The above results yield sufficient conditions for disfocality of
(1.8), i.e., conditions ensuring that there does not exist a nontrivial solution
y satisfying either y(α) = y∆(β) = 0 or y∆(α) = y(β) = 0.

Our concern now is to determine a lower bound for the distance between
consecutive generalized zeros of solutions of (1.8). Perhaps the best known
existence result of this type for the dynamic equation (1.6) on a time scale T
is due to Bohner et al. [4]. In particular they extended the classical Lyapunov
inequality (see [15]) and proved that if y(t) is a solution of (1.6) with y(α) =
y(β) = 0 (α < β) then

β�

α

q(t) ∆t >
4

f(d)
,

where q(t) is a positive rd-continuous function defined on T, f(d) =
(d − α)(d − β), and d is the element of T closest to the midpoint of [α, β].
As a particular case they derived that

(3.11)

β�

α

q(t) ∆t >
4

β − α
.

In the following, we assume that there exists a unique h ∈ [α, β]T such
that

(3.12)

h�

α

∆t

r(t)
=

β�

h

∆t

r(t)
with

β�

α

∆t

r(t)
<∞.

Note again that when r(t) = 1, we have h−α = β−h. So the unique solution
is h = (α+ β)/2.

Theorem 17. Assume that (3.12) holds and Q∆(t) = q(t). Suppose that
y is a nontrivial solution of (1.8) and y∆(t) does not change sign in (α, β)T.
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If y(α) = y(β) = 0, then

(3.13)
√

2

( β�

α

Q2(t)

r(t)

( h�

α

∆u

r(u)

)
∆t

)1/2

+ sup
α≤t≤β

µ(t)

∣∣∣∣Q(t)

r(t)

∣∣∣∣ ≥ 1.

Proof. As in the proof of Theorem 13, by multiplying (1.8) by yσ(t),
integrating by parts and using y(α) = y(β) = 0, we have

(3.14)

β�

α

r(t)|y∆(t)|2 dt ≤
β�

α

|Q(t)| |y(t) + yσ(t)|γ |y∆(t)| dt.

Applying (2.16), we get

β�

α

r(t)|y∆(t)|2 dt ≤ K(α, β)

β�

α

r(t)|y∆(t)|2 dt,

where K(α, β) is as in (2.15). Cancelling
	β
α r(t)|y

∆(t)|2 ∆t, we get (3.13).

As a special case of Theorem 17 when r(t) = 1 (note that in this case
h = (α+ β)/2)), we have the following result for equation (1.6).

Theorem 18. Assume that Q∆(t) = q(t). Suppose that y is a nontrivial
solution of (1.6) and y∆(t) does not change sign in (α, β)T. If y(α) = y(β)
= 0, then √

β − α
(β�
α

Q2(t) ∆t
)1/2

+ sup
α≤t≤β

µ(t)|Q(t)| ≥ 1.

As special cases of Theorem 18, when T = R and T = N, we have the
following results for the second order differential equation (3.3) and second
order difference equation (3.6).

Corollary 19. Assume that Q′(t) = q(t). Suppose that y is a nontrivial
solution of (3.3) and y′(t) does not change sign in (α, β). If y(α) = y(β) = 0,
then

(3.15)

β�

α

( t�
α

q(u) du
)2
dt ≥ 1

β − α
.

Corollary 20. Assume that ∆Q(n) = q(n). Suppose that y is a non-
trivial solution of (3.6) and ∆y(n) does not change sign in (α, β). If y(α) =
y(β) = 0, then √

β − α
(n−1∑
n=α

Q2(n)
)1/2

+ sup
α≤n≤β

|Q(n)| ≥ 1.
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Remark 7. We mentioned here that inequality (3.15) is different from
(3.11) and improve the inequality

β�

α

( t�
α

q(u) du
)2
dt− 1

β − α

(β�
α

( t�
α

q(u) du
)
dt
)2
≥ π2

8(β − α)
,

obtained by Brown and Hinton [8, Corollary 4.2] for equation (3.3).

As an application, we will show how Opial and Wirtinger inequalities
may be used to find a lower bound for the smallest eigenvalue of a Sturm–
Liouville eigenvalue problem on a time scale T. For more details on Sturm–
Liouville problems, we refer the reader to [2]. Consider the Sturm–Liouville
eigenvalue problem

(3.16) − y∆∆(t) + q(t)yσ(t) = λyσ(t), y(0) = y(β) = 0,

where q is an rd-continuous function and λ is a constant and assume that
λ0 is the smallest eigenvalue of (3.16). Our main aim is to find a lower
bound of λ0. To find it, we will apply the Opial type inequality (2.16) and
a Wirtinger inequality due to Hilscher [11],

(3.17)

β�

α

M(t)Mσ(t)

|M∆(t)|
(y∆(t))2 ∆t ≥ 1

ψ2

β�

α

|M∆(t)|(yσ(t))2 ∆t,

for a positive function M ∈ C1
rd(I) with either M∆(t) > 0 or M∆(t) < 0

on I, y ∈ C1
rd(I) with y(α) = 0 = y(β), for I = [α, β]T ⊂ T and

ψ =

(
sup
t∈Ik

M(t)

Mσ(t)

)1/2

+

(
sup
t∈Ik

µ(t)|M∆(t)|
Mσ(t)

+ sup
t∈Ik

M(t)

Mσ(t)

)1/2

.

We denote

A(Q) =
√
β − α

(β�
α

Q2(t) ∆t
)1/2

+ sup
α≤t≤β

µ(t)|Q(t)|.

Theorem 21. Assume that λ0 is the smallest eigenvalue of (3.16) and
q(t) = Q∆(t) + γ, where γ < λ0. Then

(3.18) |λ0 − γ| ≥
1−A(Q)

(1 +
√

2)2σ2(β)
.

Proof. Let y(t) be an eigenfunction of (3.16) corresponding to λ0. Mul-
tiplying (3.16) by yσ(t) and proceeding as in the proof of Theorem 9 we
get

−
β�

0

y∆∆yσ(t) ∆t+

β�

0

q(t)(yσ(t))2 ∆t = λ0

β�

0

(yσ(t))2 ∆t.
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This implies, after integrating by parts and using the fact that y(0) = y(β)
= 0, that

(λ0 − γ)

β�

0

(yσ(t))2 ∆t =

β�

0

(y∆(t))2 ∆t+

β�

0

Q∆(t)(yσ(t))2 ∆t

=

β�

0

(y∆(t))2 ∆t−
β�

0

Q(t)[y(t) + yσ(t)]y∆(t) ∆t

≥
β�

0

(y∆(t))2 ∆t−
β�

0

|Q(t)| |y(t) + yσ(t)| |y∆(t)|∆t.

Proceeding as in the proof of Theorem 9, by applying (2.16) with r(t) = 1
and s = Q to the term

β�

0

|Q(t)| |y(t) + yσ(t)| |y∆(t)|∆t,

we obtain

|λ0 − γ|
β�

0

(yσ(t))2 ∆t ≥
β�

0

(y∆(t))2 ∆t−A(Q)

β�

0

|y∆(t)|2 ∆t.

Now, applying Wirtinger’s inequality (3.17) with M(t) = t, we have

|λ0 − γ|ψ2
1σ

2(β)

β�

0

(y∆(t))2 ∆t ≥
β�

0

(y∆(t))2 ∆t−A(Q)

β�

0

(y∆(t))2 ∆t,

where

ψ1 =

(
sup
t∈Ik

t

σ(t)

)1/2

+

(
sup
t∈Ik

µ(t)

σ(t)
+ sup
t∈Ik

t

σ(t)

)1/2

≤ 1 +
√

2.

This implies that

|λ0 − γ|(1 +
√

2)2σ2(β) ≥ 1−A(Q).
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