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Weighted composition operators between a weighted-type
space and the Hardy space on the unit ball

by Ze-Hua Zhou, Yu-Xia Liang and Xing-Tang Dong (Tianjin)

Abstract. This paper characterizes the boundedness and compactness of weighted
composition operators between a weighted-type space and the Hardy space on the unit
ball of Cn.

1. Introduction. Let B be the open unit ball in the n-dimensional
complex vector space Cn, H(B) the class of all holomorphic functions on B,
H∞(B) the class of all bounded holomorphic functions with the norm ‖f‖H∞
= supz∈B |f(z)|, and S(B) the collection of all the holomorphic self-maps
of B. Let dσ be the normalized rotation invariant measure on the boundary
S = ∂B of B.

Let N be the set of positive integers and k ∈ N. A function f ∈ H(B) is
said to belong to the weighted-type space Hlogk (see [5, p. 3112], and also
[2] for the corresponding Bloch-type space) if

(1) ‖f‖Hlogk
= sup

z∈B
(1− |z|2)

( k∏
j=1

ln[j] e[k]

1− |z|2

)
|f(z)| <∞,

where e[k] is defined inductively by e[1] = e, e[k] = ee
[k−1]

and ln[j] z is the j
times applied logarithm function. It is easy to show that Hlogk is a Banach
space with the norm ‖ · ‖Hlogk

.

For each p with 1 ≤ p <∞, the Hardy space Hp in B is defined by

Hp(B) =
{
f ∈ H(B) : sup

0<r<1

�

S

|f(rζ)|p dσ(ζ) <∞
}
.
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It is well known [28] that Hp is a Banach space under the norm

‖f‖pp = sup
0<r<1

�

S

|f(rζ)|p dσ(ζ).

If X is a Banach space, we denote by BX the closed unit ball in X. Let
ϕ ∈ S(B). The composition operator Cϕ induced by ϕ is defined by

(Cϕf)(z) = f(ϕ(z)), f ∈ H(B), z ∈ B.

This operator has been intensively studied for four decades (see, for example,
[1] and [11]). For some recent results, see [22–25, 27] and the references
therein.

Let u ∈ H(B) and ϕ ∈ S(B). The weighted composition operator uCϕ is
defined by

uCϕ(f) = u(f ◦ ϕ), f ∈ H(B), z ∈ B.

It is obvious that when u = 1, we have the composition operator Cϕ. When
ϕ(z) = z, we obtain the multiplication operator Muf(z) = u(z)f(z). There-
fore weighted composition operators can be regarded as a generalization of
multiplication operators and composition operators.

Recently, there has been an increasing interest in describing the bounded-
ness and compactness of weighted composition operators acting on different
spaces of holomorphic functions in terms of the inducing functions; see, for
example, [1, 6–10, 12, 17, 19–21, 26] and the references therein. For some
product-type operators, containing composition operators, see, for example,
[2–4, 14–16, 18], and numerous references therein.

The present paper continues this line of research. The remainder is as-
sembled as follows: In Section 2, we state a couple of lemmas. In Sections 3
and 4, we characterize the boundedness and compactness of weighted com-
position operators between a weighted-type space and the Hardy space on
the unit ball of Cn.

Throughout the paper, C will denote a positive constant, the exact value
of which may vary from one appearance to the next. The notation A � B
means that there is a positive constant C such that B/C ≤ A ≤ CB.

2. Some lemmas. To begin, let us state a couple of lemmas, which are
used in the proofs of the main results.

Lemma 2.1 (see Lemma 2 in [13]). The function

hk(x) = x

k∏
j=1

ln[j] e
[k]

x

is increasing on the interval (0, 1].
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Remark. From Lemma 2.1, it follows that the weight function

w(z) = (1− |z|2)
k∏
j=1

ln[j] e[k]

1− |z|2

is a decreasing function of |z| and lim|z|→1w(z) = 0.

The following lemma was proved in [5, Lemma 6]. For related results,
see also [16, Lemma 7], [17, Lemma 3] and [18, Lemma 6].

Lemma 2.2. There exist a positive constant N = N(n) and functions
f1, . . . , fN ∈ Hlogk(B) such that

(2)

N∑
m=1

|fm(z)| ≥ C

(1− |z|2)
∏k
j=1 ln[j] e[k]

1−|z|2
, z ∈ B,

where C is a positive constant.

Lemma 2.3 (Theorem 4.17 in [28]). Suppose that 0 < p < ∞ and f ∈
Hp(B). Then

|f(z)| ≤ ‖f‖p
(1− |z|2)n/p

for all z ∈ B. Furthermore, the exponent n/p is the best possible.

The following compactness criterion follows from an easy modification
of Proposition 3.11 of [1]. Hence we omit the details.

Lemma 2.4. Assume that u ∈ H(B) and ϕ ∈ S(B). Let X or Y be one
of the spaces Hlogk and Hp. Then uCϕ : X → Y is compact if and only if
uCϕ : X → Y is bounded and for any bounded sequence {fj}j∈N in X which
converges to zero uniformly on compact subsets of B as j → ∞, we have
‖uCϕfj‖Y → 0 as j →∞.

The proof of the following lemma is well-known, so it is omitted here.

Lemma 2.5. For 0 < p <∞, there is a positive constant Cp, depending

on p and N , such that (
∑N

i=1 xi)
p ≤ Cp(

∑N
i=1 x

p
i ) for all xi ∈ (0,∞), i ∈

{1, . . . , N}.

3. Boundedness and compactness of uCϕ : Hlogk → Hp. In this
section we characterize the boundedness and compactness of the operator
uCϕ : Hlogk → Hp.

Theorem 3.1. Assume that k ∈ N, 1 ≤ p <∞, u ∈ H(B) and ϕ ∈ S(B).
Then uCϕ : Hlogk → Hp is bounded if and only if

(3) M := sup
0<r<1

�

S

|u(rζ)|p

(1− |ϕ(rζ)|2)p
(∏k

j=1 ln[j] e[k]

1−|ϕ(rζ)|2
)p dσ(ζ) <∞.
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Proof. Assume that (3) holds. For any f ∈ Hlogk , by (1) and (3) it follows
that

‖uCϕf‖pHp = sup
0<r<1

�

S

|uCϕf(rζ)|p dσ(ζ) = sup
0<r<1

�

S

|u(rζ)|p|f(ϕ(rζ))|p dσ(ζ)

≤ ‖f‖pHlogk
sup

0<r<1

�

S

|u(rζ)|p

(1− |ϕ(rζ)|2)p
(∏k

j=1 ln[j] e[k]

1−|ϕ(rζ)|2
)p dσ(ζ)

≤M‖f‖pHlogk
<∞,

so uCϕ : Hlogk → Hp is bounded.

Conversely, suppose that uCϕ : Hlogk → Hp is bounded. Let f1, . . . , fN ∈
Hlogk satisfy (2). Using Lemma 2.5, we get

∞ > C‖uCϕ‖pHlogk
→Hp ≥

N∑
i=1

‖fi‖pHlogk
‖uCϕ‖pHlogk

→Hp ≥
N∑
i=1

‖uCϕfi‖pHp

=

N∑
i=1

sup
0<r<1

�

S

|(uCϕfi)(rζ)|p dσ(ζ) =

N∑
i=1

sup
0<r<1

�

S

|u(rζ)fi(ϕ(rζ))|p dσ(ζ)

≥ sup
0<r<1

�

B

( N∑
i=1

|fi(ϕ(rζ))|p
)
|u(rζ)|p dσ(ζ)

≥ C sup
0<r<1

�

S

( N∑
i=1

|fi(ϕ(rζ))|
)p
|u(rζ)|p dσ(ζ)

≥ C sup
0<r<1

�

S

|u(rζ)|p

(1− |ϕ(rζ)|2)p
(∏k

j=1 ln[j] e[k]

1−|ϕ(rζ)|2
)p dσ(ζ).

so (3) holds.

Next we characterize the compactness of uCϕ : Hlogk → Hp.

Theorem 3.2. Assume that k ∈ N, 1 ≤ p <∞, u ∈ H(B) and ϕ ∈ S(B).
Then uCϕ : Hlogk → Hp is compact if and only if uCϕ : Hlogk → Hp is
bounded and

(4) lim
δ→1

sup
0<r<1

�

{|ϕ(rζ)|>δ}

|u(rζ)|p

(1− |ϕ(rζ)|2)p
(∏k

j=1 ln[j] e[k]

1−|ϕ(rζ)|2
)p dσ(ζ) = 0.

Proof. Assume uCϕ : Hlogk → Hp is bounded and (4) holds. Let f(z) =
1 ∈ Hlogk . Then we can easily get

M1 := sup
0<r<1

�

S

|u(rζ)|p dσ(ζ) <∞.

By (4), for any ε > 0 there exists a δ0 ∈ (0, 1) such that for every δ ∈ (δ0, 1),
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we have

(5) sup
0<r<1

�

{|ϕ(rζ)|>δ}

|u(rζ)|p

(1− |ϕ(rζ)|2)p
(∏k

j=1 ln[j] e[k]

1−|ϕ(rζ)|2
)p dσ(ζ) < ε.

Now let {fm}m∈N be a sequence of functions with supm∈N ‖fm‖Hlogk
≤ 1,

converging to zero uniformly on compact subsets of B as m → ∞. Let
δ ∈ (δ0, 1). We have

‖uCϕfm‖pHp = sup
0<r<1

�

S

|fm(ϕ(rζ))|p|u(rζ)|p dσ(ζ)

≤ sup
0<r<1

�

{|ϕ(rζ)|≤δ}

|fm(ϕ(rζ))|p|u(rζ)|p dσ(ζ)

+ sup
0<r<1

�

{|ϕ(rζ)|>δ}

|fm(ϕ(rζ))|p|u(rζ)|p dσ(ζ)

=: I1 + I2.

Let K = {w : |w| ≤ δ}. Note that it is a compact subset of B. Then

I1 ≤ sup
w∈K
|fm(w)|p sup

0<r<1

�

{|ϕ(rζ)|≤δ}

|u(rζ)|p dσ(ζ)(6)

≤M1 sup
w∈K
|fm(w)|p → 0 as m→∞,

since fm → 0 uniformly on compact subsets of B as m→∞.
On the other hand, by (1) and (5), we have

(7)

I2 ≤ ‖fm‖pHlogk
sup

0<r<1

�

{|ϕ(rζ)|>δ}

|u(rζ)|p

(1− |ϕ(rζ)|2)p
(∏k

j=1 ln[j] e[k]

1−|ϕ(rζ)|2
)p dσ(ζ)

< ε.

Combining (6) with (7), since ε is an arbitrary positive number, we obtain

lim
m→∞

‖uCϕfm‖Hp = 0.

Hence uCϕ : Hlogk → Hp is compact by Lemma 2.4.

Conversely, suppose that uCϕ : Hlogk → Hp is compact. Then its bound-
edness is obvious.

Next we prove (4). Let l ∈ {1, . . . , n} and f
(m)
l (z) = zml , m ∈ N. By

Lemma 2.1, it is easy to check ‖f (m)
l ‖Hlogk

≤ C, and f
(m)
l → 0 uniformly

on compact subsets of B as m → ∞. By Lemma 2.4, ‖uCϕf (m)
l ‖Hp → 0
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as m→∞. Thus

‖uCϕf (m)
l ‖pHp = sup

0<r<1

�

S

|f (m)
l (ϕ(rζ))|p|u(rζ)|p dσ(ζ)

= sup
0<r<1

�

S

|ϕl(rζ)|mp|u(rζ)|p dσ(ζ)→ 0 as m→∞.

It now follows from Lemma 2.5 and (8) that as m→∞,

sup
0<r<1

�

S

|ϕ(rζ)|mp|u(rζ)|p dσ(ζ)

≤ sup
0<r<1

�

S

( n∑
l=1

|ϕl(rζ)|
)mp
|u(rζ)|p dσ(ζ)

≤ C sup
0<r<1

�

S

( n∑
l=1

|ϕl(rζ)|mp
)
|u(rζ)|p dσ(ζ)→ 0.

This means that for every ε > 0, there is an m0 ∈ N such that for every
δ ∈ (0, 1),

δm0p sup
0<r<1

�

{|ϕ(rζ)|>δ}

|u(rζ)|p dσ(ζ) ≤ sup
0<r<1

�

S

|ϕ(rζ)|m0p|u(rζ)|p dσ(ζ) < ε.

Let δ > 2−1/(m0p). By the above inequality we obtain

(8) sup
0<r<1

�

{|ϕ(rζ)|>δ}

|u(rζ)|p dσ(ζ) < 2ε.

Let f ∈ BHlogk
. Define ft(z) = f(tz), t ∈ (0, 1). It is easy to check that

‖ft‖Hlogk
≤ 1 and ft converges to f uniformly on compact subsets of B as

t→ 1. So by Lemma 2.4,

‖uCϕft − uCϕf‖Hp = ‖uCϕ(ft − f)‖Hp → 0

as t → 1. It follows that for all ε > 0 there is a t0 ∈ (0, 1) such that for all
t ∈ (t0, 1),

(9) sup
0<r<1

�

S

|f(ϕ(rζ))− ft(ϕ(rζ))|p|u(rζ)|p dσ(ζ) < ε.

Now fix t. By Lemma 2.5, (8) and (9), we obtain

sup
0<r<1

�

{|ϕ(rζ)|>δ}

|f(ϕ(rζ))|p|u(rζ)|p dσ(ζ)

≤ C sup
0<r<1

�

{|ϕ(rζ)|>δ}

|f(ϕ(rζ))− ft(ϕ(rζ))|p|u(rζ)|p dσ(ζ)

+ C sup
0<r<1

�

{|ϕ(rζ)|>δ}

|ft(ϕ(rζ))|p|u(rζ)|p dσ(ζ)
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≤ Cε+ C‖ft‖pH∞ sup
0<r<1

�

{|ϕ(rζ)|>δ}

|u(rζ)|p dσ(ζ) ≤ Cε(1 + ‖ft‖H∞).

Combining this with (8) shows that for every f ∈ BHlogk
and ε > 0, there

exists ρ(f, ε), depending on f and ε, such that for δ ∈ [ρ(f, ε), 1),

(10) sup
0<r<1

�

{|ϕ(rζ)|>δ}

|f(ϕ(rζ))|p|u(rζ)|p dσ(ζ) < ε.

Since uCϕ : Hlogk → Hp is compact, uCϕ(BHlogk
) is a relatively compact

subset of Hp. So for each ε > 0, there exists a finite collection of functions
g1, . . . , gN1 in BHlogk

such that for each f in BHlogk
, there is a k ∈ {1, . . . , N1}

with ‖uCϕf − uCϕgk‖Hp < ε, which implies that

(11) sup
0<r<1

�

{|ϕ(rζ)|>δ}

|f(ϕ(rζ))− gk(ϕ(rζ))|p|u(rζ)|p dσ(ζ) < ε.

By (10), it follows that for ρ = max1≤k≤N1 ρ(gk, ε) and δ ∈ [ρ, 1),

(12) sup
0<r<1

�

{|ϕ(rζ)|>δ}

|gk(ϕ(rζ))|p|u(rζ)|p dσ(ζ) < ε,

for every k ∈ {1, . . . , N1}.
Thus from inequalities (11) and (12), we get

(13) sup
f∈BHlogk

sup
0<r<1

�

{|ϕ(rζ)|>δ}

|f(ϕ(rζ))|p|u(rζ)|p dσ(ζ) < 2Cε.

Choosing f1, . . . , fN ∈ Hlogk as in Lemma 2.2 with ‖fi‖Hlogk
≤ 1 (if neces-

sary, take fi/‖fi‖) in (13), we have

sup
f∈BHlogk

sup
0<r<1

�

{|ϕ(rζ)|>δ}

|fi(ϕ(rζ))|p|u(rζ)|p dσ(ζ) < 2Cε.

Therefore

sup
0<r<1

�

{|ϕ(rζ)|>δ}

|u(rζ)|p

(1− |ϕ(rζ)|2)p
(∏k

j=1 ln[j] e[k]

1−|ϕ(rζ)|2
)p dσ(ζ)

≤ sup
0<r<1

�

{|ϕ(rζ)|>δ}

( N∑
i=1

|fi(ϕ(rζ))|
)p
|u(rζ)|p dσ(ζ)

≤ C
N∑
i=1

sup
0<r<1

�

{|ϕ(rζ)|>δ}

|fi(ϕ(rζ))|p|u(rζ)|p dσ(ζ) ≤ Cε.

Hence (4) holds.
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4. Boundedness and compactness of uCϕ : Hp → Hlogk . In this
section we characterize the boundedness and compactness of the operator
uCϕ : Hp → Hlogk . The results in this section are somewhat easier to obtain
than those in Section 3, but we will give complete proofs for the benefit of
the reader.

Theorem 4.1. Assume that k ∈ N, 1 ≤ p <∞, u ∈ H(B) and ϕ ∈ S(B).
Then uCϕ : Hp → Hlogk is bounded if and only if

(14) sup
z∈B

(1− |z|2)
( k∏
j=1

ln[j] e[k]

1− |z|2

)
|u(z)|

(1− |ϕ(z)|2)n/p
<∞.

Proof. Assume that uCϕ : Hp → Hlogk is bounded. For any w ∈ B,
choose the test function

fw(z) =
(1− |ϕ(w)|2)a

(1− 〈z, ϕ(w)〉)n/p+a
, a > 0.

By Theorem 1.12 in [28] we get

‖fw‖pHp = sup
0<r<1

�

S

|fw(rζ)|p dσ(ζ) = sup
0<r<1

�

S

(1− |ϕ(w)|2)pa

|1− r〈ζ, ϕ(w)〉|n+pa
dσ(ζ)(15)

≤ C sup
0<r<1

(1− |ϕ(w)|2)ap

(1− r2|ϕ(w)|2)ap
≤ C.

It follows that

(16) ‖fw‖Hp‖uCϕ‖Hp→Hlogk
≥ ‖uCϕfw(z)‖Hlogk

= sup
z∈B

(1− |z|2)
( k∏
j=1

ln[j] e[k]

1− |z|2

)
|u(z)fw(ϕ(z))|

≥ (1− |w|2)
( k∏
j=1

ln[j] e[k]

1− |w|2

)
|u(w)fw(ϕ(w))|

= (1− |w|2)
( k∏
j=1

ln[j] e[k]

1− |w|2

)
|u(w)|

(1− |ϕ(w)|2)n/p
.

Since w is an arbitrary element in B, condition (14) follows.
Conversely, suppose that (14) holds. Then for any f ∈ Hp, by Lemma

2.3,

‖uCϕf‖Hlogk
= sup

z∈B
(1− |z|2)

( k∏
j=1

e[k]

1− |z|2

)
|u(z)f(ϕ(z))|

≤ ‖f‖Hp sup
z∈B

(1− |z|2)
( k∏
j=1

e[k]

1− |z|2

)
|u(z)|

(1− |ϕ(z)|2)n/p
<∞,

proving the boundedness of uCϕ : Hp → Hlogk .
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Theorem 4.2. Assume that k ∈ N, 1 ≤ p <∞, u ∈ H(B) and ϕ ∈ S(B).
Then uCϕ : Hp → Hlogk is compact if and only if uCϕ : Hp → Hlogk is
bounded and

(17) lim
|ϕ(z)|→1

(1− |z|2)
( k∏
j=1

ln[j] e[k]

1− |z|2

)
|u(z)|

(1− |ϕ(z)|2)n/p
= 0.

Proof. First, assume that uCϕ : Hp → Hlogk is bounded and (17) holds.
Taking f(z) = 1, it is easy to show that

M2 := (1− |z|2)
( k∏
j=1

ln[j] e[k]

1− |z|2

)
|u(z)| <∞.

It follows from (17) that for any ε > 0, there exists a δ ∈ (0, 1) such that

(1− |z|2)
( k∏
j=1

ln[j] e[k]

1− |z|2

)
|u(z)|

(1− |ϕ(z)|2)1/p
< ε,

when δ < |ϕ(z)| < 1. Let {fk}k∈N be a bounded sequence in Hp, say by L,
converging to zero uniformly on compact subsets of B as k →∞. Then from
the above condition we get

‖uCϕfk‖Hlogk
= sup

z∈B
(1− |z|2)

( k∏
j=1

ln[j] e[k]

1− |z|2

)
|u(z)fk(ϕ(z))|

= sup
|ϕ(z)|≤δ

(1− |z|2)
( k∏
j=1

ln[j] e[k]

1− |z|2

)
|u(z)fk(ϕ(z))|

+ sup
|ϕ(z)|>δ

(1− |z|2)
( k∏
j=1

ln[j] e[k]

1− |z|2

)
|u(z)fk(ϕ(z))|

≤M2 sup
|w|≤δ

|fk(w)|

+ sup
|ϕ(z)|>δ

(1− |z|2)
( k∏
j=1

ln[j] e[k]

1− |z|2

)
|u(z)|

(1− |ϕ(z)|2)n/p
‖fk‖Hp

≤M2 sup
|w|≤δ

|fk(w)|+ εLp → εLp, k →∞.

Since ε is an arbitrary number, we obtain

lim
k→∞

‖uCϕfk‖Hlogk
= 0.

Lemma 2.4 now yields the compactness of uCϕ : Hp → Hlogk .

Conversely, suppose that uCϕ : Hp → Hlogk is compact. Then it is
bounded. Let {zk}k∈N ⊂ B be such that limk→∞ |ϕ(zk)| = 1 (if such a
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sequence does not exist then (17) obviously holds). Let

fk(z) =
(1− |ϕ(zk)|2)a

(1− 〈z, ϕ(zk)〉)n/p+a
, a > 0, k ∈ N.

Then from (15) we know that fk ∈ Hp with supk∈N ‖fk‖Hp ≤ C, and fk → 0
uniformly on compact subsets of B as k →∞. Lemma 2.4 yields

(18) lim
k→∞

‖uCϕfk‖Hlogk
= 0.

From (16) we easily see that

‖uCϕfk‖Hlogk
≥ (1− |zk|2)

( k∏
j=1

ln[j] e[k]

1− |zk|2

)
|u(zk)|

(1− |ϕ(zk)|2)n/p
.

Letting k →∞ and using (18) we obtain (17).
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