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Composition operators from weighted
Bergman–Privalov spaces

to Zygmund type spaces on the unit disk

by Stevo Stević (Beograd) and Ajay K. Sharma (Kakryal)

Abstract. We characterize the boundedness and compactness of composition oper-
ators from weighted Bergman–Privalov spaces to Zygmund type spaces on the unit disk.

1. Introduction. Let H(D) be the space of all holomorphic functions
on the open unit disk D in the complex plane C, S(D) the class of all
holomorphic self-maps of D, and Zµ = Zµ(D) the Zygmund type class,
consisting of all f ∈ H(D) such that

bµ(f) := sup
z∈D

µ(z)|f ′′(z)| <∞,

where µ is a nonnegative continuous function on D (weight). With the norm

‖f‖Zµ = |f(0)|+ |f ′(0)|+ bµ(f),

the Zygmund type class becomes a Banach space, called the Zygmund type
space.

The little Zygmund type space, denoted by Zµ,0 = Zµ,0(D), is the closed
subspace of Zµ consisting of all functions f such that

lim
|z|→1

µ(z)|f ′′(z)| = 0.

For µ(z) = 1−|z|2, we get the Zygmund space and the little Zygmund space.

Let α ∈ (−1,∞) and p ≥ 1. The weighted Bergman–Privalov space
ANp,α = ANp,α(D) consists of all f ∈ H(D) such that

‖f‖pANp,α
=

�

D

lnp(1 + |f(z)|) dmα(z) <∞,
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where

dmα(z) = (α+ 1)(1− |z|2)αdm(z), dm(z) =
dxdy

π
, z = x+ iy.

It is easy to see that the function ‖ · ‖ANp,α is not a norm on ANp,α,
however dANp,α(f, g) = ‖f − g‖ANp,α defines a translation invariant metric
on ANp,α and with this metric ANp,α is an F -space.

The following point evaluation estimate is well-known:

|f(z)| ≤ exp

{(
1 + |z|
1− |z|

)(α+2)/p

‖f‖ANp,α

}
− 1, z ∈ D,(1.1)

for every f ∈ ANp,α, and each p ≥ 1 and α ∈ (−1,∞) (see, for example, [7]).
The composition operator Cϕ induced by ϕ is defined by Cϕf = f ◦ϕ for

f ∈ H(D). The study of composition operators lies at the interface of the
theory of analytic functions and operator theory. Recently, there has been
some interest in studying composition and related operators from a partic-
ular domain space of holomorphic functions into Zygmund type spaces (see,
for example, [3, 4, 5, 12, 20, 21]). In this paper, we study the boundedness
and compactness of the operator Cϕ : ANp,α → Zµ (or Zµ,0) continuing the
line of research in [14, 16, 17, 22].

2. Boundedness and compactness of Cϕ : ANp,α → Zµ (or Zµ,0).
Recall that a linear map T : ANp,α → Zµ is bounded if T (E) ⊆ Zµ is bounded
for every bounded subset E of ANp,α. The map is compact if T (E) ⊆ Zµ is
relatively compact for every bounded set E ⊂ ANp,α.

The following criterion for compactness follows from standard arguments
similar to those in [9] (see also [6]).

Lemma 2.1. Let α > −1, p ≥ 1, µ be a weight and ϕ ∈ S(D). Then
Cϕ : ANp,α → Zµ is compact if and only if for any bounded sequence
(fn)n∈N in ANp,α converging to zero on compact subsets of D, we have
limn→∞ ‖Cϕfn‖Zµ = 0.

Theorem 2.2. Let α > −1, p ≥ 1, µ be a weight and ϕ ∈ S(D). Then
the following statements are equivalent:

(i) Cϕ : ANp,α → Zµ is bounded.
(ii) Cϕ : ANp,α → Zµ is compact.

(iii) For each c > 0,

lim
|ϕ(z)|→1

µ(z)|ϕ′′(z)|
1− |ϕ(z)|2

exp

{
c

(1− |ϕ(z)|2)(α+2)/p

}
= 0,(2.1)

lim
|ϕ(z)|→1

µ(z)|ϕ′(z)|2

(1− |ϕ(z)|2)2
exp

{
c

(1− |ϕ(z)|2)(α+2)/p

}
= 0,(2.2)
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ϕ ∈ Zµ and

Bµ,ϕ := sup
z∈D

µ(z)|ϕ′(z)|2 <∞.(2.3)

Proof. (ii)⇒(i). This implication is clear.
(i)⇒(iii). By taking the test function f(z) = z ∈ ANp,α, we get ϕ ∈ Zµ.

By taking f1(z) = z2/2 ∈ ANp,α, we get

‖Cϕf1‖Zµ = sup
z∈D

µ(z)|(ϕ′(z))2 + ϕ(z)ϕ′′(z)| <∞.

Since ϕ ∈ Zµ and |ϕ(z)| < 1, z ∈ D, we get (2.3).
Let ζ ∈ D and c > 0. Consider the function

(2.4) fζ(z) = exp

{
6c

(
1

2

(1− |ϕ(ζ)|2)(α+2)/p

(1− ϕ(ζ)z)2(α+2)/p
− 1

3

(1− |ϕ(ζ)|2)2(α+2)/p

(1− ϕ(ζ)z)3(α+2)/p

)}
.

We have

|fζ(z)|≤ exp

{
3c

(1−|ϕ(ζ)|2)(α+2)/p

|1−ϕ(ζ)z|2(α+2)/p
+

2c(1−|ϕ(ζ)|2)2(α+2)/p

(1−|ϕ(ζ)||z|)(α+2)/p|1−ϕ(ζ)z|2(α+2)/p

}
≤ exp

{
c(3 + 2(α+2)/p+1)

(1− |ϕ(ζ)|2)(α+2)/p

|1− ϕ(ζ)z|2(α+2)/p

}
,

from which along with the inequality ex + 1 ≤ ex+1, x ≥ 0, we get

ln(1 + |fζ(z)|) ≤ 1 + c(3 + 2(α+2)/p+1)
(1− |ϕ(ζ)|2)(α+2)/p

|1− ϕ(ζ)z|2(α+2)/p
,

and so ‖fζ‖ANp,α ≤ C1(c, p, α) <∞, for every ζ ∈ D (see e.g. [8]).
Further, we have

f ′ζ(z) = 6c
α+ 2

p
ϕ(ζ)

(
(1− |ϕ(ζ)|2)(α+2)/p

(1− ϕ(ζ)z)2(α+2)/p+1
− (1− |ϕ(ζ)|2)2(α+2)/p

(1− ϕ(ζ)z)3(α+2)/p+1

)
× exp

{
6c

(
1

2

(1− |ϕ(ζ)|2)(α+2)/p

(1− ϕ(ζ)z)2(α+2)/p
− 1

3

(1− |ϕ(ζ)|2)2(α+2)/p

(1− ϕ(ζ)z)3(α+2)/p

)}
and

f ′′ζ (z) =

{[
6c
α+ 2

p
ϕ(ζ)

(
(1− |ϕ(ζ)|2)(α+2)/p

(1− ϕ(ζ)z)2(α+2)/p+1
− (1− |ϕ(ζ)|2)2(α+2)/p

(1− ϕ(ζ)z)3(α+2)/p+1

)]2
+

6c(α+ 2)[ϕ(ζ)]2

p

×
[
(2α+4+p)(1−|ϕ(ζ)|2)(α+2)/p

p(1− ϕ(ζ)z)2(α+2)/p+2
− (3α+6+p)(1−|ϕ(ζ)|2)2(α+2)/p

p(1− ϕ(ζ)z)3(α+2)/p+2

]}
× exp

{
6c

(
1

2

(1− |ϕ(ζ)|2)(α+2)/p

(1− ϕ(ζ)z)2(α+2)/p
− 1

3

(1− |ϕ(ζ)|2)2(α+2)/p

(1− ϕ(ζ)z)3(α+2)/p

)}
.
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Thus, f ′ζ(ϕ(ζ)) = 0, and

(2.5) f ′′ζ (ϕ(ζ)) = − 6cp−2(α+ 2)2[ϕ(ζ)]2

(1− |ϕ(ζ)|2)(α+2)/p+2
exp

{
c

(1− |ϕ(ζ)|2)(α+2)/p

}
.

Since Cϕ : ANp,α → Zµ is bounded, we can find a constant M1 > 0 such
that

M1 ≥ µ(ζ)|ϕ′′(ζ)f ′ζ(ϕ(ζ)) + (ϕ′(ζ))2f ′′ζ (ϕ(ζ))|

=
µ(ζ)|ϕ′(ζ)|26cp−2(α+2)2|ϕ(ζ)|2

(1− |ϕ(ζ)|2)(α+2)/p+2
exp

{
c

(1−|ϕ(ζ)|2)(α+2)/p

}
, ζ∈D,

from which it follows that

µ(ζ)|ϕ′(ζ)|2

(1− |ϕ(ζ)|2)2
exp

{
c

(1− |ϕ(ζ)|2)(α+2)/p

}
≤ M(1− |ϕ(ζ)|2)(α+2)/p

|ϕ(ζ)|2
,(2.6)

where M = M1p
2/(6c(α+ 2)2). By letting |ϕ(ζ)| → 1 in (2.6), we get (2.2).

Now consider the function

gζ(z) = (z − ϕ(ζ))

(
1− |ϕ(ζ)|2

(1− ϕ(ζ)z)2

)(α+2)/p+1

fζ(z).

Then

|gζ(z)| ≤ 4

(
1− |ϕ(ζ)|2

|1− ϕ(ζ)z|2

)(α+2)/p

× exp

{
6c

(
1

2

(1− |ϕ(ζ)|2)(α+2)/p

|1− ϕ(ζ)z|2(α+2)/p
+

1

3

(1− |ϕ(ζ)|2)2(α+2)/p

|1− ϕ(ζ)z|3(α+2)/p

)}
.

Using the inequalities ln(1+xy) ≤ ln(1+x)+ln(1+y), ln(1+sx) ≤ s ln(1+x)
and ln(1 + ex) ≤ x+ 1, which hold for x ≥ 0, y ≥ 0 and s ≥ 1, we have

ln(1 + |gζ(z)|)

≤
{

4 ln

(
1 +

(1− |ϕ(ζ)|2)(α+2)/p

|1− ϕ(ζ)z|2(α+2)/p

)
+ ln

(
1+exp

(
3c

(1− |ϕ(ζ)|2)(α+2)/p

|1− ϕ(ζ)z|2(α+2)/p
+2c

(1− |ϕ(ζ)|2)2(α+2)/p

|1− ϕ(ζ)z|3(α+2)/p

))}
≤ 1 + 4

(1− |ϕ(ζ)|2)(α+2)/p

|1− ϕ(ζ)z|2(α+2)/p
+ 3c

(1− |ϕ(ζ)|2)(α+2)/p

|1− ϕ(ζ)z|2(α+2)/p

+ 2(α+2)/p+1c
(1− |ϕ(ζ)|2)(α+2)/p

|1− ϕ(ζ)z|2(α+2)/p

= 1 + (4 + 3c+ c2(α+2)/p+1)
(1− |ϕ(ζ)|2)(α+2)/p

|1− ϕ(ζ)z|2(α+2)/p
,

and so ‖gζ‖ANp,α ≤ C2(c, p, α) <∞ for every ζ ∈ D.
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Further, notice that gζ(ϕ(ζ)) = 0. Also, by some calculation, using the
equality f ′ζ(ϕ(ζ)) = 0 and (2.5) one can easily check that

g′ζ(ϕ(ζ)) =
1

(1− |ϕ(ζ)|2)(α+2)/p+1
exp

{
c

(1− |ϕ(ζ)|2)(α+2)/p

}
g′′ζ (ϕ(ζ)) =

4((α+ 2)p−1 + 1)ϕ(ζ)

(1− |ϕ(ζ)|2)(α+2)/p+2
exp

{
c

(1− |ϕ(ζ)|2)(α+2)/p

}
.

Since Cϕ : ANp,α → Zµ is bounded, there is a constant M2 > 0 such that

M2 ≥ µ(ζ)|ϕ′′(ζ)g′ζ(ϕ(ζ)) + (ϕ′(ζ))2g′′ζ (ϕ(ζ))|, ζ ∈ D,

from which it follows that

(2.7)
µ(ζ))|ϕ′′(ζ)|
1− |ϕ(ζ)|2

exp

{
c

(1− |ϕ(ζ)|2)(α+2)/p

}
≤M2(1− |ϕ(ζ)|2)(α+2)/p

+
4((α+ 2)/p+1)µ(ζ)|ϕ′(ζ)|2

(1− |ϕ(ζ)|2)2
exp

{
c

(1− |ϕ(ζ)|2)(α+2)/p

}
.

Letting |ϕ(ζ)| → 1 in (2.7), and using (2.2), we get (2.1).

(iii)⇒(ii). From (2.1) and (2.2) we deduce that for each c > 0 and every
ε > 0 there is an r0 ∈ (0, 1) such that, for r0 < |ϕ(z)| < 1,

µ(z)|ϕ′′(z)|
1− |ϕ(z)|2

exp

{
c

(1− |ϕ(z)|2)(α+2)/p

}
< ε,(2.8)

µ(z)|ϕ′(z)|2

(1− |ϕ(z)|2)2
exp

{
c

(1− |ϕ(z)|2)(α+2)/p

}
< ε.(2.9)

Note that if f ∈ ANp,α, then by (1.1) and the Cauchy integral formula
for derivatives, we have

(1− |z|2)|f ′(z)| ≤ 4

π

�

|ζ−z|=(1−|z|)/2

|f(ζ)|
1− |z|

|dζ|(2.10)

≤ 4 exp

{
8(α+2)/p‖f‖ANp,α

(1− |z|2)(α+2)/p

}
,

(1−|z|2)2|f ′′(z)| ≤ 32

π

�

|ζ−z|=(1−|z|)/2

|f(ζ)|
1−|z|

|dζ|(2.11)

≤ 32 exp

{
8(α+2)/p‖f‖ANp,α

(1− |z|2)(α+2)/p

}
.
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Choose a bounded sequence (fn)n∈N in ANp,α, say by L, converging to zero
on compact subsets of D as n→∞. Then for each r ∈ (0, 1), we have

(2.12) sup
|ϕ(z)|≤r

µ(z)|(Cϕfn)′′(z)|

≤ sup
|ϕ(z)|≤r

(µ(z)|ϕ′′(z)f ′n(ϕ(z)) + (ϕ′(z))2f ′′n(ϕ(z))|)

≤ ‖ϕ‖Zµ sup
|ϕ(z)|≤r

|f ′n(ϕ(z))|+Bµ,ϕ sup
|ϕ(z)|≤r

|f ′′n(ϕ(z))| → 0

as n → ∞, since by the Weierstrass inequality, for each k ∈ N, also f
(k)
n

tends to zero on compact subsets of D as n→∞.

On the other hand, for each r ∈ (r0, 1), applying (2.8) and (2.9) with
c = 8(α+2)/pL, we deduce for r < |ϕ(z)| < 1 that

(2.13) µ(z)|(Cϕfn)′′(z)|

≤ sup
|ϕ(z)|>r

4
µ(z)|ϕ′′(z)|
1− |ϕ(z)|2

exp

{
8(α+2)/pL

(1− |ϕ(z)|2)(α+2)/p

}
+ sup
|ϕ(z)|>r

32
µ(z)|ϕ′(z)|2

(1− |ϕ(z)|2)2
exp

{
8(α+2)/pL

(1− |ϕ(z)|2)(α+2)/p

}
< 36ε.

Using (2.12) and (2.13) along with the fact that |fn(ϕ(0))|and |f ′n(ϕ(0))ϕ′(0)|
tend to 0 as n→∞, we have

lim
n→∞

‖Cϕfn‖Zµ = 0.

Hence by Lemma 2.1, the operator Cϕ : ANp,α → Zµ is compact, as
claimed.

Lemma 2.3. Let α > −1, p ≥ 1, µ be a weight and ϕ ∈ S(D). Then the
following statements are equivalent:

(i) For each c > 0,

lim
|z|→1

µ(z)|ϕ′′(z)|
1− |ϕ(z)|2

exp

{
c

(1− |ϕ(z)|2)(α+2)/p

}
= 0.(2.14)

(ii) For each c > 0,

lim
|ϕ(z)|→1

µ(z)|ϕ′′(z)|
1− |ϕ(z)|2

exp

{
c

(1− |ϕ(z)|2)(α+2)/p

}
= 0(2.15)

and ϕ ∈ Zµ,0.

Proof. (i)⇒(ii). From (i) and since the function

fc(x) =
1

1− x2
exp

c

(1− x2)(α+2)/p
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is bounded below on [0, 1) by ec, we have

µ(z)|ϕ′′(z)| ≤ e−cµ(z)|ϕ′′(z)|
1− |ϕ(z)|2

exp

{
c

(1− |ϕ(z)|2)(α+2)/p

}
→ 0

as |z| → 1. Hence ϕ ∈ Zµ,0. If |ϕ(z)| → 1, then |z| → 1, from which (2.15)
follows.

(ii)⇒(i). Suppose that the conditions in (ii) hold, but (2.14) is not true
for some c > 0. Then there are c0, ε0 > 0 and a sequence (zn)n∈N tending
to ∂D such that for every n ∈ N,

µ(zn)|ϕ′′(zn)|
1− |ϕ(zn)|2

exp

{
c0

(1− |ϕ(zn)|2)(α+2)/p

}
≥ ε0.(2.16)

Using the fact that fc0(x)→ +∞ as x→ 1−, and the assumption ϕ ∈ Zµ,0,
along with (2.16), it follows that (zn)n∈N has a subsequence (znk)k∈N such
that |ϕ(znk)| → 1 as k →∞. On the other hand, (2.15) implies

lim
k→∞

µ(znk)|ϕ′′(znk)|
1− |ϕ(znk)|2

exp

{
c

(1− |ϕ(znk)|2)(α+2)/p

}
= 0,

which contradicts (2.16). Hence (2.14) holds, as desired.

A similar proof gives the following lemma.

Lemma 2.4. Let α > −1, p ≥ 1, µ be a weight and ϕ ∈ S(D). Then the
following statements are equivalent:

(i) For each c > 0,

lim
|z|→1

µ(z)|ϕ′(z)|2

(1− |ϕ(z)|2)2
exp

{
c

(1− |ϕ(z)|2)(α+2)/p

}
= 0.

(ii) For each c > 0,

lim
|ϕ(z)|→1

µ(z)|ϕ′(z)|2

(1− |ϕ(z)|2)2
exp

{
c

(1− |ϕ(z)|2)(α+2)/p

}
= 0.

and lim|z|→1 µ(z)|ϕ′(z)|2 = 0.

Theorem 2.5. Let α > −1, p ≥ 1, µ be a weight and ϕ ∈ S(D). Then
the following statements are equivalent:

(i) Cϕ : ANp,α → Zµ,0 is bounded.
(ii) Cϕ : ANp,α → Zµ,0 is compact.

(iii) For each c > 0,

lim
|z|→1

µ(z)|ϕ′′(z)|
1− |ϕ(z)|2

exp

{
c

(1− |ϕ(z)|2)(α+2)/p

}
= 0,(2.17)

lim
|z|→1

µ(z)|ϕ′(z)|2

(1− |ϕ(z)|2)2
exp

{
c

(1− |ϕ(z)|2)(α+2)/p

}
= 0.(2.18)
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Proof. (ii)⇒(i). This implication is obvious.

(i)⇒(iii). Since the boundedness of Cϕ : ANp,α → Zµ,0 implies the
boundedness of Cϕ : ANp,α → Zµ, by Theorem 2.2 we see that (2.1) and
(2.2) hold. By using f(z) = z ∈ ANp,α we get ϕ ∈ Zµ,0. From this, (2.1) and
Lemma 2.3, we get (2.17). Employing the test function f(z) = z2/2 ∈ ANp,α,
as in Theorem 2.2, we get

lim
|z|→1

µ(z)|ϕ′(z)|2 = 0,(2.19)

which along with (2.2) and Lemma 2.4 implies (2.18).

(iii)⇒(ii). First note that (2.17) and (2.18) imply respectively (2.1) and
(2.2). Now we show that (2.17) also implies ϕ ∈ Zµ,0. Assume to the contrary
that ϕ 6∈ Zµ,0. Then there would be a sequence (zn)n∈N ⊂ D such that
|zn| → 1 as n→∞ and

µ(zn)|ϕ′′(zn)| ≥ δ > 0, n ∈ N.(2.20)

We may also assume that (ϕ(zn))n∈N is a convergent sequence. From this,
(2.20), and the boundedness below of fc(x), we would infer that (2.17) does
not hold, which would be a contradiction. Similarly, we can show that (2.18)
implies (2.19). Thus ϕ ∈ Zµ and Bµ,ϕ < ∞. Hence by Theorem 2.2, Cϕ :
ANp,α → Zµ is bounded.

By (2.10), (2.11), (2.17) and (2.18), for every f ∈ ANp,α we have

µ(z)|(Cϕf)′′(z)| ≤
(

4
µ(z)|ϕ′′(z)|
1− |ϕ(z)|2

+ 32
µ(z)|ϕ′(z)|2

(1− |ϕ(z)|2)2

)
× exp

{
8(α+2)/p‖f‖ANp,α

(1− |ϕ(z)|2)(α+2)/p

}
→ 0

as |z| → 1, that is, f ∈ Zµ,0. Thus Cϕ(ANp,α) ⊆ Zµ,0, which implies the
boundedness of Cϕ : ANp,α → Zµ,0.

The generalized composition operator

Cgϕf(z) =

z�

0

f ′(ϕ(ζ))g(ζ) dζ,

where g ∈ H(D) and ϕ ∈ S(D), was introduced in [3]. For related product
type operators, including composition operators, see, for example, [1, 2, 4,
5, 10, 11, 13, 15, 18, 19] and the references therein.

Since

(Cgϕf(z))′ = f ′(ϕ(z))g(z),

we see that the operator Cgϕ : ANp,α → Zµ (or Zµ,0) can be treated similarly
to the composition operator Cϕ : ANp,α→ Zµ (or Zµ,0). Note that

(Cϕf(z))′ = f ′(ϕ(z))ϕ′(z).
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Hence the only difference is that the function ϕ′, in the case of the gener-
alized composition operator, is replaced by the function g. In light of this
observation, from the proofs of Theorems 2.2 and 2.5 we see that the fol-
lowing results hold.

Theorem 2.6. Let α > −1, p ≥ 1, µ be a weight, g ∈ H(D) and ϕ ∈
S(D). Then the following statements are equivalent:

(i) Cgϕ : ANp,α → Zµ is bounded.
(ii) Cgϕ : ANp,α → Zµ is compact.

(iii) For each c > 0,

lim
|ϕ(z)|→1

µ(z)|g′(z)|
1− |ϕ(z)|2

exp

{
c

(1− |ϕ(z)|2)(α+2)/p

}
= 0,

lim
|ϕ(z)|→1

µ(z)|ϕ′(z)g(z)|
(1− |ϕ(z)|2)2

exp

{
c

(1− |ϕ(z)|2)(α+2)/p

}
= 0,

and supz∈D µ(z)|g′(z)| <∞, and supz∈D µ(z)|ϕ′(z)g(z)| <∞.

Theorem 2.7. Let α > −1, p ≥ 1, µ be a weight, g ∈ H(D) and ϕ ∈
S(D). Then the following statements are equivalent:

(i) Cgϕ : ANp,α → Zµ,0 is bounded.
(ii) Cgϕ : ANp,α → Zµ,0 is compact.

(iii) For each c > 0,

lim
|z|→1

µ(z)|g′(z)|
1− |ϕ(z)|2

exp

{
c

(1− |ϕ(z)|2)(α+2)/p

}
= 0,

lim
|z|→1

µ(z)|ϕ′(z)g(z)|
(1− |ϕ(z)|2)2

exp

{
c

(1− |ϕ(z)|2)(α+2)/p

}
= 0.
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