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Positive solutions for one-dimensional singular p-Laplacian
boundary value problems
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Abstract. We consider the existence of positive solutions of the equation

1

λ(t)
(λ(t)ϕp(x

′(t)))′ + µf(t, x(t), x′(t)) = 0,

where ϕp(s) = |s|p−2s, p > 1, subject to some singular Sturm–Liouville boundary condi-
tions. Using the Krasnosel’skĭı fixed point theorem for operators on cones, we prove the
existence of positive solutions under some structure conditions.

1. Introduction. In this paper, we consider the one-dimensional p-
Laplacian equation

(1.1)
1

λ(t)
(λ(t)ϕp(x

′(t)))′ + µf(t, x(t), x′(t)) = 0, 0 < t < +∞,

subject to one of the following three pairs of boundary value conditions:

αx(0)− β lim
t→0+

λ(t)1/(p−1)x′(t) = 0,

γ lim
t→+∞

x(t) + δ lim
t→+∞

λ(t)1/(p−1)x′(t) = 0,
(1.2a)

αx(0)− β lim
t→0+

λ(t)1/(p−1)x′(t) = 0, lim
t→+∞

λ(t)1/(p−1)x′(t) = 0, (1.2b)

lim
t→0+

λ(t)1/(p−1)x′(t) = 0,

γ lim
t→+∞

x(t) + δ lim
t→+∞

λ(t)1/(p−1)x′(t) = 0,
(1.2c)

where ϕp(s) = |s|p−2s, p > 1, α, β, γ, δ > 0, µ > 0 is a parameter, λ(t),
f(t, x, y) are continuous functions, and f(t, x, y) may be singular at t = 0.
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The Sturm–Liouville boundary value problems have been the subject of
intensive study during the past years: see for example [1–3, 5–7] and the
references therein. In particular, Lian and Ge [2] considered the Sturm–
Liouville boundary value problem for the equation

(p(t)x′(t))′ + λϕ(t)f(t, x(t)) = 0.

By using fixed point theorems in cones, they established the existence cri-
teria. In a recent paper [4], Sun et al. have studied a particular case of (1.1)
with p = 2, i.e., the nonlinear singular equation

1

p(t)
(p(t)z′(t))′ + µf(t, z(t), z′(t)) = 0.

They established a relation between the existence of positive solutions and
the parameter µ.

In this paper, we investigate the existence of positive solutions to the
problems (1.1), (1.2). Our approach is based on the Krasnosel’skĭı fixed point
theorem. Unlike earlier, the equation we consider is quasilinear, so that the
theory based on Green’s function cannot be applied. In addition, solutions of
the problems (1.1), (1.2) may not be concave, and so some efficient methods
based on convexity (see for example [1, 6, 7]) could not be available here.
In order to overcome these difficulties, a special Banach space and special
cones are introduced so that we can establish existence results.

This paper is organized as follows. As preliminaries, in Section 2 we
introduce the required Banach space E and suitable cones in E, and the
corresponding integral operators defined on the cones; we also give some
properties of the functions from the cones. In Section 3, we prove the com-
plete continuity of the operators and finally we apply the Krasnosel’skĭı fixed
point theorem to obtain the existence of positive solutions of the bound-
ary value problem (1.1), (1.2a). In view of their similarity, for the problems
(1.1), (1.2b) and (1.1), (1.2c) we only present the results and omit the details
of the proof. In Section 4, we give some detailed examples to illustrate our
main results.

2. Preliminaries. In this section, we present some necessary definitions
and construct some integral operators related to solutions of the problems
(1.1), (1.2), which will be used to demonstrate the existence of solutions
via the Krasnosel’skĭı fixed point theorem. Firstly, for the convenience of
the readers, we recall the definitions of a cone and a completely continuous
operator.

Definition 2.1. A nonempty, convex and closed subset P of a Banach
space E is called a cone if
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(i) P 6= {0},
(ii) if α, β ∈ R, α, β ≥ 0, and x, y ∈ P , then αx+ βy ∈ P ,

(iii) if x ∈ P and −x ∈ P , then x = 0.

Definition 2.2. An operator T : E → E is said to be completely con-
tinuous if T is continuous and maps bounded sets into precompact sets.

The following is the well-known Krasnosel’skĭı fixed point theorem (see
for example [5]).

Proposition 2.3. Let E be a Banach space and P ⊂ E be a cone in E.
Assume that Ω1 and Ω2 are two bounded open sets in E such that θ ∈ Ω1

and Ω̄1 ⊂ Ω2. Let T : P ∩(Ω̄2\Ω1)→ P be a completely continuous operator
such that either

(i) ‖Tx‖ ≤ ‖x‖ for x ∈ P ∩ ∂Ω1 and ‖Tx‖ ≥ ‖x‖ for x ∈ P ∩ ∂Ω2, or
(ii) ‖Tx‖ ≥ ‖x‖ for x ∈ P ∩ ∂Ω1 and ‖Tx‖ ≤ ‖x‖ for x ∈ P ∩ ∂Ω2.

Then T has at least one fixed point in P ∩ (Ω̄2 \Ω1).

Throughout this paper, we need the following assumptions:

(H1) The function f : (0,+∞) × [0,+∞) × R → [0,+∞) is continuous
and singular at the point t = 0, with 0 ≤ f(t, x, y) ≤ a(t)g(t, x),
where a : (0,+∞) → [0,+∞) is continuous and singular at t = 0;
g : [0,+∞) × [0,+∞) → [0,+∞) is continuous and g(t, x) is
bounded for x in any bounded set and for all t ∈ [0,+∞);

(H2) λ ∈ C[0,+∞) ∩ C1(0,+∞) with λ(t) > 0 on (0,+∞) and

0 <

+∞�

0

ϕq

(
1

λ(t)

)
dt < +∞,

where 1/p+ 1/q = 1;

(H3) 0 <
	+∞
0 λ(t)a(t) dt <∞.

In Section 3, we prove the existence of positive solutions of the boundary
value problems (1.1), (1.2) under the assumptions (H1)–(H3). In addition,
in Section 4, we give detailed examples to show that all of the assumptions
(H1)–(H3) can be satisfied.

Because of the possible singularity, we give the exact meaning of solu-
tions to the problems (1.1), (1.2). By a positive solution of the boundary
value problem (1.1), (1.2), we mean a function x(t) satisfying the following
conditions:

(i) x ∈ C[0,+∞) ∩ C1(0,+∞) and the following three limits exist:

lim
t→∞

x(t), lim
t→0+

λ(t)1/(p−1)x′(t), lim
t→∞

λ(t)1/(p−1)x′(t);

(ii) x(t) > 0 for all t ∈ (0,+∞) and satisfies (a), (b) or (c) of (1.2);
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(iii) λ(t)ϕp(x
′(t)) is locally absolutely continuous in (0,+∞) and

1

λ(t)
(λ(t)ϕp(x

′(t)))′ + µf(t, x(t), x′(t)) = 0

almost everywhere in (0,+∞).

Before proving the main results, we make some preparations. Let k > 1
be a constant and

y(t) =

t�

1/k

ϕq

(
1

λ(s)

t�

s

λ(τ) dτ

)
ds+

k�

t

ϕq

(
1

λ(s)

s�

t

λ(τ) dτ

)
ds, t ∈

[
1

k
, k

]
.

From the above definition, we find that y(t) is continuous and positive on
[1/k, k]. For notational convenience, we set

M1 =

+∞�

0

ϕq(1/λ(t)) dt, M = max{β/α, 1}, M̃ = max{δ/γ, 1},

m = max

{
α

β
,
γ

δ

}
, h =

βδ

M(αδ + βγ + αγM1)
, Λ = min

{
y(t) : t ∈

[
1

k
, k

]}
.

We consider the Banach space E defined by

E =

x ∈ C[0,+∞) ∩ C1(0,+∞) :
lim

t→+∞
x(t), lim

t→0+
λ(t)1/(p−1)x′(t)

and lim
t→+∞

λ(t)1/(p−1)x′(t) exist


with the norm

‖x‖ = max{‖x‖1, ‖x‖2},

where

‖x‖1 =
1

1 +M1
sup

0≤t<+∞
|x(t)|, ‖x‖2 = sup

0<t<+∞
|λ(t)1/(p−1)x′(t)|.

Define the following subsets of E:

Pa =

x ∈ E :

x(t) ≥ 0, t ∈ [0,+∞), αx(0)− β lim
t→0+

λ(t)1/(p−1)x′(t) = 0,

γ lim
t→+∞

x(t) + δ lim
t→+∞

λ(t)1/(p−1)x′(t) = 0,

λ(t)1/(p−1)x′(t) is nonincreasing on (0,∞)

,

Pb =

x ∈ E :

x(t) ≥ 0, t ∈ [0,+∞), αx(0)− β lim
t→0+

λ(t)1/(p−1)x′(t) = 0,

lim
t→+∞

λ(t)1/(p−1)x′(t) = 0,

λ(t)1/(p−1)x′(t) is nonincreasing on (0,∞)

,
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Pc =

x ∈ E :

x(t) ≥ 0, t ∈ [0,+∞), lim
t→0+

λ(t)1/(p−1)x′(t) = 0,

γ lim
t→+∞

x(t) + δ lim
t→+∞

λ(t)1/(p−1)x′(t) = 0,

λ(t)1/(p−1)x′(t) is nonincreasing on (0,∞)

.
It is easy to check that Pa, Pb and Pc are all cones in E. Define the corre-
sponding operators Ta, Tb, Tc by

(Tax)(t) =



β

α
ϕq

(
µ

A�

0

λ(τ)f(τ, x(τ), x′(τ)) dτ
)

+

t�

0

ϕq

(
µ

λ(s)

A�

s

λ(τ)f(τ, x(τ), x′(τ)) dτ

)
ds, 0 ≤ t < A,

δ

γ
ϕq

(
µ

∞�

A

λ(τ)f(τ, x(τ), x′(τ)) dτ
)

+

∞�

t

ϕq

(
µ

λ(s)

s�

A

λ(τ)f(τ, x(τ), x′(τ)) dτ

)
ds, A ≤ t <∞,

for x ∈ Pa,

(Tbx)(t) =
β

α
ϕq

(
µ

∞�

0

λ(τ)f(τ, x(τ), x′(τ)) dτ
)

+

t�

0

ϕq

(
µ

λ(s)

∞�

s

λ(τ)f(τ, x(τ), x′(τ)) dτ

)
ds, t ∈ [0,∞),

for x ∈ Pb, and

(Tcx)(t) =
δ

γ
ϕq

(
µ

∞�

0

λ(τ)f(τ, x(τ), x′(τ)) dτ
)

+

∞�

t

ϕq

(
µ

λ(s)

s�

0

λ(τ)f(τ, x(τ), x′(τ)) dτ

)
ds, t ∈ [0,∞),

for x ∈ Pc, where A is a solution of the equation

z0(t) = z1(t),

with

z0(t) :=
β

α
ϕq

(
µ

t�

0

λ(τ)f(τ, x(τ), x′(τ)) dτ
)

+

t�

0

ϕq

(
µ

λ(s)

t�

s

λ(τ)f(τ, x(τ), x′(τ)) dτ

)
ds, 0 ≤ t <∞,
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z1(t) :=
δ

γ
ϕq

(
µ

∞�

t

λ(τ)f(τ, x(τ), x′(τ)) dτ
)

+

∞�

t

ϕq

(
µ

λ(s)

s�

t

λ(τ)f(τ, x(τ), x′(τ)) dτ

)
ds, 0 ≤ t <∞.

Because z0 is a nondecreasing continuous function on [0,+∞) with z0(0)
= 0, and z1 is a nonincreasing continuous function on [0,+∞) with
z1(∞) = 0, there exists A ∈ (0,+∞) such that z0(A) = z1(A). More-
over, if A1, A2 ∈ (0,+∞), A1 < A2 and z0(Ai) = z1(Ai)(i = 1, 2), then we
have λ(t)f(t, x(t), x′(t)) ≡ 0 on [A1, A2]. Therefore, the mapping Ta is well
defined.

From the definition of Ta, we deduce that for each x ∈ Pa, Tax satisfies
(1.2a) and (Tax)(A) is the maximum value of (Tax)(t) on [0,+∞), since

(Tax)′(t) =


ϕq

(
µ

λ(t)

A�

t

λ(τ)f(τ, x(τ), x′(τ)) dτ

)
, 0 < t ≤ A,

−ϕq
(

µ

λ(t)

t�

A

λ(τ)f(τ, x(τ), x′(τ)) dτ

)
, A ≤ t <∞,

and (Tax)′(A) = 0. Moreover,

λ(t)1/(p−1)(Tax)′(t) =


ϕq

(
µ

A�

t

λ(τ)f(τ, x(τ), x′(τ)) dτ
)
, 0 < t ≤ A,

−ϕq
(
µ

t�

A

λ(τ)f(τ, x(τ), x′(τ)) dτ
)
, A ≤ t <∞,

ϕp(λ(t)1/(p−1)(Tax)′(t)) =


µ

A�

t

λ(τ)f(τ, x(τ), x′(τ)) dτ, 0 < t ≤ A,

−µ
t�

A

λ(τ)f(τ, x(τ), x′(τ)) dτ, A ≤ t <∞,

(λ(t)ϕp((Tax)′(t)))′ + µλ(t)f(t, x(t), x′(t)) = 0, 0 < t < +∞.

This shows that Ta(Pa) ⊂ Pa and each fixed point of Ta in Pa is a solution
of (1.1), (1.2a). In the same way, we can deduce that Ti(Pi) ⊂ Pi and each
fixed point of Ti in Pi is a solution of (1.1), (1.2i) (i = b, c).

Now we state some properties of the functions in Pa, Pb, Pc. By the def-
initions of the norms in the Banach space E, we can deduce
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Lemma 2.4.

(1) For each x ∈ Pa, ‖x‖2 =max{αx(0)/β, γx(∞)/δ}≤m sup0≤t<∞ x(t).
(2) For each x ∈ Pb, ‖x‖ = max{x(∞)/(1 +M1), αx(0)/β}.
(3) For each x ∈ Pc, ‖x‖ = max{x(0)/(1 +M1), γx(∞)/δ}.
Lemma 2.5. For each x ∈ Pa ∪ Pb,

‖x‖1 ≤M‖x‖2,
and for each x ∈ Pc,

‖x‖1 ≤ M̃‖x‖2.
Proof. For each x ∈ Pa ∪ Pb, we have

x(t)

1 +M1
=
x(0) +

	t
0 x
′(s) ds

1 +M1

=
1

1 +M1

(
β

α
lim
t→0+

λ(t)1/(p−1)x′(t) +

t�

0

λ(s)1/(p−1)x′(s)ϕq

(
1

λ(s)

)
ds

)
≤ 1

1 +M1

β

α
‖x‖2 +

M1

1 +M1
‖x‖2

≤M‖x‖2.

In a similar way we can show that x(t)/(1 +M1) ≤ M̃‖x‖2 for all x ∈ Pc
and t ∈ [0,∞).

Lemma 2.6.

(1) For each x ∈ Pa, x(t) ≥ h‖x‖ for all t ∈ [0,+∞).

(2) For each x ∈ Pb, x(t) ≥ β
αM ‖x‖ for all t ∈ [0,+∞).

(3) For each x ∈ Pc, x(t) ≥ δ
γM̃
‖x‖ for all t ∈ [0,+∞).

Proof. For each x ∈ Pa, we consider the following two cases:

(i) αx(0)/β ≥ γx(∞)/δ;
(ii) αx(0)/β ≤ γx(∞)/δ.

In case (i), by Lemma 2.1, we have

‖x‖2 = αx(0)/β.

Then, by Lemma 2.2,

x(0) =
β

α
‖x‖2 ≥

β

αM
‖x‖.

Because

−γx(∞)

δ
≤ λ(t)1/(p−1)x′(t) ≤ αx(0)

β
, t ∈ (0,+∞),

we have
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x(∞) = x(0) +

∞�

0

x′(s) ds = x(0) +

∞�

0

λ(s)1/(p−1)x′(s)ϕq

(
1

λ(s)

)
ds

≥ x(0) +

∞�

0

ϕq

(
1

λ(s)

)(
−γx(∞)

δ

)
ds = x(0)− γx(∞)

δ
M1,

i.e., (
1 +

γM1

δ

)
x(∞) ≥ x(0) ≥ β

αM
‖x‖.

Thus,

x(∞) ≥ δ

δ + γM1

β

αM
‖x‖.

By the definition of Pa, we have

x(t) ≥ min{x(0), x(∞)} ≥ δ

δ + γM1

β

αM
‖x‖ ≥ h‖x‖, t ∈ [0,∞).

We can deal with case (ii) in a similar way. The last two issues of the
lemma can be easily obtained by the definitions of Pb and Pc.

3. Existence theorems. In this section, we prove the complete con-
tinuty of the operators defined in Section 2, and then we state and prove
our main results. Since the Arzelà–Ascoli theorem fails to hold in E, we
need the following compactness criterion. For more general cases, we refer
the readers to [3] and the references therein.

Lemma 3.1 ([3]). Let V = {x ∈ E : ‖x‖ < l} (l > 0). Then V is
relatively compact in E if the following conditions hold:

(a) {x(t)/(1 +M1) : x ∈ V } is equicontinuous on any compact interval
of [0,+∞) and equiconvergent at infinity, the latter meaning that for
any given ε > 0, there exists T = T (ε) > 0 such that for any t ≥ T
and x ∈ V , ∣∣∣∣ x(t)

1 +M1
− x(+∞)

1 +M1

∣∣∣∣ < ε;

(b) {λ(t)1/(p−1)x′(t) : x ∈ V } is equicontinuous on any compact subin-
terval of (0,+∞) and is equiconvergent both at t = 0 and at infinity.

Now we can prove the complete continuity of Ta, Tb, Tc by Lemma 3.1.

Lemma 3.2. Ta : Pa → Pa is completely continuous.

Proof. Put

PRa = {x ∈ Pa : ‖x‖ < R},
SR = sup{g(t, x) : t ∈ [0,∞), 0 ≤ x ≤ (1 +M1)R}.

Firstly, we show that Ta(P
R
a ) is bounded. Let x ∈ PRa . By direct calcu-

lations, we obtain
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sup
0<t<+∞

|λ(t)1/(p−1)(Tax)′(t)| ≤ ϕq
(
µ

∞�

0

λ(τ)f(τ, x(τ), x′(τ)) dτ
)

≤ ϕq
(
µSR

∞�

0

λ(τ)a(τ) dτ
)
< +∞.

So there exists a constant N such that ‖Tax‖ ≤ N for all x ∈ PRa .
Secondly, we show that {(Tax)(t)/(1 +M1) : x ∈ PRa } is equicontinu-

ous on any compact subinterval of [0,+∞) and equiconvergent at infinity.
Indeed, for any T > 0 and 0 ≤ t1 < t2 ≤ T , we have∣∣∣∣(Tax)(t1)

1 +M1
− (Tax)(t2)

1 +M1

∣∣∣∣ =
1

1 +M1

∣∣∣t2�
t1

(Tax)′(s) ds
∣∣∣

≤ 1

1 +M1

t2�

t1

|λ(s)1/(p−1)(Tax)′(s)|ϕq
(

1

λ(s)

)
ds

≤ 1

1 +M1
‖Tax‖2

t2�

t1

ϕq

(
1

λ(s)

)
ds

≤ N

1 +M1

t2�

t1

ϕq

(
1

λ(s)

)
ds,

and for any t > 0,∣∣∣∣(Tax)(t)

1 +M1
− (Tax)(∞)

1 +M1

∣∣∣∣ =
1

1 +M1

∣∣∣ t�
∞

(Tax)′(s) ds
∣∣∣

≤ 1

1 +M1
‖Tax‖2

∞�

t

ϕq

(
1

λ(s)

)
ds

≤ N

1 +M1

∞�

t

ϕq

(
1

λ(s)

)
ds.

Thirdly, we show that {λ(t)1/(p−1)(Tax)′(t) : x ∈ PRa } is equicontinuous
on any compact subinterval of (0,+∞) and equiconvergent both at t = 0
and at infinity. Indeed, for any [a, b] ⊂ (0,+∞) and a ≤ t1 < t2 ≤ b, we have

|ϕp(λ(t1)1/(p−1)(Tax)′(t1))− ϕp(λ(t2)1/(p−1)(Tax)′(t2))|

=
∣∣∣µ A�

t1

λ(τ)f(τ, x(τ), x′(τ)) dτ + µ

t2�

A

λ(τ)f(τ, x(τ), x′(τ)) dτ
∣∣∣

≤ µSR
t2�

t1

λ(τ)a(τ) dτ if t1 < A < t2,
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|ϕp(λ(t1)1/(p−1)(Tax)′(t1))− ϕp(λ(t2)1/(p−1)(Tax)′(t2))|

=
∣∣∣µ A�

t1

λ(τ)f(τ, x(τ), x′(τ)) dτ − µ
A�

t2

λ(τ)f(τ, x(τ), x′(τ)) dτ
∣∣∣

≤ µSR
t2�

t1

λ(τ)a(τ) dτ if t1 < t2 ≤ A,

|ϕp(λ(t1)1/(p−1)(Tax)′(t1))− ϕp(λ(t2)1/(p−1)(Tax)′(t2))|

=
∣∣∣−µ t1�

A

λ(τ)f(τ, x(τ), x′(τ)) dτ + µ

t2�

A

λ(τ)f(τ, x(τ), x′(τ)) dτ
∣∣∣

≤ µSR
t2�

t1

λ(τ)a(τ) dτ if A ≤ t1 < t2.

Moreover, for any t > 0, we have∣∣∣ϕp(λ(t)1/(p−1)(Tax)′(t))− ϕp( lim
t→0+

λ(t)1/(p−1)(Tax)′(t))
∣∣∣

≤ µSR
t�

0

λ(τ)a(τ) dτ,

∣∣∣ϕp(λ(t)1/(p−1)(Tax)′(t))− ϕp( lim
t→∞

λ(t)1/(p−1)(Tax)′(t))
∣∣∣

≤ µSR
∞�

t

λ(τ)a(τ) dτ.

Therefore, by Lemma 3.1, Ta(P
R
a ) is relatively compact.

Finally, to show that Ta : Pa → Pa is continuous, let {xj}∞j=1 ⊂ Pa and
xj → x0 as j →∞. Then there exists r > 0 such that ‖xj‖ ≤ r for all j ≥ 1.
Hence, there exist convergent subsequences of {Taxj}∞j=1. Let {Taxjn}∞n=1

converge to v ∈ Pa. We will prove that v = Tax0. Notice that there exists a
sequence {Ajn}∞n=1 such that Ajn ∈ (0,+∞) and

(3.1)
β

α
ϕq

(
µ

Ajn�

0

λ(τ)f(τ, xjn , x
′
jn) dτ

)

+

Ajn�

0

ϕq

(
µ

λ(s)

Ajn�

s

λ(τ)f(τ, xjn , x
′
jn) dτ

)
ds
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=
δ

γ
ϕq

(
µ

∞�

Ajn

λ(τ)f(τ, xjn , x
′
jn) dτ

)

+

∞�

Ajn

ϕq

(
µ

λ(s)

s�

Ajn

λ(τ)f(τ, xjn , x
′
jn) dτ

)
ds.

Moreover, we have

(Taxjn)(t)

=



β

α
ϕq

(
µ

Ajn�

0

λ(τ)f(τ, xjn(τ), x′jn(τ)) dτ
)

+

t�

0

ϕq

(
µ

λ(s)

Ajn�

s

λ(τ)f(τ, xjn(τ), x′jn(τ)) dτ

)
ds, 0 ≤ t < Ajn ,

δ

γ
ϕq

(
µ

∞�

Ajn

λ(τ)f(τ, xjn(τ), x′jn(τ)) dτ
)

+

∞�

t

ϕq

(
µ

λ(s)

s�

Ajn

λ(τ)f(τ, xjn(τ), x′jn(τ)) dτ

)
ds, Ajn ≤ t.

In the following, we need to handle two cases separately.

Case I: {Ajn}∞n=1 is unbounded. In this case, we can find a subsequence
of {Ajn}, not relabeled, such that {Ajn} is strictly increasing and Ajn →∞
as n→∞. Notice that

∞�

Ajn

λ(τ)f(τ, xjn , x
′
jn) dτ ≤

∞�

Ajn

λ(τ)a(τ)g(τ, xjn) dτ

≤ sup
t∈[0,+∞)

0≤x≤(1+M1)r

g(t, x)

∞�

Ajn

λ(τ)a(τ) dτ,

and
∞�

Ajn

ϕq

(
µ

λ(s)

s�

Ajn

λ(τ)f(τ, xjn , x
′
jn) dτ

)
ds

≤
∞�

Ajn

ϕq

(
µ

λ(s)
sup

t∈[0,+∞)
0≤x≤(1+M1)r

g(t, x)

+∞�

0

λ(τ)a(τ) dτ

)
ds

= ϕq

(
µ sup

t∈[0,+∞)
0≤x≤(1+M1)r

g(t, x)

+∞�

0

λ(τ)a(τ) dτ

) ∞�

Ajn

ϕq

(
1

λ(s)

)
ds.
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The assumptions (H2) and (H3) imply

lim
n→+∞

∞�

Ajn

λ(τ)f(τ, xjn , x
′
jn) dτ = 0,

lim
n→+∞

∞�

Ajn

ϕq

(
µ

λ(s)

s�

Ajn

λ(τ)f(τ, xjn , x
′
jn) dτ

)
ds = 0.

From (3.1), it follows that

(3.2) lim
n→+∞

β

α
ϕq

(
µ

Ajn�

0

λ(τ)f(τ, xjn , x
′
jn) dτ

)
+

Ajn�

0

ϕq

(
µ

λ(s)

Ajn�

s

λ(τ)f(τ, xjn , x
′
jn) dτ

)
ds = 0.

In particular, we have

lim
n→+∞

Ajn�

0

λ(τ)f(τ, xjn , x
′
jn) dτ = 0.

For any fixed η > 0, there exists a positive integer Nη such that Ajn ≥ η as
n ≥ Nη, which yields

η�

0

λ(τ)f(τ, xjn , x
′
jn) dτ ≤

Ajn�

0

λ(τ)f(τ, xjn , x
′
jn) dτ

when n ≥ Nη. Thus we have

lim
n→+∞

η�

0

λ(τ)f(τ, xjn , x
′
jn) dτ = 0.

Using the Lebesgue dominated convergence theorem, we obtain
η�

0

λ(τ)f(τ, x0, x
′
0) dτ = 0.

Since η is arbitrary,

f(t, x0, x
′
0) = 0, 0 < t < +∞,

which shows that for any 0 < Ā < +∞,

β

α
ϕq

(
µ

Ā�

0

λ(τ)f(τ, x0, x
′
0) dτ

)
+

Ā�

0

ϕq

(
µ

λ(s)

Ā�

s

λ(τ)f(τ, x0, x
′
0) dτ

)
ds

=
δ

γ
ϕq

(
µ

∞�

Ā

λ(τ)f(τ, x0, x
′
0) dτ

)
+

∞�

Ā

ϕq

(
µ

λ(s)

s�

Ā

λ(τ)f(τ, x0, x
′
0) dτ

)
ds.

Furthermore it is easy to see that (Tax0)(t) ≡ 0.
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On the other hand, we will prove that v ≡ 0. Fix t0 ≥ 0. Then there
exists a positive integer Nt0 such that Ajn ≥ t0 for n ≥ Nt0 , which yields
for n ≥ Nt0 ,

(Taxjn)(t0) =
β

α
ϕq

(
µ

Ajn�

0

λ(τ)f(τ, xjn(τ), x′jn(τ)) dτ
)

+

t0�

0

ϕq

(
µ

λ(s)

Ajn�

s

λ(τ)f(τ, xjn(τ), x′jn(τ)) dτ

)
ds

≤ β

α
ϕq

(
µ

Ajn�

0

λ(τ)f(τ, xjn(τ), x′jn(τ)) dτ
)

+

Ajn�

0

ϕq

(
µ

λ(s)

Ajn�

s

λ(τ)f(τ, xjn(τ), x′jn(τ)) dτ

)
ds.

In view of (3.2), letting n → ∞ in the above inequality, we get v(t0) = 0,
and we conclude that

(Tax0)(t) = v(t), t ∈ [0,+∞).

Case II: {Ajn}∞n=1 is bounded. In this case, there exists a subsequence,
still denoted by {Ajn}, and a constant Ā ∈ [0,+∞), such that

lim
n→+∞

Ajn = Ā.

If Ā = 0, by a similar argument, we can deduce that

(Tax0)(t) = 0 = v(t), t ∈ [0,+∞).

If 0 < Ā < ∞, then by (3.1) and the Lebesgue dominated convergence
theorem, letting n→ +∞ yields

β

α
ϕq

(
µ

Ā�

0

λ(τ)f(τ, x0(τ), x′0(τ)) dτ
)

+

Ā�

0

ϕq

(
µ

λ(s)

Ā�

s

λ(τ)f(τ, x0(τ), x′0(τ)) dτ

)
ds

=
δ

γ
ϕq

(
µ

∞�

Ā

λ(τ)f(τ, x0(τ), x′0(τ)) dτ
)

+

∞�

Ā

ϕq

(
µ

λ(s)

s�

Ā

λ(τ)f(τ, x0(τ), x′0(τ)) dτ

)
ds.
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Thus

(Tax0)(t) =



β

α
ϕq

(
µ

Ā�

0

λ(τ)f(τ, x0(τ), x′0(τ)) dτ
)

+

t�

0

ϕq

(
µ

λ(s)

Ā�

s

λ(τ)f(τ, x0(τ), x′0(τ)) dτ

)
ds, 0 ≤ t < Ā,

δ

γ
ϕq

(
µ

∞�

Ā

λ(τ)f(τ, x0(τ), x′0(τ)) dτ
)

+

∞�

t

ϕq

(
µ

λ(s)

s�

Ā

λ(τ)f(τ, x0(τ), x′0(τ)) dτ

)
ds, Ā ≤ t.

Let t̄ ≥ 0 be fixed. If t̄ < Ā, then there exists a positive integer Nt̄ such that
Ajn ≥ t̄ for n ≥ Nt̄, which implies, for n ≥ Nt̄,

(Taxjn)(t̄) =
β

α
ϕq

(
µ

Ajn�

0

λ(τ)f(τ, xjn(τ), x′jn(τ)) dτ
)

+

t̄�

0

ϕq

(
µ

λ(s)

Ajn�

s

λ(τ)f(τ, xjn(τ), x′jn(τ)) dτ

)
ds.

Hence, letting n→ +∞ yields

v(t̄) =
β

α
ϕq

(
µ

Ā�

0

λ(τ)f(τ, x0(τ), x′0(τ)) dτ
)

+

t̄�

0

ϕq

(
µ

λ(s)

Ā�

s

λ(τ)f(τ, x0(τ), x′0(τ)) dτ

)
ds.

Similarly, one can easily prove that

v(t̄) =
δ

γ
ϕq

(
µ

∞�

Ā

λ(τ)f(τ, x0(τ), x′0(τ)) dτ
)

+

∞�

t̄

ϕq

(
µ

λ(s)

s�

Ā

λ(τ)f(τ, x0(τ), x′0(τ)) dτ

)
ds

when t̄ > Ā. Clearly, we have reached v(t) = (Tax0)(t) for t ∈ [0,+∞),
t 6= Ā. Further, by continuity, v(t) = (Tax0)(t) for t ∈ [0,+∞).

Summing up the above arguments, we conclude that Taxjn → Tax0 as
n → +∞. Furthermore, we assert that Taxj → Tax0 as j → +∞. In fact,
if not, then there exist ε0 > 0 and a subsequence {Taxjκ}∞κ=1 such that
‖Taxjκ − Tax0‖ ≥ ε0, κ ≥ 1. However, from the results we have obtained,
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there exist subsequences of {Taxjκ}∞κ=1 which converge to Tax0. This leads
to a contradiction. Therefore, Ta : Pa → Pa is continuous.

Now we can establish the existence results for positive solutions of the
problem (1.1), (1.2a).

Theorem 3.3. Let (H1)–(H3) be satisfied and suppose that

(A1)

0 ≤ g0 = lim sup
x→0+

sup
t∈[0,+∞)

g(t, x)

xp−1
< L,

0 < l < f∞ = lim inf
x→+∞

inf
t∈[1/k,k]
y∈R

f(t, x, y)

xp−1
≤ ∞,

where L = (Mp−1(1 + M1)p−1
	∞
0 λ(τ)a(τ) dτ)−1, l = ϕp(2(M1 + 1)/(hΛ)).

Then the boundary value problem (1.1), (1.2a) has at least one positive so-
lution for any

(3.3) µ ∈ (l/f∞, L/g
0).

Proof. Without loss of generality, we suppose that 0 < g0 and f∞ <∞.
From (3.3), there exists ε > 0 such that

(3.4) 0 <
l

f∞ − ε
≤ µ ≤ L

g0 + ε
.

By the first inequality of (A1) and for the above ε, there exists σ > 0 such
that

g(t, x)

xp−1
≤ g0 + ε, 0 < x ≤ σ, t ∈ [0,+∞),

i.e.,

(3.5) g(t, x) ≤ (g0 + ε)xp−1, 0 < x ≤ σ, t ∈ [0,+∞).

Let P r1a = {x ∈ Pa : ‖x‖ < r1} (0 < r1 < σ/(1 +M1)). From the definition
of ‖ · ‖,

0 < x(t) ≤ (1 +M1)r1 ≤ σ for all x ∈ ∂P r1a , t ∈ [0,+∞).

Thus,

g(t, x(t)) ≤ (g0 + ε)x(t)p−1 for all x ∈ ∂P r1a , t ∈ [0,+∞).

Then for any x ∈ ∂P r1a ,

‖Tax‖2 = sup
0<t<+∞

|λ(t)1/(p−1)(Tax)′(t)| ≤ ϕq
(
µ

∞�

0

λ(τ)a(τ)g(τ, x(τ)) dτ
)

≤ ϕq
(
µ(g0 + ε)(1 +M1)p−1r1

p−1
∞�

0

λ(τ)a(τ) dτ
)
.
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Therefore, by (3.4),

‖Tax‖ ≤M‖Tax‖2

≤ r1ϕq

(
µ(g0 + ε)(1 +M1)p−1Mp−1

∞�

0

λ(τ)a(τ) dτ
)
≤ ‖x‖.

On the other hand, by the second inequality of (A1) and for the above ε,
there exists H > 0 such that

f(t, x, y)

xp−1
≥ f∞ − ε > 0, x ≥ H, t ∈ [1/k, k], y ∈ R,

i.e.,

f(t, x, y) ≥ (f∞ − ε)xp−1, x ≥ H, t ∈ [1/k, k], y ∈ R.
Let P r2a = {x ∈ Pa : ‖x‖ < r2} (0 < r1 < r2, r2 ≥ H/h). From Lemma 2.6,
we know that

x(t) ≥ hr2 ≥ H for all x ∈ ∂P r2a , t ∈ [1/k, k],

and so

f(t, x(t), x′(t)) ≥ (f∞ − ε)x(t)p−1 ≥ (f∞ − ε)(hr2)p−1

for all x ∈ ∂P r2a , t ∈ [1/k, k]. Thus, for any x ∈ ∂P r2a ,

2‖Tax‖ ≥ 2‖Tax‖1 = 2
(Tax)(A)

1 +M1

≥ 1

1 +M1

[A�
0

ϕq

(
µ

λ(s)

A�

s

λ(τ)f(τ, x(τ), x′(τ)) dτ

)
ds

+

∞�

A

ϕq

(
µ

λ(s)

s�

A

λ(τ)f(τ, x(τ), x′(τ)) dτ

)
ds

]

≥ 1

1 +M1

[ A�

1/k

ϕq

(
µ

λ(s)

A�

s

λ(τ)(f∞ − ε)(hr2)p−1 dτ

)
ds

+

k�

A

ϕq

(
µ

λ(s)

s�

A

λ(τ)(f∞ − ε)(hr2)p−1dτ

)
ds

]

=
1

1 +M1

[
ϕq(µ(f∞ − ε)(hr2)p−1)

( A�

1/k

ϕq

(
1

λ(s)

A�

s

λ(τ) dτ

)
ds

+

k�

A

ϕq

(
1

λ(s)

s�

A

λ(τ) dτ

)
ds

)]
≥ Λ

1 +M1
r2ϕq(µ(f∞ − ε)hp−1) ≥ 2‖x‖ if 1/k < A < k,
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‖Tax‖ ≥ ‖Tax‖1 =
(Tax)(A)

1 +M1

≥ 1

1 +M1

∞�

A

ϕq

(
µ

λ(s)

s�

A

λ(τ)f(τ, x(τ), x′(τ)) dτ

)
ds

≥ 1

1 +M1

k�

1/k

ϕq

(
µ

λ(s)

s�

1/k

λ(τ)(f∞ − ε)(hr2)p−1 dτ

)
ds

=
r2

1 +M1
ϕq(µ(f∞ − ε)hp−1)

k�

1/k

ϕq

(
1

λ(s)

s�

1/k

λ(τ) dτ

)
ds

≥ r2Λ

1 +M1
ϕq(µ(f∞ − ε)hp−1) ≥ ‖x‖ if A ≤ 1/k,

‖Tax‖ ≥ ‖Tax‖1 =
(Tax)(A)

1 +M1

≥ 1

1 +M1

A�

0

ϕq

(
µ

λ(s)

A�

s

λ(τ)f(τ, x(τ), x′(τ)) dτ

)
ds

≥ 1

1 +M1

k�

1/k

ϕq

(
µ

λ(s)

k�

s

λ(τ)(f∞ − ε)(hr2)p−1 dτ

)
ds

≥ r2Λ

1 +M1
ϕq(µ(f∞ − ε)hp−1) ≥ ‖x‖ if k ≤ A,

i.e.,

‖Tax‖ ≥ ‖x‖ for all x ∈ ∂P r2a .

Therefore, by the Krasnosel’skĭı fixed point theorem, Ta has a fixed point
x∗ ∈ P r2a \ P r1a . Furthermore, since 0 < r1 ≤ ‖x∗‖ ≤ r2, it follows that
x∗(t) > 0 for t ∈ (0,∞). This shows that the fixed point x∗ is a positive
solution of the problem (1.1), (1.2a).

Remark 3.4. In fact, Theorem 3.3 still holds if one of the following
conditions is satisfied:

(1) f∞ = +∞, g0 > 0, for each µ ∈ (0, L/g0),

(2) f∞ = +∞, g0 = 0, for each µ ∈ (0,∞),

(3) l < f∞ < +∞, g0 = 0, for each µ ∈ (l/f∞,∞).

Remark 3.5. Since l/f∞ < 1 and L/g0 > 1, we have 1 ∈ (l/f∞, L/g
0).

So when µ = 1, Theorem 3.3 also holds.

In a similar way we can prove the following theorem.
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Theorem 3.6. Let (H1)–(H3) be satisfied and suppose that

(A2)

0 ≤ g∞ = lim sup
x→+∞

sup
t∈[0,+∞)

g(t, x)

xp−1
< L,

0 < l < f0 = lim inf
x+|y|→0+

x≥0

inf
t∈[1/k,k]

f(t, x, y)

xp−1 + |y|p−1
≤ ∞,

where L = (Mp−1(1 + M1)p−1
	∞
0 λ(τ)a(τ) dτ)−1, l = ϕp(2(M1 + 1)/(hΛ)).

Then the boundary value problem (1.1), (1.2a) has at least one positive so-
lution for any

(3.6) µ ∈ (l/f0, L/g
∞).

Remark 3.7. Just as in Remark 3.1, Theorem 3.6 still holds if one of
the following conditions is satisfied:

(1) f0 = +∞, g∞ > 0, for each µ ∈ (0, L/g∞),
(2) f0 = +∞, g∞ = 0, for each µ ∈ (0,+∞),
(3) l < f0 < +∞, g∞ = 0, for each µ ∈ (l/f0,+∞).

Remark 3.8. Since l/f0 < 1 and L/g∞ > 1, we have 1 ∈ (l/f0, L/g
∞).

So when µ = 1, Theorem 3.6 also holds.

Remark 3.9. If we set l = (αM/β)p−1(
	k
1/k λ(τ) dτ)−1, then all the

results above hold for the problem (1.1), (1.2b). If we set

l = (γM̃/δ)p−1
( k�

1/k

λ(τ) dτ
)−1

and L =
(
M̃p−1(1+M1)p−1

∞�

0

λ(τ)a(τ) dτ
)−1

,

then all the results above also hold for the problem (1.1), (1.2c).

4. Examples. In this section we present some examples to illustrate
our main results. Set

a(t) =

{
1/t, 0 < t ≤ 1,

e(−2/p)(t−1), 1 < t,
λ(t) =

{
t1/p, 0 ≤ t ≤ 1,

e(t−1)/p, 1 < t.

For f and g, we can give two pairs of examples. One pair is

g1(t, x) =

{
2e(−2/p)(t−1)xp, 0 ≤ t ≤ 1, x ≥ 0,

2t−1/pxp, 1 < t, x ≥ 0,

f1(t, x, y) = t−1/pe(−2/p)(t−1)xp(|sin y|+ 1), t > 0, x ≥ 0, y ∈ R,
and the other pair is

g2(t, x) =

{
2He(−2/p)(t−1)(xp−1 + 1), 0 ≤ t ≤ 1, x ≥ 0,

2Ht−1/p(xp−1 + 1), 1 < t, x ≥ 0,

f2(t, x, y) = Ht−1/pe(−2/p)(t−1)(xp−1 + 1)(|sin y|+ 1), t > 0, x ≥ 0, y ∈ R.
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where H is any positive constant. We can verify that when p > (1 +
√

5)/2,
all of the assumptions (H1)–(H3) are satisfied for fi, a(t), gi and λ(t),
i = 1, 2.

By simple calculations, we obtain

+∞�

0

ϕq

(
1

λ(t)

)
dt =

p2(p− 1)2

p(p− 1)− 1
,

+∞�

0

λ(t)a(t) dt = 2p,

sup
t∈[0,+∞)

g1(t, x)

xp−1
= 2e2/px for x > 0,

inf
t∈[1/k,k]
y∈R

f1(t, x, y)

xp−1
= k−1/pe(−2/p)(k−1)x for x > 0,

sup
t∈[0,+∞)

g2(t, x)

xp−1
=

2He2/p(xp−1 + 1)

xp−1
for x > 0,

inf
t∈[1/k,k]

f2(t, x, y)

xp−1 + |y|p−1
=
Hk−1/pe(−2/p)(k−1)(xp−1 + 1)(| sin y|+ 1)

xp−1 + |y|p−1

for x+ |y| > 0 and x ≥ 0.

Thus,

lim sup
x→0+

sup
t∈[0,+∞)

g1(t, x)

xp−1
= 0,

lim inf
x→+∞

inf
t∈[1/k,k]
y∈R

f1(t, x, y)

xp−1
= +∞,

lim sup
x→+∞

sup
t∈[0,+∞)

g2(t, x)

xp−1
= 2He2/p,

lim inf
x+|y|→0+

x≥0

inf
t∈[1/k,k]

f2(t, x, y)

xp−1 + |y|p−1
= +∞.

Therefore from Remark 3.4, we see that for each µ ∈ (0,∞), the boundary
value problem (1.1), (1.2a) with f replaced by f1 (and g replaced by g1) has
at least one positive solution. Let H < 1

2e
−2/pL. Then, by an application of

Remark 3.7, we know that for each µ ∈
(
0, 1

2H e
−2/pL

)
, the boundary value

problem (1.1), (1.2a) with f replaced by f2 (and g replaced by g2) has at
least one positive solution.
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