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Abstract. We establish plurisubharmonicity of envelopes of certain classical disc
functionals on locally irreducible complex spaces, thereby generalizing the corresponding
results for complex manifolds. We also find new formulae expressing the Siciak–Zaharyuta
extremal function of an open set in a locally irreducible affine algebraic variety as the
envelope of certain disc functionals, similarly to what has been done for open sets in Cn
by Lempert and by Lárusson and Sigurdsson.

1. Introduction. Let D = {ζ ∈ C : |ζ| < 1} be the open unit disc in
the complex plane C, and let T = bD = {ζ ∈ C : |ζ| = 1} be its boundary
circle.

Let X be a (reduced, paracompact) complex space. Denote by Psh(X)
the set of all plurisubharmonic functions on X. (For convenience we agree
that the function which is identically equal to −∞ is also plurisubharmonic.)
Let O(D, X) be the set of all maps f : D → X that are holomorphic in an
open neighborhood Uf ⊂ C of the closed disc D in C. Given a point x ∈ X,
set O(D, X, x) = {f ∈ O(D, X) : f(0) = x}; these are holomorphic discs in
X centered at x. A disc functional on X is a function

HX : O(D, X)→ R = [−∞,+∞].

The envelope of HX is the function EHX : X → R defined by

(1.1) EHX(x) = inf{HX(f) : f ∈ O(D, X, x), f(D) 6⊂ Xsing}, x ∈ X.
Occasionally we consider disc functionals as functions on the larger class
AX = A(D, X) of discs D → X that are holomorphic in D and continu-

2010 Mathematics Subject Classification: Primary 32U05; Secondary 32U35.
Key words and phrases: complex spaces, plurisubharmonic function, disc functional,
Siciak–Zaharyuta extremal functions.

DOI: 10.4064/ap106-0-13 [171] c© Instytut Matematyczny PAN, 2012



172 B. Drinovec Drnovšek and F. Forstnerič

ous on D. For all functionals treated in this paper, their envelope over AX
coincides with the envelope (1.1) over the subclass O(D, X) of AX .

The theory of disc functionals, initiated by Poletsky in the late 1980s
[Po1], offers a different approach to certain extremal functions of pluripo-
tential theory. (For the latter subject see Klimek [Kli].) In several natural
examples, the envelope of a disc functional is a plurisubharmonic function.
Furthermore, extremal plurisubharmonic functions are usually defined as
suprema of classes of plurisubharmonic functions with certain properties,
and many of them are envelopes of appropriate disc functionals. As was
pointed out by Poletsky in [Po3], one may view this subject as an extension
of Kiselman’s minimum principle [Kis].

In this paper we extend results on plurisubharmonicity of certain classi-
cal disc functionals, obtained by various authors in the manifold case (i.e.,
when the underlying space X is nonsingular), to complex spaces with sin-
gularities.

One of the most important disc functionals is the Poisson functional,
which associates to an upper semicontinuous function u on X and an ana-
lytic disc f ∈ AX the average of the function u ◦ f over the circle T = bD.
A fundamental result of Poletsky is that the envelope of the Poisson func-
tional on domains in Cn is always plurisubharmonic. In §2 we give another
proof of our result from [DF] on plurisubharmonicity of Poisson functionals
on any locally irreducible complex space, reducing it to Rosay’s theorem in
the manifold case by using Hironaka desingularization. The same proof also
applies to Riesz and Lelong functionals (see §2 for the definitions); so we
obtain the following result:

Theorem 1.1. Let X be an irreducible and locally irreducible complex
space, and let HX : O(D, X) → R be one of the following disc function-
als:

(i) Pu, the Poisson functional corresponding to an upper semicontinu-
ous function u on X (see (2.1));

(ii) Ru, the Riesz functional corresponding to a plurisubharmonic func-
tion u on X (see (2.2));

(iii) Lα, the Lelong functional, or L̃α, the reduced Lelong functional, as-
sociated to a nonnegative function α on X (see (2.4)).

Then the envelope EHX in (1.1) is a plurisubharmonic function on X.

The assumption of local irreducibility cannot be omitted. In §2 we give
an example of an irreducible complex curve with a single double point such
that the envelopes of the above functionals, corresponding to appropriately
chosen functions, are not plurisubharmonic at that point.
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On a complex manifold X, the envelopes of the disc functionals men-
tioned above are the following extremal plurisubharmonic functions:

• The envelope EPu of the Poisson functional is the largest plurisubhar-
monic minorant of the upper semicontinuous function u.
• The envelope ERu of the Riesz functional is

ERu = sup{v ∈ Psh(X) : v ≤ 0, ddcv ≥ ddcu},
the largest nonpositive plurisubharmonic function on X whose Levi
form is bounded below by the Levi form of u [LS1].
• The envelope ELα of the Lelong functional is the largest nonpositive

plurisubharmonic function whose Lelong number at each point x ∈ X
is ≥ α(x) (see §3 below).

In §3 we give a new treatment of the Lelong functional, simplifying the
proof of plurisubharmonicity of its envelope that was given by Lárusson
and Sigurdsson in [LS1, LS2]. The key point is obtained by the method of
gluing holomorphic sprays of discs, similarly to what was done in [DF] for
the Poisson functional. Our proof also applies to locally irreducible complex
spaces without having to use the desingularization theorem.

In §4 we find a formula expressing the Siciak–Zaharyuta extremal func-
tion VΩ,X of a nonempty open set Ω in a locally irreducible affine algebraic
variety X ⊂ Cn as the envelope of appropriate Poisson functionals, obtained
from Green functions on complex curves in X with boundaries in Ω. For
open sets in X = Cn such formulas have been obtained by Lempert (in the
case when Ω is convex) and by Lárusson and Sigurdsson.

2. Plurisubharmonicity of envelopes of disc functionals. Let X
be a complex space. Given an upper semicontinuous function u : X → R ∪
{−∞}, the associated Poisson functional is defined by

(2.1) Pu(f) =
1

2π

2π�

0

u(f(eit)) dt, f ∈ O(D, X).

Let u : X → R ∪ {−∞} be a plurisubharmonic function. The associated
Riesz functional is given by

(2.2) Ru(f) =
1

2π

�

D

log | · |∆(u ◦ f), f ∈ O(D, X).

The Laplacian ∆g of the subharmonic function g = u ◦ f is a positive Borel
measure on D. There is a close connection with the Poisson functional which
derives from the following Riesz representation formula on the disc:

g(0) =
1

2π

2π�

0

g(eit) dt+
1

2π

�

D

log | · |∆g.
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Applying this to the function g = u ◦ f on D, where u and f are as in (2.2),
we obtain

u(f(0)) = Pu(f) +Ru(f).

Setting x = f(0) ∈ X, this can be rewritten as Ru(f) = u(x) + P−u(f).
Taking the infimum over all f ∈ O(D, X, x) yields the following relation
between the Riesz and the Poisson envelopes:

(2.3) ERu = u+ EP−u.

Therefore, to prove that ERu is plurisubharmonic, we need to show that
EP−u <∞ and that EP−u is plurisubharmonic on X.

If v ≤ 0 is a plurisubharmonic function on X such that ddcv ≥ ddcu,
then for every disc f ∈ O(D, X) we have ∆(v ◦ f) ≥ ∆(u ◦ f), and hence
Rv(f) ≤ Ru(f). Since Pv(f) ≤ 0, the Riesz formula gives

v(f(0)) = Pv(f) +Rv(f) ≤ Rv(f) ≤ Ru(f).

By taking the infimum over all discs with a given center we get v ≤ ERu.
Once we know that ERu is plurisubharmonic, it follows that it is the biggest
plurisubharmonic function v ≤ 0 satisfying ddcv ≥ ddcu.

The Lelong functional associated to a nonnegative real function α on X
is defined by

(2.4) Lα(f) =
∑
z∈D

α(f(z))mf (z) log |z|, f ∈ O(D, X),

where mf (z) denotes the multiplicity of f at z. We get the reduced Lelong

functional, L̃α, by removing the multiplicities mf (z) from the above formula.
Plurisubharmonicity of envelopes of these functionals on domains in Cn

was established by Poletsky [Po1, Po2]; similar results for the Poisson func-
tional were found by Bu and Schachermayer [BS]. Poletsky’s theorem was
extended to all complex manifolds for the Poisson functional by Rosay
[Ro1, Ro2] (see also Edigarian [Ed3]), and then for the other functionals
mentioned above by Lárusson and Sigurdsson [LS1, LS2] and Edigarian
[Ed2]. The envelope of the Lelong functional coincides with the envelope of
the corresponding reduced Lelong functional [LS2]; see Theorem 3.1 below.

In [DF] we proved that the envelope of the Poisson functional is plurisub-
harmonic if X is a locally irreducible complex space.

Theorem 2.1 ([DF, Theorem 1.1]). Let X be a locally irreducible com-
plex space and u : X → R∪ {−∞} an upper semicontinuous function. Then
the envelope

(2.5) û(x) = inf

{ 2π�

0

u(f(eit))
dt

2π
: f ∈ O(D, X, x)

}
, x ∈ X,

of the Poisson functional Pu is the largest plurisubharmonic minorant of u.
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The proof given in [DF] is no more difficult than Rosay’s proofs in
[Ro1, Ro2] for the case when X is a complex manifold; it combines Po-
letsky’s proof on X = Cn with the method of gluing holomorphic sprays of
discs. (For an exposition of the latter method we refer to [For, §5.8–§5.9].)
We use this opportunity to give another proof of Theorem 2.1, reducing
it to the case when X is a complex manifold by applying the Hironaka
desingularization theorem [Hir, AHV, BM]. The latter states that for ev-
ery paracompact reduced complex space, X, there is a proper holomorphic
surjection π : M → X with the following properties:

• M is a complex manifold,
• π : M \ π−1(Xsing)→ X \Xsing is a biholomorphism, and
• π−1(Xsing) is a complex hypersurface in M .

We will prove the following more general result on envelopes of disc
functionals, showing that the only problem with plurisubharmonicity is at
points where the complex space is locally reducible.

Theorem 2.2. Let X be a complex space and let π : M → X be a
desingularization of X. Given a disc functional HX : O(D, X) → R, we
define a disc functional HM = π∗HX : O(D,M)→ R by

HM (g) = HX(π ◦ g) for each g ∈ O(D,M).(2.6)

If the envelope EHM is plurisubharmonic on M , then the envelope EHX

given by (1.1) is plurisubharmonic on the regular part Xreg of X, and

EHX(x) = inf{EHM (p) : p ∈ π−1(x)} for each x ∈ Xsing.(2.7)

If X is locally irreducible at a point x ∈ Xsing, then EHX is plurisubhar-
monic in a neighborhood of x in X.

We shall need the following lemma on lifting holomorphic discs to a
desingularization. For the sake of completeness we include the proof.

Lemma 2.3. Let X be a complex space and let π : M → X be a
desingularization of X. Given a holomorphic disc f ∈ O(D, X) such that
f(D) 6⊂ Xsing there exists a unique holomorphic disc g ∈ O(D,M) such that
π ◦ g = f .

Proof. Fix f ∈ O(D, X) such that f(D) 6⊂ Xsing. Let Uf be an open con-
nected neighborhood of D on which f is holomorphic. Then S = f−1(Xsing)
is a discrete subset of Uf . Since the map π : M → X is biholomorphic on
M \π−1(Xsing), there is a unique holomorphic map g = π−1◦f : Uf \S →M
such that π ◦ g = f on Uf \ S. We need to show that g extends holomor-
phically across S. Pick a point s ∈ S and a connected open neighborhood
U ⊂ Uf of s such that U∩S = {s}. By shrinking U around s we may assume
that the image C = f(U) ⊂ X is an irreducible closed complex curve in an
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open neighborhood V ⊂ X of the image point f(s) = x ∈ Xsing. Its preimage
π−1(C) is then a closed complex subvariety of the open set π−1(V ) ⊂ M .
Observe that π−1(C) \ π−1(x) = g(U \ {s}). Since the closure of the dif-
ference of two subvarieties is again a subvariety (see e.g. [Chi, Corollary,

p. 53]), we infer that Σ := g(U \ {s}) is a pure one-dimensional complex
subvariety of π−1(V ) projecting onto C. (This is the proper transform of C
in M .) Since g(U \{s}) is connected, the set Σ∩π−1(x) consists of precisely
one point, say p, and setting g(s) = p extends the map g holomorphically
to the point s.

Proof of Theorem 2.2. Assume that the envelope EHM is plurisubhar-
monic. Since π is biholomorphic over Xreg, the function EHM |π−1(Xreg)
passes down to a plurisubharmonic function on Xreg:

(2.8) EHM = w ◦ π
for some function w : Xreg → R ∪ {−∞}. To see that w = EHX on Xreg,
choose a point x ∈ Xreg and let p ∈ M be the unique point with π(p) = x.
Every analytic disc f ∈ O(D, X) with f(0) = x satisfies f(D) 6⊂ Xsing, and

by Lemma 2.3 it lifts to a disc g ∈ O(D,M) centered at g(0) = p so that
π ◦ g = f . In particular, every disc g ∈ O(D,M) with g(0) = p ∈ π−1(Xreg)
is the unique lifting of its projection f = π ◦ g. By taking the infimum over
all discs f ∈ O(D, X, x), the above implies in view of (2.6) and (2.8) that
w(x) = EHM (p) = EHX(x). This shows that w = EHX on Xreg.

Consider now a point x ∈ Xsing. Since any disc f ∈ O(D, X, x) such that

f(D) 6⊂ Xsing lifts to a disc g ∈ O(D,M) centered at some point p ∈ π−1(x),
we deduce by (2.6) and (2.8) that EHM (p) ≤ HM (g) = HX(f). Taking the

infimum over all f ∈ O(D, X, x) with f(D) 6⊂ Xsing we infer that

α := inf{EHM (p) : p ∈ π−1(x)} ≤ EHX(x).

To get the converse inequality, pick ε > 0 and choose a point p ∈ π−1(x) ∈M
such that EHM (p) < α+ ε. There is disc g ∈ O(D,M, p) satisfying

HM (g) < EHM (p) + ε < α+ 2ε.

By moving g slightly, keeping its center fixed, we may assume that g(D) is
not contained in the hypersurface π−1(Xsing). Then the image of the disc
f = π ◦ g ∈ O(D, X, x) is not contained in Xsing. The above inequality
together with (2.6) and (2.8) implies

HX(f) = HM (g) < EHM (p) + ε < α+ 2ε,

and therefore EHX(x) < α + 2ε. Since ε > 0 was arbitrary, we have
EHX(x) ≤ α = inf{EHM (p) : p ∈ π−1(x)}, which proves (2.7).

Assume now that X is locally irreducible at a point x ∈ Xsing. Pick
a point p ∈ M with π(p) = x. Since EHM is upper semicontinuous and
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π−1(Xsing) is a hypersurface in M , we have

EHM (p) = lim sup
q∈π−1(Xreg), q→p

EHM (q).

Local irreducibility of X at the point x implies that the fiber π−1(x) is a con-
nected compact analytic set, and therefore any plurisubharmonic function
on M is constant on π−1(x). This implies in view of (2.7) that

EHX(x) = lim sup
x′∈Xreg, x′→x

EHX(x′).

A theorem of Demailly [Dem, Théorème 1.7] now shows that the function
EHX , being plurisubharmonic on Xreg, is also plurisubharmonic in a neigh-
borhood of x in X.

Theorem 1.1 now follows from Theorem 2.2 and the following lemma.

Lemma 2.4. Let M and X be complex spaces and π : M → X a holomor-
phic map. Let HX : O(D, X)→ R be one of the following disc functionals:

(i) Pu, the Poisson functional corresponding to an upper semicontinu-
ous function u on X,

(ii) Pv, the Poisson functional corresponding to a plurisuperharmonic
function v on X,

(iii) L̃α, the reduced Lelong functional associated to a nonnegative func-
tion α on X.

The disc functional HM : O(D,M)→ R defined by

HM (g) = HX(π ◦ g), g ∈ O(D,M),(2.9)

is then of the same kind (i)–(iii), and, if M is nonsingular, then EHM is
plurisubharmonic on M .

Proof. If HX = Pu is the Poisson functional corresponding to an up-
per semicontinuous function u on X, then HM is the Poisson functional
corresponding to the upper semicontinuous function u ◦ π on M , since

Pu◦π(g) =
1

2π

2π�

0

u(π(g(eit))) dt = Pu(π ◦ g)

for each g ∈ O(D,M). A similar argument applies in case (ii). If HX = L̃α is
the reduced Lelong functional associated to a nonnegative function α on X,
then HM is the reduced Lelong functional corresponding to the nonnegative
function α ◦ π on M :

L̃α◦π(g) =
∑
ζ∈D

α(π(g(ζ))) log |ζ| = L̃α(π ◦ g), g ∈ O(D,M).

By the results cited above, the envelopes of all these disc functionals are
plurisubharmonic on M if M is smooth.
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Remark 2.5. In this paper we defined the envelope of a disc functional
at a point x ∈ X as the infimum over all discs centered at x and not en-
tirely lying in the singular locus Xsing, whereas in [DF] we considered the
infimum with respect to all discs centered at x. The two envelopes clearly
coincide on Xreg, and if they are plurisubharmonic then they coincide on all
of X.

Example 2.6. We show that the conclusion of Theorem 1.1 fails in
general at a point where X is not locally irreducible. Such examples can
already be found in the simplest case when X is a complex curve with a
single double point. To be explicit, consider the map f : C → C2 given
by f(z) = (z3, z2 + z). It is easily seen that f is a proper holomorphic
immersion whose only double point is p = f(ω1) = f(ω2), where ω1 6= ω2

are the two nonreal solutions of the equation z3 = 1. The immersed complex
curve X = f(3D) ⊂ C2 has exactly one self-intersection (at the point p),
and f : 3D→ X is a desingularization of X.

Choose a smooth convex function v ≤ 0 on the disc 3D such that v = 0
on b(3D) and v(ω1) 6= v(ω2), and a linear function A : C → R such that
v + A ≤ 0 on 3D and (v + A)(ω1) = (v + A)(ω2). It is easily seen that
EP−(v+A) = −A on 3D. The subharmonic function v + A descends to a
smooth subharmonic function vX ≤ 0 on X, and we deduce by (2.7) that

EP−vX (p) = min{EP−(v+A)(ω1), EP−(v+A)(ω2)} = min{−A(ω1),−A(ω2)}.

Since these two values are different, we see that the Poisson envelope EP−vX
is not upper semicontinuous at the point p. As ERvX = vX + EP−vX and
vX is continuous on X, we also see that the envelope of the Riesz functional,
ERvX , is not upper semicontinuous at p.

For the Lelong functional, choose a function α ≥ 0 on 3D with α(ω1) =
α(ω2) = 0 such that ELα(ω1) 6= ELα(ω2). Then α descends to a function
αX ≥ 0 on X and ELαX (p) = min{ELα(ω1), ELα(ω2)}, so ELαX is not
upper semicontinuous at p.

3. Envelopes of Lelong functionals. In this section we give a new
and simpler treatment of Lelong functionals (2.4) that have been considered
earlier by Poletsky [Po2, Po3] any by Lárusson and Sigurdsson [LS1, LS2].
For simplicity we consider the case when X is a complex manifold, although
the methods and results also apply on the regular locus of any complex
space. (In the latter case, with X locally irreducible at each point, the proof
of plurisubharmonicity of Lelong envelopes can be concluded as in Theo-
rem 2.2.)

Given a plurisubharmonic function u ∈ Psh(X), we denote by νu(x) ∈
[0,+∞] its Lelong number at a point x ∈ X. Recall that in any local coor-



Disc functionals 179

dinate system z on X, with z(x) = 0, we have

νu(x) = lim
r→0

sup|z|≤r u(z)

log r
.

(We consider the function u = −∞ as plurisubharmonic and set ν−∞ = +∞.
Lelong numbers can also be defined for functions on complex spaces.)

Given a nonnegative function α : X → R+, let

Fα = {u ∈ Psh(X) : u ≤ 0, νu ≥ α}.
The goal is to identify the corresponding extremal function

(3.1) vα = sup{u : u ∈ Fα}
as the envelope of certain disc functionals which arise naturally from the
following considerations. (Compare with [LS1, §5].)

If u ∈ Fα and f ∈ AX , then clearly u ◦ f ≤ 0 is a subharmonic function
on the disc D whose Lelong number at any point z ∈ D satisfies

νu◦f (z) ≥ α(f(z))mf (z),

where mf (z) denotes the multiplicity of f at the point z. Hence u ◦ f is
bounded above by the largest subharmonic function v = vα,f ≤ 0 on D
satisfying νv ≥ (α ◦ f)mf . This extremal function v is the weighted sum of
Green functions with coefficients (α ◦ f)mf :

v(ζ) =
∑
z∈D

α(f(z))mf (z) log

∣∣∣∣ ζ − z1− z̄ζ

∣∣∣∣, ζ ∈ D.

(If the sum is divergent then v ≡ −∞.) Indeed, the difference between v and
the right hand side above is subharmonic on D, except perhaps at the points
z where α(f(z)) > 0; near these points it is bounded above, so it extends to
a subharmonic function on D. Since it is clearly ≤ 0 on bD, the maximum
principle implies that it is ≤ 0 on all of D, which proves the claim.

Setting ζ = 0, we see that for every u ∈ Fα and f ∈ AX we have

u(f(0))≤
∑
z∈D

α(f(z))mf (z) log |z| ≤
∑
z∈D

α(f(z)) log |z| ≤ inf
z∈D

α(f(z)) log |z|.

(The second and the third inequalities are trivial.) These expressions deter-
mine the following disc functionals on X with values in [−∞, 0]:

Lα(f) =
∑
z∈D

α(f(z))mf (z) log |z|,

L̃α(f) =
∑
z∈D

α(f(z)) log |z|,

Kα(f) = inf
z∈D

α(f(z)) log |z|.

The first two are the Lelong functional, Lα, and the reduced Lelong func-
tional, L̃α, which have already been mentioned in §2. By taking infima over
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all analytic discs f in X with a fixed center f(0) = x ∈ X we obtain the
corresponding inequalities for their envelopes:

(3.2) u ≤ ELα ≤ EL̃α ≤ EKα =: kα, ∀u ∈ Fα.
The function kα = EKα : X → [−∞, 0], which is denoted kαX in [LS1, p. 21],
is related to a certain function studied by Edigarian [Ed1]. It is easily seen
that kα is upper semicontinuous (it suffices to move the center f(0) of the test
disc, while at the same time fixing the value f(z) ∈ X at a point z ∈ D where
α(f(z)) log |z| is close to optimal), and that its Lelong numbers are bounded
below by α [LS1, Proposition 5.2]. Hence the Poisson envelope EPkα (which
is the largest plurisubharmonic minorant of kα according to Theorem 2.1)
also has Lelong numbers bounded below by α, and so it belongs to the
class Fα. Since u ≤ kα for every u ∈ Fα by (3.2), it follows that EPkα = vα
is the extremal function (3.1). Furthermore, and this is the only nontrivial

thing that remains to be seen, the envelopes ELα and EL̃α also equal the
extremal function vα.

Summarizing the above discussion, we have the following result.

Theorem 3.1. For every function α ≥ 0 on a complex manifold X the
extremal function vα in (3.1) is plurisubharmonic and equals the envelope of
both the Lelong and the generalized Lelong functionals:

(3.3) vα = ELα = EL̃α = EPkα .

If X is a complex space then these equalities hold on the regular locus Xreg;
if X is locally irreducible at every point, then they hold on all of X.

On manifolds this was proved by Lárusson and Sigurdsson, first for
domains in Stein manifolds [LS1], and then, following the work of Rosay
[Ro1, Ro2], on all complex manifolds [LS2]. We find their proof rather dif-
ficult even for domains in Stein manifolds. Here we give a direct proof of
the equalities (3.3) on the regular locus of any complex space. On locally
irreducible complex spaces the result then follows by the arguments in §2.

We shall need the following elementary lemma.

Lemma 3.2. Let J be a union of finitely many closed arcs in the circle
T = bD, let U ⊂ C be an open set containing J , and let ζ : U ∩ D → C be
a continuous function satisfying 0 < |ζ(z)| < 1 for z ∈ U ∩ D. Given ε > 0,
the following inequality holds for all sufficiently large integers k ∈ N:

(3.4)
∑

z∈U∩D, zk=ζ(z)
log |z| <

�

eit∈J
log |ζ(eit)| dt

2π
+ ε.

Proof. This is obvious when ζ(z) = a is a constant function. In that case
the equation zk = a has k solutions

zj(a) = k
√
|a|ei(θ0+j/2kπ), j = 1, . . . , k,
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where a = |a|eikθ0 . Since the points z1(a), . . . , zk(a) are equidistributed along
the circle |z| = k

√
|a|, at least k|J | of them belong to U∩D if k is large enough.

(Here |J | denotes the normalized arc length of J .) This gives∑
zj(a)∈U∩D

log |zj(a)| ≤ k|J | log k
√
|a| = log |a| · |J | =

�

eit∈J
log |a| dt

2π
.

In the general case we break J into pairwise disjoint closed segments
J1, . . . , Jm (separated by short gaps) such that, for some choice of points
eitj ∈ Jj and open pairwise disjoint sets Uj with Jj ⊂ Uj b U , we have

(3.5)
m∑
j=1

log |ζ(eitj )| · |Jj | <
�

eit∈J
log |ζ(eit)| dt

2π
+
ε

2

and

(3.6) |ζ(z)− ζ(eitj )| < ε

2
|ζ(eitj )|, z ∈ Uj ∩ D.

It suffices to show that for every j = 1, . . . ,m we have

(3.7)
∑

z∈Uj , zk=ζ(z)
log |z| < log |ζ(eitj )| · |Jj |+

ε

2
|Jj |.

Indeed, by summing the inequalities (3.7) over all j = 1, . . . ,m and using
(3.5) we obtain the estimate (3.4).

We now prove (3.7). Fix j ∈ {1, . . . ,m} and write aj = ζ(eitj ), so 0 <
|aj | < 1. Let ∆j ⊂ C be the open disc of radius rj = (ε/2)|aj | centered at
aj . By choosing ε > 0 small enough we may assume that ∆j ⊂ D∗ = D \ {0}
for each j. Since the map D∗ → D∗, z 7→ zk, is a k-fold covering, the
preimage of ∆j is a disjoint union of k simply connected closed domains
(discs) ∆j,l ⊂ D∗, l = 1, . . . , k. As k → +∞, the discs ∆j,l converge to the
circle T and are equidistributed around T. For k large enough at least the
proportional number k|Jj | of the discs ∆j,l are contained in Uj ∩ D. Let
∆j,l be such a disc. As the point z traces the boundary b∆j,l in the positive
direction, the image point zk traces b∆j once in the positive direction. From
the estimate (3.6) we infer that the function z 7→ zk − ζ(z) has winding
number 1 around b∆j,l, and hence the equation zk = ζ(z) has a solution
z = zj,l in ∆j,l. (If the function z 7→ ζ(z) is holomorphic, as will be the case
in our application, then there is precisely one solution in ∆j,l by Rouché’s
theorem.) Clearly this solution satisfies

log |zj,l| =
1

k
log |ζ(zj,l)| <

1

k
log

(
|aj |
(

1 +
ε

2

))
<

1

k

(
log |aj |+

ε

2

)
.

Since there are at least k|Jj | solutions zj,l, the sum of their logarithms is
bounded above by |Jj |(log |aj |+ ε/2), which gives (3.7).
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Proof of Theorem 3.1. In view of (3.2) and the equality supu∈Fα u =
EPkα (see the paragraph preceding Theorem 3.1) we have

EPkα ≤ ELα ≤ EL̃α ≤ kα.

To establish (3.3) it remains to prove that EL̃α ≤ EPkα . Equivalently, we
need to show that for every continuous function φ : X → R with φ ≥ kα,
analytic disc h ∈ AX , and number ε > 0 there exists a disc f ∈ AX such
that f(0) = h(0) and

(3.8) L̃α(f) =
∑
z∈D

α(f(z)) log |z| < 1

2π

2π�

0

(φ ◦ h)(eit) dt+ ε.

The definition of the Poisson envelope EPkα of the function kα shows
that for every fixed t0 ∈ R there exist an analytic disc g0 ∈ AX and a point
b0 ∈ D such that g0(0) = h(eit0) =: x0 and

α(g0(b0)) log |b0| < φ(x0) +
ε

2
.

We embed g0 into a family (spray) of analytic discs gx = g(x, ·) ∈ AX ,
depending holomorphically on the point x in an open neighborhood V ⊂ X
of x0, such that g0 = g(x0, ·) is the initial disc, and for all x ∈ V we have
g(x, 0) = x and g(x, b0) = g(x0, b0) =: y0. By continuity there is a nontrivial
closed arc J ⊂ T around the point eit0 such that h(J) ⊂ V and

α(y0) log |b0| · |J | <
�

J

(φ ◦ h)(eit)
dt

2π
+
ε

2
|J |.

Repeating this argument at other points of the circle T we find

• pairwise disjoint closed arcs J1, . . . , Jm ⊂ T with arbitrarily short gaps
between them,
• points eitj ∈ Jj ,
• open sets V1, . . . , Vm ⊂ X with h(Jj) ⊂ Vj for j = 1, . . . ,m,
• holomorphic sprays of discs gj : Vj × D→ X, and
• points b1, . . . , bm ∈ D,

such that:

(a) gj(x, 0) = x for all x ∈ Vj and j = 1, . . . ,m,
(b) the point yj = gj(x, bj) ∈ X is independent of x ∈ Vj , and

(3.9)

m∑
j=1

α(yj) log |bj | · |Jj | <
2π�

0

(φ ◦ h)(eit)
dt

2π
+
ε

2
.

The integral of φ ◦ h over T \
⋃m
j=1 Jj is made small by choosing the arcs
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Jj such that the measure of the complement is sufficiently small. We may
assume that α(yj) > 0 for each j, as otherwise the corresponding term and
the arc Jj may be deleted.

Choose smoothly bounded simply connected sets (discs) ∆1, . . . ,∆m

in D with pairwise disjoint closures such that b∆j ∩ T contains a relative
neighborhood of the arc Jj in the circle T = bD. By choosing the discs
∆j small enough we can also ensure that h(∆j) ⊂ Vj . Pick a larger arc
J ′j ⊂ T such that Jj b J ′j b b∆j ∩ T. Set D1 =

⋃m
j=1∆j . Let D0 ⊂ D

be a domain obtained by denting the circle T slightly inward along each
of the arcs J ′j so as to ensure that D0 ∩ J ′j = ∅ for all j = 1, . . . ,m,

D0 ∪D1 = D, and D0 \D1 ∩D1 \D0 = ∅. Thus (D0, D1) is a Cartan pair
in the sense of [For, §5.7]. The configuration around the disc ∆j is shown in
Figure 1.

J ′
j

Δj

D

bD0

Figure 1. The disc Δj and the arc J ′
j

1

Fig. 1. The disc ∆j and the arc J ′j

Pick a large constant M > 0 whose precise value will be fixed later. For
every j = 1, . . . ,m let uj ≤ 0 be a smooth real function on ∆j , harmonic
in ∆j , such that uj = 0 on Jj , and uj = −M on b∆j \ J ′j . Let vj be a

harmonic conjugate of uj , and define the function aj : ∆j → C by

aj(z) = zkeuj(z)+ivj(z), z ∈ ∆j .

The value of the integer k ∈ N will be fixed later. Note that |aj(z)| ≤ euj(z)
for every k, and this is uniformly as close to zero as desired outside of any
neighborhood of J ′j if the constant M > 0 is large enough.

Let zj,1, . . . , zj,lj ∈ ∆j be all the solutions of the equation aj(z) = bj in
the disc ∆j . (Recall that the number bj ∈ D∗ satisfies condition (b) above.)
This equation can be rewritten as

zk = bje
−uj(z)−ivj(z) =: ζj(z).

Note that |ζj(eit)| = |bj | for eit ∈ Jj . By Lemma 3.2 we know for all large
enough k ∈ N that

(3.10)

lj∑
l=1

log |zj,l| <
�

Jj

log |ζj(eit)|
dt

2π
+

ε|Jj |
2α(yj)

= log |bj | · |Jj |+
ε|Jj |

2α(yj)
.
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To complete the proof we now construct a holomorphic disc f ∈ AX with
f(0) = h(0) such that

(3.11) f(zj,l) = yj , l = 1, . . . , lj , j = 1, . . . ,m.

For such f , by combining (3.9) and (3.10) we obtain

L̃α(f) ≤
m∑
j=1

α(yj)

lj∑
l=1

log |zj,l| ≤
m∑
j=1

α(yj) log |bj | · |Jj |+
ε

2

<

2π�

0

(φ ◦ h)(eit)
dt

2π
+ ε,

so the estimate (3.8) holds and the proof is complete.
To find such a disc f we proceed as follows. We embed the disc h into

a dominating spray of discs hw = h(w, ·) ∈ AX , depending holomorphically
on the point w in a ball B in a Euclidean space CN , so that h0 = h. By
shrinking B around the origin we may assume that h(w, z) ∈ Vj for every
w ∈ B and z ∈ ∆j . Over each of the discs ∆j we define a holomorphic spray
of discs, with the parameter w ∈ B, by setting

g̃(w, z) = gj
(
h(w, z), aj(z)

)
, z ∈ ∆j .

Since aj(zj,l) = bj and gj(x, bj) = yj for all x ∈ Vj , we have g̃(w, zj,l) = yj
for all w ∈ B, j = 1, . . . ,m and l = 1, . . . , jl. Further, for points z ∈
∆j ∩D0 the function |aj(z)| can be made arbitrarily small by choosing the
constant M > 0 in the above construction large enough (and this estimate
is independent of the choice of the integer k ∈ N). For such z we have

g̃(w, z) ≈ g(h(w, z), 0) = h(w, z).

In particular, for M > 0 large enough (and for any k ∈ N) the sprays h(w, z)
(over z ∈ D0) and g̃(w, z) (over z ∈ D1) can be glued into a single spray over
D0 ∪D1 = D by using the method from [For, §5.8–§5.9]. (A brief exposition
can also be found in [DF].) Explicitly, we find maps β0 ∈ A(D0,CN ) and
β1 ∈ A(D1,CN ), with values in B, that are uniformly small (depending only
on the uniform distance between the two sprays over D0 ∩ D1, and hence
only on the constant M > 0), such that β0(0) = 0 and

g̃(β1(z), z) = h(β0(z), z), z ∈ D0 ∩D1.

The two sides define an analytic disc f ∈ AX with center f(0) = h(0) and
satisfying (3.11). This completes the proof of Theorem 3.1.

4. Siciak–Zaharyuta extremal functions on affine varieties. In
this section we obtain explicit expressions for the Siciak–Zaharyuta extremal
function VΩ,X of an open set Ω in a locally irreducible affine algebraic variety
X ⊂ Cn in terms of Green functions on complex curves C in the projective
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closure X ⊂ Pn of X, with smooth boundaries bC contained in Ω. The-
orem 4.4 generalizes some of the results of Lempert and of Lárusson and
Sigurdsson (for the case X = Cn) mentioned below.

We begin by recalling some standard notions of pluripotential theory,
referring to Klimek [Kli] for further information.

The Lelong class L = LCn on Cn is the set of all plurisubharmonic
functions v : Cn → R ∪ {−∞} for which there exist constants r > 0 and
C ∈ R (depending on v) such that

v(z) ≤ log |z|+ C, z ∈ Cn, |z| > r.

Such functions are said to have at most logarithmic growth at infinity.
Given a nonempty open subset Ω ⊂ Cn, the Siciak–Zaharyuta extremal

function VΩ : Cn → R is defined by

VΩ(z) = sup{v(z) : v ∈ L, v|Ω ≤ 0}.
It is the largest function in the Lelong class L which is ≤ 0 on Ω. By
replacing any function v ∈ L in the definition of VΩ by max{v, 0} we see
that VΩ ≥ 0 on Cn and VΩ = 0 on Ω. If Ω has a sufficiently nice boundary
then VΩ is continuous, and hence it vanishes on Ω. (The extremal function
VE can be defined for an arbitrary subset E ⊂ Cn, but in general one must
take its upper regularization V ∗E in order to get a plurisubharmonic function.
We have V ∗E ≡ +∞ if and only if the set E is pluripolar. Here we restrict
our attention to extremal functions of open sets.)

In the same way one defines the Lelong class LX , and the extremal func-
tion VΩ,X , when Ω is an open subset in a closed affine algebraic subvariety
X of a complex affine space Cn.

We now recall the Lempert formula for the extremal function VΩ of
an open convex set Ω ⊂ Cn (see the appendix in [Mo] and the discussion
in [LS3]). Consider Cn as a subset of the projective space Pn, and let H =
Pn \ Cn ∼= Pn−1 denote the hyperplane at infinity. For every analytic disc
f ∈ APn with f(T) ⊂ Cn set

(4.1) J(f) = −
∑

f(ζ)∈H
log |ζ| ≥ 0,

where the sum is over the finitely many points ζ ∈ D which are mapped
by f to H, counted with intersection multiplicities. (If f(0) ∈ H, we set
J(f) = +∞, and if f(D) ⊂ Cn then J(f) = 0.) We may think of J as a disc
functional on the set of discs in Pn with boundary values in Cn. Lempert
proved that, if Ω is open and convex, then for every point z ∈ Cn we have

(4.2) VΩ(z) = inf{J(f) : f ∈ APn , f(0) = z, f(T) ⊂ Ω};
furthermore, one gets the same infimum over the smaller set of discs with a
single point at infinity of multiplicity one.
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Lempert’s formula (4.2) was extended by Lárusson and Sigurdsson to the
case when Ω is an arbitrary connected open subset of Cn [LS3, Theorem 3];
however, one must in general use discs with several poles.

If Ω is disconnected, then the infimum on the right hand side of (4.2)
is in general larger than VΩ(z). However, it is still possible to obtain VΩ as
follows. Let B be a family of analytic discs in Pn with boundary values in Ω.
Following [LS3] we introduce the following notion.

Definition 4.1. A family of discs B ⊂ A(D,Pn) with boundaries in
Ω ⊂ Cn is a good family (with respect to Ω) if it has the following properties:

(i) for every point z ∈ Pn there is a disc f ∈ B with f(0) = z,
(ii) for every point z ∈ Ω the constant disc D 7→ z belongs to B, and

(iii) for every point p ∈ Pn and every disc f ∈ B with f(0) = p there
exist a neighborhood U ⊂ Pn of p and a continuous family of discs
{fz ∈ B : z ∈ U} such that fp = f and fz(0) = z for all z ∈ U .

Define a function EBJ : Cn → R+ by setting

(4.3) EBJ(z) = inf
f∈B, f(0)=z

J(f), z ∈ Cn.

We think of EBJ as the envelope of the disc functional f 7→ J(f) with
respect to the family B. It is easily seen that the envelope EBJ with respect
to a good family of discs is an upper semicontinuous function on Cn which
vanishes on Ω and has at most logarithmic growth at infinity (see [LS3]).

Theorem 4.2 ([LS3, Theorem 2]). If Ω is a nonempty open set in Cn
and B is a good family of analytic discs with respect to Ω, then the Siciak–
Zaharyuta function VΩ is the Poisson envelope of the function EBJ in (4.3):

(4.4) VΩ(z) = inf

{ 2π�

0

(EBJ)(f(eit))
dt

2π
: f ∈ A(D,Cn, z)

}
, z ∈ Cn.

Remark 4.3. If the set Ω is connected, then the Lempert formula (4.2)
follows by applying Theorem 4.2, with B a suitable family of discs in projec-
tive lines (and with boundaries in Ω), and then solving a Riemann–Hilbert
boundary value problem. (See the last section in [LS3].) The advantage of
the formula (4.2) over (4.4) is that the former expresses the extremal func-
tion VΩ by only one application of infimum over a suitably large family of
discs, while in the latter the infimum is applied twice.

Lárusson and Sigurdsson proved Theorem 4.2 by lifting the problem with
respect to the projection π : Cn+1 \ {0} → Pn and considering the plurisub-
harmonic function VΩ ◦ π + log |z0| on Cn+1 \ {0}, where the coordinates
(z0, . . . , zn) on Cn+1 are chosen such that H = {z0 = 0}. An application of
the Riesz formula on the disc leads to an auxiliary disc formula [LS3, The-
orem 1] from which the result is obtained by some additional arguments.
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We now give a very simple proof of Theorem 4.2 which generalizes im-
mediately to open sets in affine varieties. The main point is to observe that
the restriction of VΩ to any complex curve C ⊂ Pn with smooth boundary
contained in Ω ⊂ Cn is bounded above by the Green function on that curve
with poles at the points in C ∩ H. (In the case at hand we can use discs,
and this brings the functional J(f) into the picture.) The infimum of such
Green functions over sufficiently many curves yields an upper semicontin-
uous function Ψ : Cn → R+ that vanishes on Ω, has at most logarithmic
growth at infinity, and satisfies VΩ ≤ Ψ . It then follows from maximality
that VΩ is the Poisson envelope EPΨ of Ψ .

Proof of Theorem 4.2. Let Ω ⊂ Cn ⊂ Pn be as in the theorem. Assume
that Σ is a compact finite bordered Riemann surface all of whose boundary
components are Jordan curves. Let f : Σ → Pn be a continuous map that
is holomorphic in the interior, Σ, of Σ, and with boundary f(bΣ) ⊂ Ω

contained in Ω. Recall that H = Pn \ Cn. Write f∗(H) =
∑k

j=1mjpj as a
divisor, where p1, . . . , pk are the points in Σ that are mapped by f to the
hyperplane H, and mj ∈ N is the intersection multiplicity of the map f with
H at the point pj . The composition

VΩ ◦ f : Σ → R+ ∪ {+∞}
is then a subharmonic function on Σ \ f−1(H) that vanishes on bΣ and
has logarithmic poles at the points pj ∈ f−1(H). More precisely, choosing
a local holomorphic coordinate ζ on Σ with ζ(pj) = 0, there is a constant
C ∈ R such that VΩ ◦ f(ζ) ≤ −mj log |ζ|+ C as ζ → 0. It follows that

VΩ ◦ f ≤ −GΣ,f∗H = −
k∑
j=1

mjGΣ,pj ,

where the right hand side is the Green function on Σ with poles deter-
mined by the divisor f∗H. (Precisely, GΣ,f∗H ≤ 0 is the unique continuous
function on Σ \ f−1(H) that is harmonic in Σ \ f−1(H), vanishes on the
boundary bΣ, and has a logarithmic pole with multiplicity mj at each of the
points pj ∈ f−1(H). For Green functions see any of the standard sources, or
the recent book by Varolin [Var, p. 119].) The above inequality follows by
observing that VΩ ◦ f + GΣ,f∗H is a subharmonic function on Σ \ f−1(H)
which equals zero on bΣ and is locally bounded from above at each point
pj ∈ f−1(H); hence it extends as a subharmonic function on Σ, and the
maximum principle implies that it is ≤ 0 on Σ.

We now restrict attention to the case when Σ = D is the disc. The Green
function with pole at the point a ∈ D equals

Ga(ζ) = log

∣∣∣∣ ζ − a1− āζ

∣∣∣∣.
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For a 6= 0 we get Ga(0) = log |a|. Given a disc f ∈ APn with f(T) ⊂ Ω and

f∗H =
∑k

j=1mjaj , where aj ∈ D and mj ∈ N, we thus have

VΩ(f(0)) ≤ −
k∑
j=1

mj log |aj | = J(f).

Therefore we have for each point z ∈ Cn the estimate

VΩ(z) ≤ Ψ(z) := inf
f∈B, f(0)=z

J(f).

If the family B is good in the sense of Definition 4.1, then the function Ψ :
Cn → R+ is upper semicontinuous, Ψ |Ω = 0, and Ψ has at most logarithmic
growth at infinity. Poletsky’s theorem (Theorem 2.1 for X = Cn) implies
that the Poisson envelope EPΨ is the extremal plurisubharmonic minorant
of Ψ . Since Ψ grows logarithmically, we infer that EPΨ belongs to the Lelong
class L. Finally, as VΩ ≤ Ψ , we have VΩ ≤ EPΨ , and hence VΩ = EPΨ by
maximality of VΩ. This proves Theorem 4.2.

The above proof generalizes immediately to the following situation. Let
Ω be a nonempty open subset in an affine algebraic variety X ⊂ Cn. The
Lelong class LX , and the extremal function VΩ,X , are defined in essentially
the same way as in the case X = Cn. Assume now that X is irreducible, and
let k = dimCX ∈ {1, . . . , n − 1}. Denote by X the closure of X in Pn (an
algebraic subvariety of Pn). Complex curves C ⊂ X whose boundaries bC
are smooth and contained in the open subset Ω ⊂ X fill the entire projective
variety X. (We consider only curves that have no isolated points in their
boundaries.) An explicit way to obtain such curves is to take the intersection
of X with a generic projective linear subspace Λ ⊂ Pn of dimension n−k+1
such that Λ∩Ω 6= ∅, and then remove from the closed projective curve Λ∩X
finitely many smoothly bounded discs lying in Ω. If X is smooth (without
singularities), then a generic such intersection will be a smooth embedded
complex curve with boundary, but in general we cannot expect it to be a
disc. In fact, the degree of a generic curve Λ ∩X equals the degree of X.

Given a curve C ⊂ X with smooth boundary bC ⊂ Ω, let f : Σ → C be
a normalization of C by a finite bordered Riemann surface, Σ, with smooth
boundary. The normalization map extends smoothly to the boundary. Let
f∗H =

∑d
j=1mjpj denote the intersection divisor of the map g with the

hyperplane at infinity H = Pn \ Cn. As before, let GΣ,f∗H be the Green
function on Σ with logarithmic poles determined by the divisor f∗H. Choose
a family B of such normalized curves (Σ, f, C) in X whose images C = f(Σ)
fill X, and define the function ΨB : X → R+ by

(4.5) ΨB(x) = inf −GΣ,f∗H(ζ) = − supGΣ,f∗H(ζ), x ∈ X,
where the infimum is over all (Σ, f, C) ∈ B and points ζ ∈ Σ with f(ζ) = x.
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By including in B all the constant discs D 7→ z ∈ Ω, and by assuming the
existence of continuous local families of curves in B (in analogy to property
(iii) in Def. 4.1), we ensure as before that ΨB is an upper semicontinuous
function on X that equals zero on Ω and grows at most logarithmically at
infinity. (The continuity of a family of curves with respect to some parameter
t can be made precise by fixing a smooth oriented real surface with boundary,
Σ, and choosing a continuous family of almost complex structures Jt on Σ,
and a continuous family of holomorphic maps ft : (Σ, Jt)→ X.)

The argument in the proof of Theorem 4.2 shows that for each complex
curve f : Σ → C ⊂ X with f(bΣ) ⊂ Ω we have VΩ,X ◦ f ≤ −GΣ,f∗H ,
and hence VX,Ω ≤ ΨB. By applying the general case of Theorem 2.1 we thus
obtain the following expression for the extremal function VΩ,X .

Theorem 4.4. Let X be an irreducible and locally irreducible algebraic
subvariety of Cn, and let Ω be a nonempty open set in X. Assume that B
is a good family of complex curves in X with boundaries in Ω, and let ΨB :
X → R+ denote the associated function (4.5). Then the Siciak–Zaharyuta
function VΩ,X is the envelope of the Poisson functional PΨ :

VΩ,X(x) = inf
{ 2π�

0

ΨB(f(eit))
dt

2π
: f ∈ O(D, X, x)

}
, x ∈ X.

Example 4.5. An explicit example of a good family B that one can use
in this theorem is obtained by taking all constant discs in Ω, together with
all transverse intersections L = Λ∩X that intersect Ω, where Λ ∼= Pn−k+1 is
a projective linear subspace of Pn of dimension n−dimX+1, and removing
from each such closed curve L a finite family of pairwise disjoint, closed,
smoothly bounded discs ∆1, . . . ,∆m ⊂ Ω whose boundaries b∆j belong to
the regular locus Lreg of L. The difference C = L\

⋃m
j=1∆j is then a complex

curve in X with smooth boundary bC =
⋃m
j=1 b∆j contained in Ω.

Problem 4.6. Assume that Ω ⊂ X are as in Theorem 4.4. Let B consist
of all complex curves f : Σ → C ⊂ X, where Σ is a finite bordered Riemann
surface and f is a holomorphic map such that f(bΣ) ⊂ Ω. Is the extremal
function VΩ,X then given by the Lempert type formula

VΩ,X(x) = inf{−GΣ,f∗H(ζ) : (Σ, f) ∈ B, f(ζ) = x ∈ X} ?
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[For] F. Forstnerič, Stein Manifolds and Holomorphic Mappings, Ergeb. Math. Grenz-

geb. (3) 56, Springer, Berlin, 2011.
[Hir] H. Hironaka, Desingularization of complex-analytic varieties, in: Actes du Con-

grès International des Mathématiciens (Nice, 1970), Tome 2, Gauthier-Villars,
Paris, 1971, 627–631.

[Kis] C. O. Kiselman, The partial Legendre transformation for plurisubharmonic func-
tions, Invent. Math. 49 (1978), 137–148.

[Kli] M. Klimek, Pluripotential Theory, London Math. Soc. Monogr. (N.S.) 6, Oxford
Univ. Press, New York, 1991.

[LS1] F. Lárusson and R. Sigurdsson, Plurisubharmonic functions and analytic discs
on manifolds, J. Reine Angew. Math. 501 (1998), 1–39.

[LS2] F. Lárusson and R. Sigurdsson, Plurisubharmonicity of envelopes of disc func-
tionals on manifolds, J. Reine Angew. Math. 555 (2003), 27–38.

[LS3] F. Lárusson and R. Sigurdsson, The Siciak–Zahariuta extremal function as the
envelope of disc functionals, Ann. Polon. Math. 86 (2005), 177–192.

[LS4] F. Lárusson and R. Sigurdsson, Siciak–Zahariuta extremal functions and polyno-
mial hulls, Ann. Polon. Math. 91 (2007), 235–239.

[LS5] F. Lárusson and R. Sigurdsson, Siciak–Zahariuta extremal functions, analytic
discs and polynomial hulls, Math. Ann. 345 (2009), 159–174.

[Mo] S. Momm, An extremal plurisubharmonic function associated to a convex pluri-
complex Green function with pole at infinity, J. Reine Angew. Math. 471 (1996),
139–163.

[Po1] E. A. Poletsky, Plurisubharmonic functions as solutions of variational problems,
in: Several Complex Variables and Complex Geometry, Part 1 (Santa Cruz, CA,
1989), Proc. Sympos. Pure Math. 52, Part 1, Amer. Math. Soc., Providence, RI,
1991, 163–171.

[Po2] E. A. Poletsky, Holomorphic currents, Indiana Univ. Math. J. 42 (1993), 85–144.
[Po3] E. A. Poletsky, The minimum principle, Indiana Univ. Math. J. 51 (2002),

269–303.

http://dx.doi.org/10.1007/s002220050141
http://dx.doi.org/10.1090/S0002-9947-1992-1035999-6
http://dx.doi.org/10.4064/ap80-0-10
http://dx.doi.org/10.1007/BF01403083
http://dx.doi.org/10.4064/ap86-2-8
http://dx.doi.org/10.4064/ap91-2-10
http://dx.doi.org/10.1007/s00208-009-0345-5
http://dx.doi.org/10.1512/iumj.1993.42.42006


Disc functionals 191

[Ro1] J.-P. Rosay, Poletsky theory of disks on holomorphic manifolds, Indiana Univ.
Math. J. 52 (2003), 157–169.

[Ro2] J.-P. Rosay, Approximation of non-holomorphic maps, and Poletsky theory of
discs, J. Korean Math. Soc. 40 (2003), 423–434.

[Var] D. Varolin, Riemann Surfaces by Way of Complex Analytic Geometry, Grad.
Stud. Math. 125, Amer. Math. Soc., Providence, RI, 2011.

Barbara Drinovec Drnovšek, Franc Forstnerič
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