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Riemann mapping theorem in Cn

by Krzysztof Jarosz (Edwardsville, IL)

Abstract. The classical Riemann Mapping Theorem states that a nontrivial simply
connected domain Ω in C is holomorphically homeomorphic to the open unit disc D. We
also know that “similar” one-dimensional Riemann surfaces are “almost” holomorphically
equivalent.

We discuss the same problem concerning “similar” domains in Cn in an attempt to
find a multidimensional quantitative version of the Riemann Mapping Theorem.

1. Introduction. The fact that two simply connected nontrivial domains
in the complex plane C are holomorphically equivalent is one of the most
fundamental results in complex analysis. It is also very well known that the
Riemann Mapping Theorem fails miserably in Cn for n > 1. Even if we take
a very simple domain like the unit ball in C2 and change its boundary just
slightly to obtain another smooth surface, we may get a domain that is not
holomorphically equivalent to the ball. The perturbation problem wewould like
to discuss here asks whether small changes of the domains in Cn produce new
domains that are almost biholomorphically equivalent. The first two questions
wewill have to address are how to judgewhether or not two domains are similar
and whether or not they are almost holomorphically equivalent.

In the first section we review the situation in the complex plane C, where
the basic questions have already been answered and the structure of small
deformations is quite clear. In the following section we discuss a much more
interesting situation in Cn; our knowledge here is however very limited. In
the last section we list several open problems.

2. The one-dimensional case. A deformation of a simply connected
domain in C is holomorphically equivalent to the original domain (as long
as it remains simply connected). The perturbation problem is still however
quite interesting and nontrivial. Let us start with an example: for ε ≥ 0 put
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(2.1) Pε := {z : 1 < |z| < 2 + ε}.
Two such domains Pε, Pε′ look very similar, especially if ε ≈ ε′, however
they are not holomorphically equivalent unless ε = ε′. On the other hand we
feel that they are in some sense “almost” equivalent, but we need to make
this intuition much more precise. For this we need (i) a way to decide if two
domains have almost the same holomorphic structures, and (ii) if they are
“almost biholomorphic”.

The most natural and very well established measure of how similar two
Banach spaces A,B are is the Banach–Mazur distance

(2.2) dB-M(A,B) := inf{‖T‖ ‖T−1‖ : T : A→ B},
where the infimum is taken over all linear continuous isomorphisms T from
A onto B. Consequently, we may define a distance between domains Ω,Ω′
by

(2.3) dB-M(Ω,Ω′) := inf{‖T‖ ‖T−1‖ : T : A(Ω)→ A(Ω′)}
where A(Ω) is the algebra of all analytic functions on Ω that can be contin-
uously extended to the boundary ∂Ω.

The most natural way to decide if a homeomorphism ϕ : Ω → Ω′ is
almost biholomorphic is to consider the following number associated with ϕ:

H(ϕ) := sup
z∈Ω

{
lim sup
r→0

supx{‖ϕ(x)− ϕ(z)‖ : ‖x− z‖ ≤ r}
infx{‖ϕ(x)− ϕ(z)‖ : ‖x− z‖ ≥ r}

}
.

The map ϕ is biholomorphic if and only if H(ϕ) = 1 (see [A, H]). We can use
this concept to measure the quasiconformal or Teichmüller distance between
Ω and Ω′:
(2.4) dT(Ω,Ω

′) := inf{H(ϕ) : ϕ : Ω → Ω′},
where the infimum is taken over all homeomorphisms ϕ : Ω → Ω′. It turns
out that for Ω = Pε and Ω′ = Pε′ the two distances defined above are roughly
the same. One can check this by considering the maps Tε : A(P0) → A(Pε)
defined by

Tε

( ∞∑
n=−∞

anz
n
)
=

0∑
n=−∞

anz
n +

∞∑
n=1

an

(
2

2 + ε

)n
zn.

As ε → 0 we have ‖Tε‖ ‖T−1ε ‖ → 1 and also the Teichmüller distance be-
tween Ω and Ω′ tends to 1. The above example represents the simplest case
of a very deep and highly nontrivial result due to R. Rochberg; that result
has been developed over a number of years culminating in the 1986 paper
[R86] (page 161).

Theorem 2.1 (R. Rochberg, 1973–1986). Let Ω,Ωn be one-dimensional
bordered Riemann manifolds. Then limn→∞ dB-M(Ω,Ωn) = 1 if and only if
limn→∞ dT(Ω,Ωn) = 1.
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The above theorem settles the main problem in the one-dimensional case.
There are however still several open questions; we mention some of these in
the last section.

3. Multidimensional case. The problem discussed in the previous sec-
tion is much more interesting in the multidimensional setting, where a pos-
itive answer would provide a quantitative version of the Riemann Mapping
Theorem. It is however also much more challenging and almost entirely open.

Definition 3.1. We say that a domain Ω in Cn is stable if there is an
ε > 0 such that for any Banach algebra B if dB-M(A(Ω), B) < 1 + ε then B
must be isomorphic (as an algebra) to A(Ω).

It follows from Rochberg’s Theorem above that for n = 1 a domain Ω is
stable if and only if it is simply connected. For n > 1 we do not know the
answer for any domain! We do however have partial results for two simplest
domains: polydiscs Dn and unit balls Bn.

Theorem 3.2. Assume Ω = Dn or Ω = Bn and that B is a Banach
algebra such that dB-M(A(Ω), B) < 1+ε. Then, provided ε > 0 is sufficiently
small, we may conclude that:

(1) B is a uniform algebra.
(2) The maximal ideal space of B is homeomorphic to the closure of Ω,

so elements of B may be identified with continuous functions on Ω.
(3) Ω may be given a structure σ of an n-dimensional complex manifold

such that all functions g ∈ B are (Ω, σ)-analytic.
(4) We may define a new multiplication × on A(Ω) such that (A(Ω),×)

is a Banach algebra isomorphic (as an algebra) to B and such that

(3.1) ‖fg − f × g‖ < kε‖f‖ ‖g‖ for f, g ∈ A(Ω),

where k is an absolute constant.

For Ω = Dn the proof may be found in [Ja92] and for Ω = Bn in a
much more recent paper [Ja11]. Unfortunately we do not know if (Ω, σ) is
biholomorphic to Ω or even if (Ω, σ) may be holomorphically embedded
in Cn.

The two proofs use some of the same techniques but also require different
methods at certain crucial points. We shall discuss the main steps of the
proof for the ball algebra A(Bn), and how some of these methods may or
may not also be applied to the polydisc algebra A(Dn) or even in the general
case to an algebra A(Ω) on an arbitrary domain Ω. At various points in our
discussion below we use the symbol ε to denote a sufficiently small positive
number. The first three steps follow from a standard description of a small
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deformation of a uniform algebra [Ja85, Theorem 3.1] and can be applied in
the general case of A(Ω).

Step 1. Take an almost isometry T : A(Bn) → B with ‖T‖ ‖T−1‖ <
1 + ε; it follows that B must automatically be a uniform algebra.

Step 2. Show that without loss of generality we may assume T1 = 1,
where 1 denotes the unit of the algebra.

Step 3. Introduce a new multiplication × on A(Bn) by
f × g := T−1(Tf · Tg) for f, g ∈ A(Bn),

and show that (3.1) holds true.

Step 4. Show that the Shilov boundary of B is homeomorphic to the
topological boundary ∂Bn of the unit ball and that

(3.2) |Tf(z)− f(z)| ≤ ε‖f‖ for z ∈ ∂Bn and f ∈ A(Bn),
where we use the same symbol z = (z1, . . . , zn) for a point in ∂Bn and for the
corresponding point in the homeomorphic copy of ∂Bn in the maximal ideal
space of B. This step also follows from a general description of deformations
of uniform algebras [Ja85, Theorem 3.1] provided the Choquet boundary of
the algebra coincides with the Shilov boundary, as is the case for both A(Bn)
and A(Dn), but not for arbitrary A(Ω).

Step 5. Show that

ϕ(0) :=
{ n∑
k=1

T (Zk) · gk : gk ∈ B
}

is a codimension one ideal in B; here Zk is a function in A(Bn) defined by
Zk(z1, . . . , zn) = zk. The proof of this step involves a detailed analysis of the
solution of the Gleason Problem. In the early sixties Gleason asked if{ n∑

k=1

Zk · fk : fk ∈ A(Bn)
}
= {f ∈ A(Bn) : f(0) = 0}.

That original question was answered by Leibenzon [Kh]. A large number of
papers were subsequently published on that topic—we now know that the
answer is positive for the ball algebra and the polydisc algebra and many
other domains, but negative in general; some related questions still remain
open. For our purpose we not only need to know that the answer is positive
for a particular domain Ω but also we need to control the way the functions
(f1, . . . , fn) are generated by the function f . For a general domain Ω we
need to replace the point 0 by an arbitrary point w0 ∈ Ω; even if the answer
to the Gleason Problem at such a point is positive the methods used for the
ball algebra may not work if w0 is very close (in comparison with ε) to the
boundary of Ω.
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Step 6. Show that

(3.3) |Tf(ϕ(0))− f(0)| ≤ ε‖f‖ for f ∈ A(Bn).

Step 7. Fix w = (w1, . . . , wn) ∈ Bn and let Ψw be the holomorphic
automorphism of the unit ball that maps w to 0. Put

ϕ(w) :=
{ n∑
k=1

T (Zk ◦ Ψw) · gk : gk ∈ B
}
;

deduce from the previous two steps that ϕ(w) is a maximal ideal in B and
that

(3.4) |Tf(ϕ(w))− f(w)| ≤ ε‖f‖ for f ∈ A(Bn).
This step is quite routine but it depends on the fact that for both Dn and Bn
the group of holomorphic automorphisms is transitive; this does not hold for
most other domains Ω.

Step 8. Extend the function ϕ to Bn by putting ϕ(z) = z for z ∈
∂Bn and show that the map ϕ is continuous and one-to-one. The continuity
follows from the continuity of w 7→ Ψw and the control we established in
Step 5 of the way the functions (f1, . . . , fn) are generated by f . The fact
that ϕ is injective depends on certain topological properties of the unit ball;
it should work for many other domains Ω but not for all of them.

Step 9. Take a linear and multiplicative functional F on B and define
a functional on A(Bn) by G = F ◦ T ; notice that G is almost multiplicative
(see Definition 4.2 below). By [Ja97] for any almost multiplicative functional
G on A(Bn) there is a multiplicative functional G̃ with ‖G̃ − G‖ ≤ ε. The
same result holds true for the polydisc algebra; it is however false for uniform
algebras in general [SS]; whether all algebras A(Ω) have this property is an
open problem.

Step 10. Show that the function ϕ is a surjection from Bn onto the
maximal ideal space of B. The proof depends on the previous step.

Step 11. Show that we can introduce an analytic structure on Bn such
that all functions from T−1(B) are analytic. The proof of this step is based
on a straightforward application of the Gleason Theorem [G] since we already
demonstrated that the ideals in the maximal ideal space of B outside the
Shilov boundary are finitely generated.

In the case of the ball algebra discussed above the maximal ideal space
consists of two disjoint parts: the interior of the ball with an n-dimensional
analytic structure and the Shilov boundary which coincides with the topo-
logical boundary of the ball. For the polydisc algebra A(Dn) the maximal
ideal space consists of three parts: the open polydisc with an n-dimensional
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analytic structure, the Shilov boundary which is equal to the Cartesian prod-
uct of the unit circles, and the remaining part of the topological boundary
of Dn. That third part which is not present in the ball algebra requires a few
extra steps in the proof. However, overall the proof for the polydisc algebra
is simpler. Because the polydisc algebra is an injective tensor product of n
copies of the disc algebra, and because we understand quite well small de-
formations of the disc algebra, we can simplify some of the other steps of the
proof.

4. Related results and open problems. The concept of small pertur-
bations discussed above for A(Ω) algebras applies also to arbitrary Banach
algebras and is especially interesting for uniform algebras, that is, for closed
subalgebras of C(X). For uniform algebras many natural definitions of per-
turbations coincide.

Theorem 4.1. Let A be a uniform algebra and let Bn be Banach algebras
with units. Then limn→∞ dB-M(A,Bn) = 1 if and only if there is a sequence
εn of positive numbers such that limn→∞ εn = 0 and a sequence of linear
invertible maps Tn : A→ Bn with Tn1 = 1 such that

‖Tn(fg)− Tn(f)Tn(g)‖ ≤ εn‖f‖ ‖g‖ for all f, g ∈ A.

The proof of this and several related results may be found in [Ja85]. The
theory of small perturbations of Banach algebras directly involves almost
multiplicative operators and functionals.

Definition 4.2. A linear functional F defined on a Banach algebra A
is called δ-multiplicative if

|F (fg)− F (f)F (g)| ≤ δ‖f‖ ‖g‖ for f, g ∈ A.

One can easily construct an almost multiplicative functional by adding
a small perturbation to a multiplicative functional; for some algebras this is
the only way to construct such a functional but for some others there may be
almost multiplicative functionals very far from the multiplicative ones. An
interested reader may consult papers by B. E. Johnson [Jo77, Jo86, Jo88],
R. Rochberg [R79a, R79b, R86], K. Jarosz [Ja85, Ja92, Ja97], S. J. Sidney
[SS], and others for many interesting results. For example we know that a
small perturbation of the disc algebra or of the algebraH∞(D) of all bounded
analytic functions defined on the unit disc is automatically identical with the
original algebra; we know that this property is false in general; we know that
an almost multiplicative functional on the disc algebra must be close to a
multiplicative one; and we know that this property is false in general for
uniform algebras. Surprisingly there are still a large number of very natural
open questions. Below we list just a few of them.
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Problem 1. Assume F is a δ-multiplicative functional on H∞(D). Is
there a multiplicative functional G on H∞(D) such that ‖F − G‖ → 0 as
δ → 0? We are asking here if the algebra H∞(D) has an almost corona, that
is, a set of almost multiplicative functionals far from the unit disc.

Problem 2. Let Ω be a domain of holomorphy in Cn, for n > 1. As-
sume dB-M(A(Ω), B) < ε. Does it follow that A(Ω) = B (as algebras)? The
question is open for all domains in Cn.

Problem 3. Assume that A is a uniform algebra and ε > 0. Is it possible
that the set

{B : dB-M(A,B) < 1 + ε}

consists of countably many nonisomorphic algebras? In all known cases such
a set consists of a single algebra (stability) or of uncountably many different
and nonisomorphic algebras.

Problem 4. It is known that the Choquet boundaries of uniform alge-
bras A,B must be homeomorphic provided dB-M(A,B) is small enough. For
a large class of algebras the Choquet boundary coincides with the Shilov
boundary of that algebra. It is not known if the n-tuple Shilov bound-
aries must also be preserved. Since the n-tuple Shilov boundaries are di-
rectly related to the existence of a multidimensional analytic structure in the
spectrum of the algebra (see [T]), any such result may advance our knowl-
edge about the main question we discuss here: small deformations of A(Ω)
algebras.
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