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A class of maximal plurisubharmonic functions
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Dedicated to Professor Józef Siciak

Abstract. We consider a class of maximal plurisubharmonic functions and prove
several properties of it. We also give a condition of maximality for unbounded plurisub-
harmonic functions in terms of the Monge–Ampère operator (ddceu)n.

1. Introduction. Complex pluripotential theory, based on plurisubhar-
monic (psh) functions and the Monge–Ampère operator (ddcu)n, is one of the
important directions in potential theory and multidimensional complex anal-
ysis. Built in the 1980s, the theory has already found many applications in the
geometrical questions of complex analysis and in the theory of psh functions.
By that time the extremal Green function Ψ(z,K), K ⊂⊂ Cn, which was
introduced by J. Siciak for the multidimensional Bernstein–Walsh theorem,
the P -measure ω(z,K,D), where K ⊂ D ⊂ Cn, the P -capacity P (K,D),
the condenser capacity C(K,D) and other basic objects of this theory were
mostly established and studied (see [S], [BT1], [BT2], [S1]–[S3], [Z]).

It is well-known that harmonic functions have a maximality property
in the class of subharmonic (sh) functions: if u is harmonic in a do-
main Ω ⊂ C then for every subharmonic function v ∈ sh(Ω) such that
lim infz→∂Ω(u(z)−v(z)) ≥ 0 we have u(z) ≥ v(z) for all z ∈ Ω. This property
of harmonic functions leads us to the definition of maximal plurisubharmonic
(psh) functions in the multidimensional case of Ω ⊂ Cn.

Definition 1.1 ([S2]). We say that a function u ∈ psh(Ω) is maximal
in the domain Ω if the maximum principle holds, i.e. whenever v ∈ psh(Ω)
satisfies lim infz→∂Ω(u(z)− v(z)) ≥ 0, then u(z) ≥ v(z) for all z ∈ Ω.

In contrast to the classical case n = 1, where every maximal function is
harmonic, and therefore C∞ smooth, a maximal psh function in Cn, n > 1,
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need not be C∞. For example, the function ln |z1|, which is maximal in C2
z1,z2 ,

shows that there exist maximal functions which are unbounded.
For further study of maximal functions in Cn we recall the following

standard notation:
d = ∂ + ∂, dc = i(∂ − ∂),

where

∂ =
∂

∂z1
dz1 + · · ·+

∂

∂zn
dzn, ∂ =

∂

∂z1
dz1 + · · ·+

∂

∂zn
dzn

so that
ddcu = 2i∂∂u, du ∧ dcu = 2i∂u ∧ ∂u

and

(ddcu)n = ddcu ∧ · · · ∧ ddcu = const det

(
∂2u

∂zj∂zk

)
dV.

Bremermann [B] noted that if u ∈ C2(Ω) ∩ psh(Ω) is maximal, then
(ddcu)n = 0. Later Kerzman [K] proved that if (ddcu)n = 0 then u is maxi-
mal. For a bounded u ∈ psh(Ω)∩L∞loc(Ω) Bedford and Taylor [BT1] defined
the Monge–Ampère operator as a current, by the following recurrence rela-
tion:

(1)
�
(ddcu)k ∧ϕ =

�
u(ddcu)k−1∧ddcϕ, ϕ ∈ D(n−k,n−k), k = 1, . . . , n−1.

Here the space of test forms is D(n−k,n−k), the space of all differential forms
of bi-degree (n− k, n− k) with C∞ coefficients and such that suppϕ ⊂⊂ Ω.
Later, in [BT2] it was proved that (ddcu)k is well-defined, i.e. (ddcuj)k →
(ddcu)k for any approximation uj ↓ u. Bounded maximal functions are
characterized by the Monge–Ampère equation: u ∈ L∞loc(Ω) ∩ psh(Ω) is
maximal if and only if (ddcu)n = 0. Moreover, the following comparison
principle of Bedford–Taylor [BT2] is true: if u, v ∈ psh(Ω) ∩ L∞loc(Ω) and
F = {z ∈ Ω : u(z) < v(z)} ⊂⊂ Ω, then

(2)
�

F

(ddcu)n ≥
�

F

(ddcv)n.

In general, the definition of (ddcu)n for arbitrary u ∈ psh(Ω) is still a
hard problem. Namely, first, in 1975 Shiffman and Taylor showed that there
is a u ∈ psh(Cn) such that

	
B (ddcuj)

n →∞ for a ball B ⊂⊂ Cn, where
uj ↓ u. Moreover Kiselman [KS] constructed the following simple example:
the function

u(z) = (− ln |z1|)1/n(|z2|2 + · · ·+ |zn|2 − 1),

which is psh near the origin, has unbounded Monge–Ampère mass near
z1 = 0.
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Secondly, U. Cegrell [C1] suggested the following example. For the psh
function u(z) = ln |z1|2 + · · ·+ ln |zn|2, if we take the approximation

uj(z) = ln(|z1 . . . zn|2 + 1/j) ↓ u(z),

then (ddcuj)
n → 0. On the other hand, if we take the approximation

vj(z) = ln(|z1|2 + 1/j) + · · ·+ ln(|zn|2 + 1/j) ↓ u(z),

then (ddcuj)
n → n!4nδ0, where δ0 is the Dirac measure.

This example shows that for arbitrary psh functions the operator (ddcu)n
cannot be well-defined by approximation.

The class E (Ω) of psh functions, bigger than psh(Ω)∩L∞loc(Ω), yet with
the Monge–Ampère operator (ddcu)n well-defined on it, was introduced by
Cegrell [C2]. Afterwards, Z. Błocki [B2] proved that E (Ω) is the maximal
class of psh functions for which the operator (ddcu)n is well-defined, i.e. for
each open set U ⊂⊂ Ω there exists a Borel measure µ such that for any
sequence uj ∈ psh(U) ∩ C∞(U) with uj ↓ u we have (ddcuj)

n → µ. In this
case we put (ddcu)n = µ.

For a function u in the Cegrell class E (Ω) all currents (ddcu)k, 1 ≤ k ≤ n,
are also well-defined, and u ∈ E (Ω) is maximal if and only if (ddcu)n = 0.
For more details on the Cegrell class E (Ω) see [C1]–[C3], [B1]–[B3], [Ko],
[CGZ].

The aim of this note is to give a bigger, than {u ∈ E (Ω) : (ddcu)n = 0},
class of maximal functions in terms of (ddceu)n (conditions (14) and (15) of
Theorem 3.3). Every maximal psh function satisfies (14) but, unfortunately,
it is unknown to the author if all maximal psh functions satisfy (15).

2. Some properties of maximal psh functions. The next proposi-
tion is convenient in applications (see [S2, C3, Kl])

Proposition 2.1. The following statements are equivalent:

(i) u is maximal in Ω;
(ii) for any domain G ⊂⊂ Ω and for any function v ∈ psh(G),

lim inf
z→∂G

(u(z)− v(z)) ≥ 0 implies u(z) ≥ v(z), ∀z ∈ G;

(iii) for any domain G ⊂⊂ Ω and for any function v ∈ psh(Ω),

u|∂G ≥ v|∂G implies u(z) ≥ v(z), ∀z ∈ G.

The implication (iii)⇒(i) is clear. For the implications (i)⇒(ii)⇒(iii) we
note that the function

(3) w(z) =

{
max{u(z), v(z)} if z ∈ G,
u(z) if z ∈ Ω \G,
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is psh in Ω and lim infz→∂Ω(u(z) − w(z)) = 0. Hence u(z) ≥ w(z) for all
z ∈ Ω and u(z) ≥ v(z) for all z ∈ G.

Theorem 2.2. If for u ∈ psh(Ω) there exists a sequence uj ∈ psh(Ω) ∩
L∞loc(Ω) with uj ↓ u and (ddcuj)

n → 0, then u is maximal. Conversely, if u
is maximal, then there exists an approximation {uj} such that

(4)

uj ∈ psh(Ωj) ∩ L∞loc(Ωj), (ddcuj)
n = 0, uj(z) ↓ u(z),

Ωj ⊂⊂ Ωj+1 ⊂⊂ Ω, Ω =
∞⋃
j=1

Ωj .

Theorem 2.2 was first proved in [S2] under the assumption that the se-
quence {uj} is continuous. A similar property of maximal psh functions was
considered in [B1]. Cegrell [C3] has proved the following version of maximal-
ity: Let Ω ⊂ Cn be a hyperconvex domain and let u ∈ psh(Ω), u < 0. Then
u is maximal if and only if there exists a sequence {uj}, uj ∈ E0 ∩ C(Ω),
uj ≥ u, which converges pointwise to u and the sequence (ddcuj)

n con-
verges to 0 as j →∞. Here E0 is the class of bounded psh functions u such
that

lim
z→∂Ω

u(z) = 0 and
�

Ω

(ddcu)n <∞.

Proof of Theorem 2.2. Let u ∈ psh(Ω) and suppose that there exists a
sequence uj ∈ psh(Ω) ∩ L∞loc(Ω) with uj ↓ u and (ddcuj)

n → 0.
Suppose on the contrary that u is not maximal. Then there exists a

domain G ⊂⊂ Ω and a function v ∈ psh(Ω) such that u(z) ≥ v(z) in a
neighborhood of ∂G, but u(z0) < v(z0) for some z0 ∈ G.

We fix an ε>0 with u(z0)+ε < v(z0) and put δ=ε/(2max{|z|2 : z ∈ G}).
Then the function ṽ = v + δ|z|2, plurisubharmonic in Ω, satisfies the condi-
tions

(5) u(z0) + ε < ṽ(z0), u|∂G + ε > ṽ|∂G.

We can choose j0 ∈ N so large that uj(z0) + ε < ṽ(z0) for j ≥ j0. Since
uj |∂G + ε > ṽ|∂G, approximating uj , v in a neighborhood of G by standard
sequences uk,j ↓ uj , vk ↓ v, uk,j , vk ∈ C∞, k = 1, 2, . . . , and putting ṽk =
vk + δ|z|2, by the comparison principle we have

(6)
�

F

(ddcuk,j)
n ≥

�

F

(ddcṽk)
n, F = {z ∈ G : uk,j + ε < ṽk} ⊂⊂ G.

We note that E = {u(z)+ ε < ṽ(z)} 6= ∅ by (5). Therefore, the Lebesgue
measure mesE is strictly positive. Since E =

⋃
j Ej , where Ej = {uj + ε

< ṽ}, Ej ⊂ Ej+1, it follows that limj→∞mesEj = mesE. By (6) we have
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(7)
�

G

(ddcuj)
n ≥ lim sup

k→∞

�

G

(ddcuk,j)
n ≥ lim sup

k→∞

�

F

(ddcuk,j)
n

≥ lim sup
k→∞

�

F

(ddcṽk)
n ≥ lim sup

k→∞

�

{uk,j+ε<ṽ}

(ddcṽk)
n

≥ δn lim sup
k→∞

�

{uk,j+ε<ṽ}

(ddc|z|2)n = δn lim sup
k→∞

mes{uk,j < ṽ}

= δnmesEj ;

on letting j →∞ this gives lim supj→∞
	
G (ddcuj)

n ≥ δnmesE > 0, contra-
dicting the claim limj→∞(ddcuj)

n = 0.
Let now u be a maximal function. For fixed domains G ⊂⊂ Ω with

∂G smooth, we fix an approximation wj ↓ u, wj ∈ psh(G′) ∩ C∞(G′), j =
1, 2, . . . , where G ⊂⊂ G′ ⊂⊂ Ω. It is well-known that the regularization
v∗j (z) = lim supw→z vj(w) of

(8) vj = sup{p ∈ psh(G) ∩ C(G) : p|∂G ≤ wj |∂G}
is a bounded and psh function in G with vanishing Monge–Ampère operator,
(ddcv∗j )

n = 0. Moreover, since u is maximal, we have v∗j (z) ↓ u(z) for all
z ∈ G.

We prove the last statement. It is clear that lim infz→ξ v
∗
j (z) ≥ wj(ξ)

for ξ ∈ ∂G. On the other hand, if ṽj = sup{p ∈ sh(G) ∩ C(G) : p|∂G ≤
wj |∂G}, then ṽ∗j is a solution of the classical Dirichlet problem ∆ṽ∗j = 0,
ṽ∗j |∂G = wj |∂G. Since ṽ∗j (z) ≥ v∗j (z) for all z ∈ G, we have lim supz→ξ v

∗
j (z) ≤

lim supz→ξ ṽ
∗
j (z) = wj(ξ) for ξ ∈ ∂G, so that v∗j |∂G ≡ wj |∂G. Hence the

function

(9) w̃j(z) =

{
v∗j (z) if z ∈ G,
wj(z) if z ∈ G′ \G,

is psh in G′. Moreover, w̃j is decreasing and if limj→∞ w̃j(z) = w(z), then
w(z) ∈ psh(G′) and w(z) ≡ u(z) in G′\G. Putting w(z) ≡ u(z) for z ∈ Ω\G′
we can assume that w(z) ∈ psh(Ω) and w(z) ≡ u(z) in Ω \ G. Since
w(z) ≥ u(z) and u is maximal, it follows that w(z) ≡ u(z) in Ω, i.e.
v∗j (z) ↓ u(z), z ∈ G.

Now it is not difficult, applying this process, to construct a sequence of
domains Ωj ⊂ Ω and approximations uj(z) ↓ u(z), uj ∈ psh(Ωj)∩L∞loc(Ωj),
(ddcuj)

n = 0, where Ωj ⊂⊂ Ωj+1 ⊂⊂ Ω, Ω =
⋃∞
j=1Ωj .

Remark 2.3. If the domain G ⊂⊂ Ω above is strongly pseudoconvex,
then the upper envelope (8) is continuous in G by the Bremermann–Walsh
theorem. Since for every domain G ⊂⊂ Ω with smooth boundary ∂G the
function (9) satisfies w̃j |∂G ≡ wj |∂G ∈ C(∂G) and w̃j ∈ psh(G′), G′ ⊃ G,
the technique of Walsh allows us also to prove continuity of v∗j , that is,
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v∗j ∈ psh(G) ∩ C(G). Therefore, the functions uj in (4) can be chosen to be
continuous, uj ∈ psh(Ωj) ∩ C(Ωj).

Remark 2.4. Theorem 2.2 shows that for a given maximal function
u ∈ psh(Ω), locally, in a fixed ball B ⊂⊂ Ω, there exists at least one se-
quence uj ↓ u with uj ∈ psh(B) ∩ C(B) and (ddcuj)

n → 0. On the other
hand, Błocki [B3] showed that the function u(z, w) = −

√
ln |z| · ln |w| is

maximal in U2 \ (0, 0), where U2 = {|z| < 1, |w| < 1}, but for the spe-
cial approximation uj = max(u,−j) the operator (ddcuj)

n does not tend
to 0 in U2 \ (0, 0). This counterexample shows that the special approxi-
mation max{u,−j} ↓ u is not suitable for establishing criteria for maxi-
mality.

3. A class of maximal functions. Let u∈psh(Ω) in a domain Ω⊂Cn.
We put v = eu and ua = ln(v + a) = ln(eu + a), a > 0. Then ua ↓ u as a ↓ 0
and v ∈ psh(Ω) ∩ L∞loc(Ω). Therefore, the operators (ddcv)p, v(ddcv)p and
dv ∧ dcv ∧ (ddcv)p−1 are correctly defined. We have

ddcua = (v + a)−1[ddcv − (v + a)−1dv ∧ dcv],
(ddcua)

p = (v + a)−p[(ddcv)p − p(v + a)−1dv ∧ dcv ∧ (ddcv)p−1]

=
1

(v + a)p+1
[v(ddcv)p − pdv ∧ dcv ∧ (ddcv)p−1]

+
a

(v + a)p+1
(ddcv)p

= ωp1,a + ωp2,a, 1 ≤ p ≤ n.

The currents ωp1,a, ω
p
2,a are positive. Indeed, this is clear for ω

p
2,a. To prove

it for ωp1,a, we show that the current φp = v(ddcv)p − pdv ∧ dcv ∧ (ddcv)p−1

is positive. We take the standard approximation uj ↓ u and put vj = euj .
Then we have

φpj = vj(dd
cvj)

p − pdvj ∧ dcvj ∧ (ddcvj)
p−1

= e(p+1)uj (ddcuj + duj ∧ dcuj)p

− pe(p+1)ujduj ∧ dcuj ∧ (ddcuj + duj ∧ dcuj)p−1

= e
(p+1)uj

(ddcuj)
p ≥ 0.

It is clear that φpj → φp as j →∞. Thus φp ≥ 0.
We put formally

ωp1 = lim
a→0

ωp1,a =
φp

vp+1
.

Then ωp1 characterizes (ddcu)p completely outside the singular set S =
{u(z) = −∞}. If φp/vp+1 is locally bounded in Ω, i.e.,
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�

K\S

φp ∧ (ddc|z|2)n−p

vp+1
<∞ ∀K ⊂⊂ Ω,

then ωp1 = φp/vp+1 represents a current in Ω which we call the regular
part (the part outside S) of (ddcu)p. However, for Kiselman’s example u(z) =
(− ln |z1|)1/n(|z2|2 + · · ·+ |zn|2 − 1) the measure ωn1 = φn/vn+1 is not
bounded near z1 = 0. It follows that for some psh functions, ωp1 may be
unbounded near the singular set S. In this case it is not possible to define
of (ddcu)p as a current, i.e., (ddcu)p is undefinable.

Definition 3.1. We say that (ddcu)p is definable at a point o ∈ Ω
if there exists a neighborhood U of o such that ωp1 bounded in U (then
it is a current) and as a → 0 the ωp2,a weakly tends to some current ωp2 ,
lima→0 ω

p
2,a = ωp2 .

We note that if (ddcu)p is definable at a point o ∈ Ω, then suppωp2 ⊂ S.
We will now study the current ωp2,a and its limit.

Fix α ∈ C∞(Ω) with B = suppα ⊂⊂ Ω. We can assume that u < 0
in B. Let

Bt = {v < t} ∩B and µα(t) =
�

Bt

(ddcv)p ∧ (ddc|z|2)n−pα(z), t > 0.

(We note that v = eu ∈ psh(Ω) ∩ L∞loc(Ω) and (ddcv)p ∧ (ddc|z|2)n−p is a
Borel measure.)

We want to find

(10) lim
a→0

ωp2,a(α) = lim
a→0

�

B1

a

(v + a)p+1
(ddcv)p ∧ (ddc|z|2)n−pα(z).

For a C2 smooth function v the integral in (10) is equal to (see [F])

�

B1

a

(v + a)p+1
(ddcv)p ∧ (ddc|z|2)n−pα(z) =

1�

0

a

(t+ a)p+1
dµα(t).

Integrating by parts we have

(11)
�

B1

a

(v + a)p+1
(ddcv)p ∧ (ddc|z|2)n−pα(z)

=

1�

0

a

(t+ a)p+1
dµα(t) =

aµα(1)

(1 + a)p+1
+ a(p+ 1)

1�

0

µα(t)

(t+ a)p+2
dt.

For an arbitrary plurisubharmonic function u ∈ psh(Ω) formula (11) also
holds. Indeed, one can find an approximating sequence uj ↓ u with uj ∈
psh(G)∩C∞(G), G being some fixed neighborhood of B. Then (11) follows
from the weak convergence ddceuj → ddceu.
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Now we need the following lemma:

Lemma 3.2. If the limit

(12) lim
t→0

µα(t)

tp
= A

exists, then the limit

lim
a→0

1�

0

aµα(t)

(t+ a)p+2
dt,

and consequently (10), also exists.

Proof. It is clear that the limit

lim
a→0

1�

0

atp

(t+ a)p+2
dt = C = const

exists. Hence

lim
a→0

1�

0

aµα(t)

(t+ a)p+2
dt = lim

a→0

1�

0

atp

(t+ a)p+2
(A+O(t)) dt = AC,

because it is not hard to see that
	1
0

atp

(t+a)p+2O(t)dt = O(a).

We note that if the limit

(13) lim
t→0

1

tp

�

Bt

(ddceu)p ∧ (ddc|z|2)n−p

exists for any B ⊂⊂ Ω, then (12) exists for every α ∈ C∞(Ω) with suppα
⊂⊂ Ω. So we obtain the following result:

Theorem 3.3. If the psh function u satisfies condition (13) and ωp1 is a
locally bounded current in Ω, then (ddcu)p is definable.

Theorems 2.2 and 3.3 give the following class of maximal functions:

Theorem 3.4. Let u ∈ psh(Ω) satisfy the following conditions:

φn = eu(ddceu)n − ndeu ∧ dceu ∧ (ddceu)n−1 = 0,(14)

lim
t→0

1

tn

�

Bt

(ddceu)n = 0.(15)

Then u is maximal.

We note that
lim
t→0

1

tn−ε

�

Bt

(ddceu)n = 0

for any fixed ε > 0.
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Remark 3.5. If u is maximal then φn = 0. In fact, for u ∈ psh(Ω) ∩
L∞loc(Ω) formula (15) is satisfied automatically, i.e. ωn2 = 0. In this case

φn = v(ddcv)n − ndv ∧ dcv ∧ (ddcv)n−1 = e
(n+1)u

(ddcu)n

and φn = 0 if u is maximal.

For any maximal function u ∈ psh(Ω) we take by Theorem 2.2 an ap-
proximation uj ∈ psh(Ωj)∩L∞loc(Ωj) with (ddcuj)

n = 0, Ωj ⊂⊂ Ωj+1 ⊂⊂ Ω,
Ω =

⋃∞
j=1Ωj , uj(z) ↓ u(z). Then

φnj = vj(dd
cvj)

n − ndvj ∧ dcvj ∧ (ddcvj)
n−1 = 0,

where vj = euj , and φnj → φn as j →∞. It follows that φn = 0.

Example 3.6. Let u(z) = ln(|f1(z)|2 + · · ·+ |fk(z)|2) be a psh function
in the domain Ω ⊂ Cn, where f1, . . . , fk, 1 ≤ k < n, are holomorphic in Ω,
such that the analytic set {z ∈ Ω : f1(z) = · · · = fk(z) = 0} is not empty.
Then u /∈ E , but u satisfies conditions (14), (15): (ddceu)n = 0. Therefore it
is a maximal function in Ω.
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