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Abstract. The famous result of geometric complex analysis, due to Fekete and Szegö,
states that the transfinite diameter d(K), characterizing the asymptotic size of K, the
Chebyshev constant τ(K), characterizing the minimal uniform deviation of a monic poly-
nomial on K, and the capacity c(K), describing the asymptotic behavior of the Green
function gK(z) at infinity, coincide.

In this paper we give a survey of results on multidimensional notions of transfinite
diameter, Chebyshev constants and capacities, related to these classical results and ini-
tiated by Leja’s definition of transfinite diameter of a compact set K ⊂ Cn and the
author’s paper [Mat. Sb. 25 (1975)], where a multidimensional analog of the Fekete equal-
ity d(K) = τ(K) was first considered for any compact set in Cn. Using some general
approach, we introduce an alternative definition of transfinite diameter and show its co-
incidence with Fekete–Leja’s transfinite diameter. In conclusion we discuss an application
of the results of the author’s paper mentioned above to the asymptotics of the leading
coefficients of orthogonal polynomial bases in Hilbert spaces related to a given pluriregular
polynomially convex compact set in Cn.

1. Introduction. The famous result of geometric complex analysis
(Fekete [24], Szegö [56], see also [25, 58]) states that three characteristics
of a compact set K ⊂ C, which are defined in quite different ways, co-
incide. These characteristics are: the transfinite diameter d(K), measuring
the asymptotic size of K (the geometric approach); the Chebyshev constant
τ(K), characterizing the minimal uniform deviation of a monic polynomial
on K (the approximation theory approach); and the capacity c(K), describ-
ing the asymptotic behavior of the Green function gK(z) at the infinite point
(the potential theory approach).
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The transfinite diameter of a compact set K ⊂ C is the number

(1.1) d(K) := lim
s→∞

ds(K),

where

(1.2) ds(K) := max{|det (zµ−1
ν )sµ,ν=1|2/s(s−1) : zν ∈ K, ν = 1, . . . , s}

is the sth diameter of K, which can also be represented as the geometric
mean of extremal distances among s points on K (if s ≥ 2):

(1.3) ds(K) := max
{( ∏

ν<µ≤s
|zµ − zν |

)2/s(s−1)
: zν ∈ K

}
.

The Chebyshev constant of K is defined via

τ(K) := lim
s→∞

(
inf
{

max
z∈K

∣∣∣zs +
s−1∑
j=0

cjz
j
∣∣∣ : cj ∈ C, j = 0, 1, . . . , s− 1

})1/s
.

The capacity is determined by c(K) = exp(−ρK), where

ρK := lim
z→∞

(gK(z)− ln |z|)

is the Robin constant of K.
In this paper we give (Section 3) a survey of results on multidimensional

notions of transfinite diameter, Chebyshev constants and capacities, related
to these classical results and initiated by Leja’s definition of the transfinite
diameter of a compact set K ⊂ Cn and the author’s paper [61], where a
multidimensional analog of the Fekete equality d(K) = τ(K) was first con-
sidered for any compact set in Cn. In Section 4 we give a general observation
about interestimates between the least approximation of generalized monic
“polynomials” and extremal generalized Vandermondians with respect to a
given linearly independent system in a Banach space. Using this approach,
we introduce (Section 5) an alternative definition of the transfinite diame-
ter and show its coincidence with Fekete–Leja’s transfinite diameter. As an
application we obtain an expression of the transfinite diameter in terms of
extremal “Wronskians at the infinite point”, which seems to be new even in
the one-dimensional case. In conclusion (Section 6) we discuss an applica-
tion of the results of [61] to the asymptotics of the leading coefficients of
orthonormal polynomial bases in Hilbert spaces related to a given plurireg-
ular polynomially convex compact set in Cn.

2. Preliminaries and notation. Given an open set D ⊂ Cn we denote
by A(D) the space of all analytic functions onD with the usual locally convex
topology of locally uniform convergence on D. If K ⊂ Cn is a compact set
then A(K) is the locally convex space of all germs of analytic functions
on K, endowed with the standard inductive topology: recall that a sequence
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{ϕj} of germs converges to a germ ϕ in this topology if there is an open
neighborhood G ⊃ K and functions fj , f ∈ A(G), representing the germs
ϕj , ϕ respectively, such that fj converges to f locally uniformly in G. Given
a bounded positive Borel measure µ supported on K, we define the Hilbert
space AL2(K,µ) as the closure of A(K) in L2(K,µ). Moreover, M(K) is
the space of all bounded Borel measures on K with the norm ‖µ‖ := |µ|(K),
µ ∈M(K).

The pluripotential Green function of a compact set K ⊂ Cn is the func-
tion ([61, 62], see also [49, 53, 55, 66, 5])

gK(z) := lim sup
ζ→z

g◦K(ζ),(2.1)

g◦K(z) := sup{u(z) : u|K ≤ 0, u ∈ L(K)},(2.2)
where L is the Lelong class of all functions u ∈ Psh(Cn) with the property
that u(ζ) − ln |ζ| is bounded from above near the infinite point. The func-
tion gK(z) is either plurisubharmonic in Cn or identically +∞ (the latter is
equivalent to pluripolarity of K). A polynomially convex compact set K is
pluriregular if gK(z) ≡ 0 on K (then gK is continuous in Cn).

Much earlier, in the context of celebrated multidimensional polynomial
interpolation theory, Siciak [52] introduced the weighted extremal functions

Φ(z,K; b) := sup
s≥1

(sup{|p(z)|1/s : p ∈ Πs, |p(ζ)| ≤ exp sb(ζ), ζ ∈ K}),

Ψ(z,K; b) := sup
s≥1

(sup{|p(z)|1/s : p ∈ Hs, |p(ζ)| ≤ exp sb(ζ), ζ ∈ K}),

where z ∈ Cn and Πs (resp. Hs) is the set of all polynomials (resp. homoge-
neous polynomials) of degree ≤ s. If b ≡ 0, we write ΦK(z), ΨK(z) instead
of Φ(z,K; 0), Ψ(z,K; 0). Set

Φ∗K(z) := lim sup
ζ→z

ΦK(ζ), Ψ∗K(z) := lim sup
ζ→z

ΨK(ζ).

These functions proved to be closely related to the pluripotential Green
functions. Namely, the equalities

g◦K(z) ≡ lnΦK(z), gK(z) ≡ lnΦ∗K(z), z ∈ Cn,
were shown in [62] for a pluriregular compact set K and then several differ-
ent proofs were suggested for arbitrary K (see, e.g., [53, 54, 63, 22]). Siciak
showed ([54, 1.3 and 2.6]) that lnΨ∗K(z) is equal to the logarithmically ho-
mogeneous Green function

hK(z) := lim sup
ζ→z

sup{u(ζ) : u|K ≤ 0, u ∈ LH}, z ∈ Cn,

where LH consists of the functions u ∈ L that are logarithmically homoge-
neous, that is,

u(λz) = u(z) + ln |λ|, z ∈ Cn r {0}, λ ∈ C.
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Lemma 2.1. Suppose X, Y is a pair of locally convex spaces and J :
X → Y is an injective continuous linear operator with dense image. Then
the adjoint operator J∗ : Y ∗ → X∗ is also injective and, if X is reflexive,
the image J∗(Y ∗) is dense in X∗.

Proof. Indeed, let x∗ = J∗y∗, i.e. x∗(x) = J∗y∗(x) = y∗(Jx) for all
x ∈ X. Hence, if x∗ = 0, then y∗(Jx) = 0 for all x ∈ X, and, since J(X) is
dense in Y, we see that y∗ = 0. Thus J∗ is injective. Now let X be reflexive
and suppose that J∗(Y ∗) is not dense in X∗. Then, by the Hahn–Banach
theorem, there exists x0 ∈ X∗∗ = X, x0 6= 0, such that x0(z∗) = z∗(x0) = 0
for each z∗ = J∗y∗, y∗ ∈ Y ∗. Therefore 0 = J∗y∗(x0) = y∗(Jx0) = 0 for any
y∗ ∈ Y ∗, hence Jx0 = 0, which contradicts the injectivity of J .

Remark 2.2. In what follows, we always treat the operator J as an
identical embedding, identifying x with Jx and using the notation X ↪→ Y
for a continuous linear embedding. In particular, we also write Y ∗ ↪→ X∗ in
the situation of Lemma 2.1.

Notation. We use the notation |f |E := sup{|f(z)| : z ∈ E} for a
function f : E → C. Denote by Zn+ the set of all integer-valued vectors
k = (k1, . . . , kn) with non-negative coordinates. Let |k| := k1 + · · · + kn be
the degree of the multiindex k. Introduce an enumeration {k(i)}i∈N of the set
Zn+ via the conditions: the sequence s(i) := |k(i)| is nondecreasing and on
each set Ks := {|k(i)| = s} the enumeration coincides with the lexicographic
order relative to k1, . . . , kn. Denote by i(k) the number assigned to k under
this ordering. Let

(2.3) ei(z) := zk(i) := z
k1(i)
1 · · · zkn(i)

n , i ∈ N,

be the system of all monomials, enumerated as above. Notice that the number
of multiindices of degree no larger than s is ms := Css+n and the number
of those of degree s is Ns := ms − ms−1 = Css+n−1, s ≥ 1; N0 = 1. Let
ls :=

∑s
q=0 qNq for s = 0, 1, . . . .

We consider the standard (n− 1)-simplex

(2.4) Σ :=
{
θ = (θν) ∈ Rn : θν ≥ 0, ν = 1, . . . , n;

n∑
ν=1

θν = 1
}

and its interior (in the relative topology on the hyperplane containing Σ)

Σ◦ := {θ = (θν) ∈ Σ◦ : θν > 0, ν = 1, . . . , n}.

For θ ∈ Σ we denote by Lθ the set of all infinite sequences L ⊂ N such that
k(i)/s(i)

L→ θ. We also use the notation k! := k1! · · · kn!, k = (kν) ∈ Zn+.
We denote by Πs (resp. Hs) the set of all polynomials (resp. homogeneous
polynomials) of degree ≤ s, s = 0, 1, 2, . . . .
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We denote byN(z) any norm in Cn; the most applicable are the Euclidean
and polydisc norms,

|z| :=
( n∑
ν=1

|zν |2
)1/2

, ‖z‖ := max{|zν |}, z = (zν) ∈ Cn.

3. Multidimensional characteristics of sets in Cn. A notion of
transfinite diameter for K ⊂ Cn was first introduced by F. Leja [39]. Let
K be a compact set in Cn, and {ζ1, . . . , ζi} a finite subset of K. Consider
the Vandermondians

V (ζ1, . . . , ζi) := det (eα(ζβ))iα,β=1,

where eα(z) := zk(α), α ∈ N, and set

Vi := sup{|V (ζ1, . . . , ζi)| : ζj ∈ K, j = 1, . . . , i}.
The s-diameter of K is the number ds(K) := (Vms)

1/ls .

Definition 3.1. The (Fekete–Leja) transfinite diameter of a compact
set K ⊂ Cn is the constant

(3.1) d(K) := lim sup
s→∞

ds(K).

Leja posed the problem of existence of the usual limit in this definition.
This problem was solved by Schiffer and Siciak in [51] for the particular
case when K is the Cartesian product of plane sets. In order to solve this
problem for an arbitrary compact set K ⊂ Cn , Zakharyuta [61] introduced
the directional Chebyshev constants

τ(K, θ) := lim sup
i→∞

k(i)/|k(i)|→θ

τi := sup
L∈Lθ

lim sup
i∈L

τi, θ ∈ Σ,(3.2)

τi = τi(K) := (Mi)
1/s(i), i ∈ N,(3.3)

where

(3.4) Mi := inf
{
|p|K : p = ei +

i−1∑
j=1

cjej

}
, i ∈ N,

is the least uniform deviation of monic polynomials from the identical zero
on the compact set K. Any polynomial p(z) = ti(z) attaining the inf in (3.4)
is called a Chebyshev polynomial (it always exists but may not be unique).

It is proved in [61] that the usual limit exists in (3.2) for each θ ∈ Σ◦ and
the function τ(K, θ) is convex (hence continuous) on Σ◦ and bounded on Σ
(Section 4 in [61]). Thus the geometric mean of the directional Chebyshev
constants, called the principal Chebyshev constant, is well-defined:

τ(K) := exp
�

Σ

ln τ(K, θ) dσ(θ),
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where σ is the normalized Lebesgue measure on Σ; it is assumed that
exp(−∞) = 0.

The main result of [61], which can be considered as a natural multidi-
mensional analog of the Fekete equality [24], is

Theorem 3.2. The usual limit exists in (3.1) and

d(K) = τ(K) = exp
�

Σ

ln τ(K, θ) dσ(θ).

The proof of this theorem can be divided into two parts. The first one is
the proof that the geometric mean of the τi corresponding to monomials of
degree s,

Ts(K) :=
( ms∏
i=ms−1+1

τi

)1/Ns
=
( ms∏
i=ms−1+1

Mi

)1/sNs

converges to the principal Chebyshev constant τ(K) as s → ∞ (Lem-
mas 5, 6 in [61]); this step is based on the existence of the directional limits
in (3.2) and the properties of the function τ(K, θ) mentioned above. The
second part of the proof establishes that, if the sequence Ts(K) has a limit,
then ds(K) converges to the same number; it is based on the interestimates
between the extremal Vandermondians and the least deviations of monic
polynomials, which will be treated in some generalized form below in Sec-
tion 4.

Let us give a short survey of some results related to the above assertions.
Notice that the methods developed in [61] (especially Lemmas 1–6 there)
proved to be applicable in more general situations. For instance, these meth-
ods were adapted by Rumely, Lau and Varley ([38, 47, 48]) in order to prove
the existence of sectional capacities in arithmetic geometry.

Siciak introduced the extremal homogeneous Vandermondians of a com-
pact set K ⊂ Cn:

Ws = max{|det (ems−1+α(ζβ))Nsα,β=1| : ζβ ∈ K}
and asked whether the limit exists in the definition of the homogeneous
transfinite diameter:

D(K) := lim
s→∞

(Ws)
1/sNs .

Jędrzejowski [28] gave a positive answer to this question by following argu-
ments analogous to those used in [61].

Bloom and Levenberg [15] studied weighted characteristics of a com-
pact set K ⊂ Cn, inspired by the one-dimensional weighted potential theory
(see, e.g., [50]) and Siciak’s notion of weighted extremal functions ([52]).
These characteristics are defined as follows. Suppose that a nonnegative up-
per semicontinuous function ω : K → R is an admissible weight, that is,



Transfinite diameter 299

the set {z ∈ K : ω(z) > 0} is nonpluripolar. Then the weighted directional
Chebyshev constants are defined, by analogy with unweighted ones, via

(3.5) τw(K, θ) := lim sup
i→∞

k(i)/|k(i)|→θ

τwi := sup
L∈Lθ

lim sup
i∈L

τwi , θ ∈ Σ,

where

(3.6) τwi = τwi (K) :=
(

inf
{
|ws(i)p|K : p = ei +

i−1∑
j=1

cjej

})1/s(i)
, i ∈ N.

Existence of the limit in (3.5), continuity of the function τw(K, θ) for θ ∈ Σ◦
and the definition of the weighted principal Chebyshev constant

τw(K) := exp
�

Σ

ln τw(K, θ) dσ(θ)

were given in [15] by slightly modifying the arguments of [61] (the last con-
stant was denoted by dw(K) there and named weighted transfinite diameter).
On the other hand, also in [15] the extremal weighted Vandermondians

Wms := max{|V (ζ1, . . . , ζms)| · |w(ζ1) · · ·w(ζms)|s : ζi ∈ K}

were introduced and it was asked whether the limit

(3.7) δw(K) := lim
s→∞

(Wms)
1/ls

exists and equals τw(K). The same authors proved in [16] that the limit (3.7)
indeed exists, while the relation between the constants τw(K) and δw(K)
turned out to be a harder nut. Namely, they proved the following brilliant
formula:

(3.8) δw(K) =
(

exp
�
(lnw)(ddc(gwK))n

)1/n
τw(K),

where

gwK(z) = lim sup
ζ→z

lnΦ(z,K; b)

= lim sup
ζ→z

sup{u(ζ) : u ∈ L, u(ζ) ≤ b(ζ), ζ ∈ K}

with b(z) := − lnw(z). An important ingredient of the proof of (3.8) is a
remarkable Rumely formula, expressing the unweighted transfinite diameter
d(K) via the Robin function (see the end of this section).

Unlike the one-dimensional case, the function gK(z)− lnN(z), in general,
has plenty of partial limits as |z| → ∞ and they depend on the choice of
the norm N in Cn. Therefore a wide variety of multidimensional notions of
capacity were suggested by many authors ([61, 62, 49, 53, 54, 1, 2, 3, 5, 33, 4]).
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The earliest were the capacities ([61, 62])

c(K) := exp
(
− lim sup
|z|→∞

(gK(z)− ln ‖z‖)
)
,

C(K) := exp
(
− lim inf
|z|→∞

(gK(z)− ln |z|)
)
,

and the capacities c+(K) and C+(K) obtained from them by replacing
lim sup by lim inf. These characteristics vanish if and only if K is pluripolar.
Unfortunately, none of them coincides with d(K). The inequality c(K) ≤
d(K) holds for all K ⊂ Cn [61]; it follows directly that C(K) ≤

√
n c(K)

≤
√
nd(K). Bloom and Calvi [13] proved a stronger estimate: C(K) ≤

exp
(

1
2

∑n
j=2

1
j

)
d(K). On the other hand, Levenberg and Taylor [41] have

shown that, if K is contained in the unit ball Bn, then d(K) ≤ AC(K)δ

with some positive constants A and δ which do not depend on K. Since
C(λK) = λC(K) for each λ > 0, it follows that the transfinite diameter
vanishes simultaneously with the capacity C(K), that is, if and only if K is
pluripolar, which answers affirmatively the problem posed in [61].

In order to get multidimensional analogs of the Szegö equality τ(K) =
c(K), some authors modified the notion of Chebyshev constant or/and the
notion of capacity. One way of modifying Chebyshev constants is via certain
normalizations of the leading homogeneous part of a polynomial ([61, 55]):

T (K) = lim sup
s→∞

(
inf
{
|p|K : p =

∑
|k(i)|≤s

ciei ∈ Πs,
∑
|k(i)|=s

|ci| = 1
})1/s

= lim sup
s→∞

(
inf
{
|p|K : p =

∑
|k(i)|≤s

ciei ∈ Πs, max
|k(i)|=s

{|ci|} = 1
})1/s

= lim sup
s→∞

(
inf
{
|p|K : p ∈ Πs,

∣∣∣ ∑
|k(i)|=s

ciei

∣∣∣
Bn

= 1
})1/s

.

That the usual limit exists here has been proved by Siciak [54] (there was a
gap in the proof of [61]). The inequality c(K) ≤ T (K) was proved in [61].
The equality T (K) = C(K) was claimed in [49], but actually it was only
proved there that T (K) ≤ C(K) for K pluriregular; it follows from [34] that
it is also true for arbitrary compact sets. Thus

c(K) ≤ T (K) ≤ C(K).

It is easy to see that c(K) = T (K) for n-circular compact sets, but it remains
open whether this equality is true for an arbitrary compact set.

J. Siciak [54] introduced and studied a wide variety of “Chebyshev con-
stants” via normalizing restrictions on the whole polynomial on the fixed
pluriregular compact set X ⊂ Cn (the most interesting are the cases X = Bn

or X = Un) and a related collection of capacities. In particular, he proved
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that the Chebyshev constant

(3.9) TX(K) := lim
s→∞

(inf{|p|K : p ∈ Πs, |p|X = 1})1/s

and its homogeneous version

(3.10) T HX (K) := lim
s→∞

(inf{|p|K : p ∈ Hs, |p|X = 1})1/s

coincide, respectively, with the capacities

(3.11) CX(K) :=
1

|exp gK(z)|X
, CHX (K) :=

1

|exphK(z)|X
,

where hK(z) is the logarithmically homogeneous Green function (see Pre-
liminaries). Notice that CX(K) is of interest for subsets of X only, since
CX(K) = 1 if K ⊃ X.

Alexander and Taylor [3] investigated interestimates between the charac-
teristic TB̄n(K) and the condenser capacity C(K,Bn), introduced by Bedford
and Taylor [6].

Another way of defining capacities and Chebyshev constants is via inte-
gral normalizing restrictions instead of the uniform estimates in (3.9)–(3.11).
Siciak [54] introduced the capacities

Cµ(K) := exp
(
−
�
gK(z) dµ(z)

)
, CHµ (K) := exp

(
−
�
hK(z) dµ(z)

)
,

where µ is a probability measure in Cn satisfying some natural conditions,
which hold, in particular, for the normalized Lebesgue measure σ on the
sphere S = ∂Bn.

Taylor [57] proved the estimate C(K) ≤ Cσ(K)1/n.
Alexander’s projective capacity is defined via

γ(K) := lim
s→∞

(
inf

{
|p|K : p ∈ Hs,

1

sκn

�

S

log |p| dσ = 1

})1/s

,

where κn =
	
S ln |zn| dσ = −1

2

∑n−1
j=1

1
j . This Chebyshev-type constant was

originally defined on sets K ⊂ S or on subsets of the projective space Pn−1

([1, 2]), but it can be considered on sets K ⊂ Cn as well ([54, 3, 28]). Cegrell
and Kołodziej [21] proved the equality

γ(K) = (expκn)CHµ (K)

(Siciak [53] considered earlier the case n = 2). Jędrzejowski [29, 30] computed
this characteristic for intersections of ellipsoids in Cn.

It seems that the most natural way to a multidimensional analog of the
Szegö equality is via the notion of Robin function ofK [57, 5]. The projective
version of the Robin function is defined via

ρ̃K([z]) := lim sup
|λ|→∞

(gK(λz)− ln |λz|), [z] ∈ Pn−1, z ∈ Cn r {0},
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where [z] is the point of Pn−1 determined by z; its modification

ρK(z) := ρ̃K([z]) + ln |z| = lim sup
|λ|→∞

(gK(λz)− ln |λ|), z ∈ Cn,

is a plurisubharmonic function in Cn (we set ρK(0) = −∞), which is loga-
rithmically homogeneous.

Nivoche [43] introduced a directional Chebyshev constant via

m(K, ζ) := lim
s→∞

ms(K, ζ)1/s = sup{ms(K, ζ)1/s : s ∈ N},

ms(K, ζ) := inf{|p|K : p ∈ Πs, p̂(ζ) = 1}, ζ ∈ S,
and proved that it coincides with the directional capacity determined by the
Robin function:

m(K, ζ) = CK(ζ) := exp(−ρK(ζ)), ζ ∈ S.
Bloom and Levenberg [15] proved a weighted version of this result.

Bloom and Calvi [13] proved that the transfinite diameter d(K) is de-
termined uniquely by the Robin function ρK (this result is based on a
polynomial approximation theorem of Bloom [11], see also [55]). Recently
Rumely [46] has established an impressive integro-differential formula ex-
pressing the transfinite diameter of a compact set in Cn via its Robin func-
tion ρK , which can be considered as a genuine analog of the classical Szegö
equality d(K) = c(K) (see, also, [23, 17, 16, 40, 7, 8, 9, 10]).

Numerous aspects concerned with the capacity characteristics remained
untouched here: extension of set characteristics to arbitrary sets in Cn,
Choquet’s axioms, further applications to polynomial and rational approx-
imation, convergence of measures generated by extremal Fekete points etc.
They can be found in [4, 5, 6, 12, 18, 19, 22, 32, 33, 35, 36, 37, 49, 53, 54,
64, 67].

4. Some general observations. An important step in the proof of the
equality τ(K) = d(K) are interestimates between the least deviationMi and
the extremal Vandermondian Vi (see Lemma 4 and Corollary 5 in [61] and
Corollary 4.3 at the end of this section). Here we show that this relation is
of a quite general nature.

Let X be an infinite-dimensional complex Banach space. Given a se-
quence {hi}∞i=1 in X set

(4.1) ∆i = ∆i,X := inf
{∥∥∥hi +

i−1∑
j=1

cjhj

∥∥∥
X

: cj ∈ C
}
, i ∈ N,

which is a natural generalization of the least deviation of monic polynomials
from zero. It is a commonplace that there exists a “Chebyshev polynomial”
(maybe nonunique) Ti = hi+

∑i−1
j=1 tijhj such that ∆i = ‖Ti‖.
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Let X∗ be the dual space of X. Consider the determinant (Vandermon-
dian)

(4.2) V(f1, . . . , fi) := det (fβ(hα))iα,β=1,

with fβ ∈ X∗, β = 1, . . . , i. Suppose that A ⊂ BX∗ is a norming set, that is,

‖x‖ = sup{|f(x)| : f ∈ A}.
Introduce a sequence

(4.3) Vi = VX,Ai := sup{|V(f1, . . . , fi)| : fβ ∈ A, β = 1, . . . , i}.
If A = BX∗ , we denote this characteristic by VXi ; if X has a predual space
Y = X∗ and A = BX∗ , we use the notation ṼXi . If K is a compact set
in Cn, X = C(K), hi is the sequence of monomials (2.3), and A = {δz :

z ∈ K}, where δz(x) := x(z), then VX,Ai coincides with the Leja sequence Vi.
The following statement shows that the sequence Vi characterizes the linear
independence of the sequence hi.

Lemma 4.1. The following statements are equivalent:

(i) the sequence {hj} is linearly independent in X;
(ii) the numbers ∆i are all nonzero;
(iii) the numbers Vi = VX,Ai are all nonzero.

Proof. (i)⇔(ii) is trivial. To prove (iii)⇒(i) suppose that there is j such
that

∑j
α=1 cαhα = 0 with some nontrivial coefficients. Then all determinants

(4.2) with i = j vanish for any sequence {fβ}jβ=1 ⊂ X
∗, since their rows are

not linearly independent. Thus Vj = 0. The implication (i)⇒(iii) is included
in the proof of the lemma below.

Lemma 4.2. Let {hj} be a linearly independent sequence in X. Then
Vj = VX,Aj > 0 for each j, and

(4.4) ∆j ≤
Vj
Vj−1

≤ j∆j , j = 2, 3, . . . .

Proof. It is clear that V1 = sup{|f1(h1)| : f1 ∈ A} = ‖h1‖ = ∆1 > 0.
Supposing that it has been proved that Vj > 0 for i ≤ j − 1, we will prove
that Vi > 0. To this end it suffices to prove the left inequality in (4.4) for
j = i, assuming that Vi−1 > 0. Given ε with 0 < ε < Vi−1, choose fν ∈ A,
ν = 1, . . . , i− 1, so that

0 < Vi−1 − ε ≤ V (f1, . . . , fi−1).

For an arbitrary fi ∈ A consider a “polynomial”

h :=
i∑

j=1

Aij
V (f1, . . . , fi−1)

hj ,
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where Aij is the cofactor of fi(hj) in the matrix (fβ(hα))iα,β=1. Since Aii =
V(f1, . . . , fi−1), the leading coefficient of h is 1. Therefore

‖h‖ ≥ ∆i.

On the other hand,

fi(h) =
i∑

j=1

Aij
V (f1, . . . , fi−1)

fi(hj) =
V(f1, . . . , fi−1, fi)

V(f1, . . . , fi−1)
,

hence
‖h‖ = sup{|fi(h)| : fi ∈ A} ≤

Vi
Vi−1 − ε

.

Since ε > 0 is arbitrary, we obtain the estimate from below in (4.4).
In order to get the estimate from above in (4.4), we take arbitrary ele-

ments fν ∈ A, ν = 1, . . . , i. Let Ti = hi+
∑i−1

j=1 tij hj be such that∆i = ‖Ti‖.
Then the value of the determinant det (fβ(hα))iα,β=1 remains the same if its
last row fβ(hi), β = 1, . . . , i, is replaced with fβ(Ti). Expanding the modified
determinant along the last row, we obtain

|V(f1, . . . , fi)| ≤
i∑

β=1

|fβ(Ti)| |V (f1, . . . , fβ−1, fβ+1, . . . , fi)| ≤ i∆iVi−1.

Now, taking the least upper bound of the left side over fν ∈ A, ν = 1, . . . , i,
we obtain the right estimate in (4.4).

Corollary 4.3. Let K be an infinite compact set in Cn . Then in the
notation of Section 3,

(4.5) (Ts)
sNs ≤ Vms

Vms−1

≤ ms!

ms−1!
(Ts)

sNs, s = 2, 3, . . . .

The following statement has been proved implicitly in [61, proof of The-
orem 1]. Here we give a direct slightly modified proof.

Lemma 4.4. If lims→∞ Ts(K) exists, then

(4.6) d(K) = lim
s→∞

ds(K) = lim
s→∞

Ts(K).

Proof. Let τ = lims→∞ Ts(K). Since lnms!
sNs

→ 1, due to (4.5) we have the
asymptotic formula

lnVms − lnVms−1 ∼ sNs ln τ as s→∞.
Summing from 1 to s we derive the asymptotic formula (see, e.g., [20])

lnVms ∼ lnVms − lnVm0 ∼
s∑
q=1

qNq ln τ = ls ln τ as s→∞.

So (4.6) is proved.
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5. Equivalent definition of transfinite diameter in Cn. LetK be a
pluriregular compact set in Cn with K̂ = K. In the context of Section 3, take
the space X = C(K) and let hi be the system of monomials ei(z) = zk(i).
Then Vi does not exceed

(5.1) Vi = VXi = sup{|det (f∗β(eα))iα,β=1| : f∗β ∈ BC(K)∗ , β = 1, . . . , i}

for all i ∈ N, since the supremum in the definition of Vi is taken only over
the evaluation functionals f∗ζ (h) = h(ζ), ζ ∈ K. Hence,

(5.2) lim sup
s→∞

(Vms)1/ls ≥ d(K).

Theorem 5.1. Under the above assumptions the relation (5.2) holds with
equality and with the usual limit, and we have the following representation
of the transfinite diameter:

(5.3) d(K) = lim
s→∞

sup
{∣∣∣det

( �
K

eα dµβ

)i
α,β=1

∣∣∣1/ls(i)},
where the supremum is taken over the set {(µβ) ∈ M(K)i : |µβ|(K) ≤ 1,
β = 1, . . . , i}.

Proof. Analyzing the proof of Theorem 3.2, one can see that, in order
to prove Theorem 5.1, all arguments can be left untouched, except that
Lemma 4.2 has to be applied instead of Corollary 5 of [61]. Then, remem-
bering that, by the Riesz Theorem, C(K)∗ is represented as the spaceM(K)
of all complex Borel measures on K, we obtain (5.3).

The dual spaceA(Cn)∗ can be realized as the spaceA0({∞n}) of all germs
of analytic functions ϕ at ∞n := (∞, . . . ,∞) ∈ C̄n, having an expansion

(5.4) ϕ(z) =
∑
k∈Zn+

ak(ϕ)

zk+I
,

converging uniformly on

Ur(∞n) := {z = (zν) ∈ C̄n : |zν | ≥ r},

with r = r(ϕ). Namely, there is a natural isomorphism T : A(Cn)∗ →
A0({∞n}) such that if ϕ = Tf∗, then

f∗(f) = 〈f, ϕ〉 :=

(
1

2πi

)n �

TR

f(z)ϕ(z) dz,

where TR = {z = (zν) ∈ C̄n : |zν | = R}, R > r. An element f∗ ∈ A(Cn)∗ is
said to be an analytic functional in Cn (see, e.g., [27]) and the series (5.4)
can be considered as its Taylor expansion at ∞n.
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Let AC(K) be the completion of the space of all polynomials in C(K).
Then AC(K)∗ =M(K)/AC(K)⊥, where

AC(K)⊥ :=
{
µ ∈M(K) :

�

K

f dµ = 0, f ∈ AC(K)
}
.

The restriction operator R : A(Cn) → AC(K) is injective, so it can be
treated as a linear continuous and dense embedding A(Cn) ↪→ AC(K).
Then, by Lemma 2.1, AC(K)∗ ↪→ A(Cn)∗, hence AC(K)∗ can be realized
as AC(K)′ = T (AC(K)∗) ↪→ A({∞n}), so that ‖ϕ‖AC(K)′ := ‖f∗‖AC(K)∗ .
By the Hahn–Banach theorem, we obtain the same number Vi if the sup in
(5.1) is taken over the set

{f∗β ∈ AC(K)∗ : ‖f∗β‖AC(K)∗ ≤ 1, β = 1, . . . , i}.
If ϕ = Tf∗ ∈ AC(K)′, then

f∗(ei) = 〈ei, ϕ〉 = ak(i)(ϕ).

Therefore we obtain the following representation of the transfinite diameter
in terms of the Taylor expansions of the analytic functionals f∗β at ∞n:

(5.5) d(K) = lim
s→∞

sup{|det (ak(α)(ϕβ))iα,β=1|1/ls(i)},

where the sup is taken over the set

(5.6) {(ϕβ)iβ=1 : ϕβ ∈ BAC(K)′ , β = 1, . . . , i}.
The mapping S : A({∞n})→ A({0n}) defined by

g = Sϕ, g(ζ) :=
ϕ(1/ζ1, . . . , 1/ζn)

ζ1 · · · ζn
=
∑
k∈Zn+

ak(ϕ)ζk

is an isomorphism. Therefore, due to (5.5), one can represent the transfinite
diameter in terms of extremal multivariate Wronskians. Let

W(g1, . . . , gi) := det (g
(k(α))
β (0))iα,β=1

and

(5.7) Wi := sup{|W(g1, . . . , gi)|},
where the supremum is taken over all (gβ)iβ=1 such that (ϕβ) = (S−1gβ)
runs over the set (5.6). Notice first that

(5.8) ls ∼ λs :=
sn+1

(n− 1)!(n+ 1)
as s→∞.

Theorem 5.2. In the above notation

(5.9) d(K) = lim
i→∞

(
Wi∏i

α=1 k(α)!

)1/ls(i)

=

(
exp

n+1∑
ν=1

1

ν

)
· lim
i→∞

(Wi)
1/λs(i)

s(i)
.
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Proof. The first equality follows from (5.5), because ak(ϕ) = g(k)(0)/k!
if g = Sϕ. Since ls(i) can be replaced by λs(i) in the middle term of (5.9), we
need to prove the asymptotics

(5.10) As :=
1

λs

∑
|k|≤s

ln k! = ln s−
(

1 +
1

2
+ · · ·+ 1

n+ 1

)
+ o(1)

as s→∞. By Stirling’s formula, we have

As =
1

λs

∑
|k|≤s

n∑
ν=1

kν(ln kν − 1) + o(1) as s→∞.

Since
∑
|k|≤s

∑n
ν=1 kν = ls, due to (5.8) we have As = Bs − 1 + o(1) with

(5.11) Bs :=
1

λs

∑
|k|≤s

n∑
ν=1

kν ln kν .

Further

Bs =
1

λs

( �

Vs

( n∑
ν=1

xν lnxν

)
dx1 . . . dxn +O(sn ln s)

)
=

n

λs

�

Vs

x1 lnx1 dx1 . . . dxn + o(1) as s→∞,

where Vs = {(xν) ∈ Rn :
∑n

ν=1 xν ≤ s; xν ≥ 1, ν = 1, . . . , n}. Then,
integrating n− 1 times, we have

Bs =
n

(n− 1)!λs

s�

1

ξ(s− ξ)n−1 ln ξ dξ + o(1)

=
n

(n− 1)!λs

n−1∑
j=0

(−1)jCjn−1s
n−j−1

s�

1

ξj+1 ln ξ dξ + o(1)

as s→∞. By elementary computations we obtain

Bs =
nsn+1

(n− 1)!λs
(a ln s− b) + o(1) = n(n+ 1)(a ln s− b) + o(1)

with (see, e.g., [45, 4.2.2.44, 4.2.2.57])

a =

n−1∑
j=0

(−1)jCjn−1

j + 2
=

1

n(n+ 1)
,

b =
n−1∑
j=0

(−1)jCjn−1

(j + 2)2
=

1
2 + · · ·+ 1

n+1

n(n+ 1)
.

Finally, combining all the relations obtained, we get (5.10).
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Notice that, applying Euler’s summation formula, one can obtain essen-
tially stronger asymptotics for sums like (5.11) (similarly to [26, p. 595],
or [31]), but the above rough asymptotics is sufficient for the present pur-
poses.

Remark 5.3. The relation (5.9) can be considered as an asymptotic
expression for extremal Wronskians through the transfinite diameter. It must
be emphasized that λs(i) cannot be replaced by ls(i) in the right member
of (5.9).

6. Asymptotics of leading coefficients of orthonormal polyno-
mial bases. Let K be a polynomially convex compact set in Cn. We say
that a Banach space X ←↩ A(K) is adherent to the space A(K) (has the
Bernstein–Markov property relative to K) if for for every q > 1 there exists
an open set G ⊃ K and a constant M such that

(6.1) |p|G ≤Mqs‖p‖X
for each polynomial p of degree s ∈ N. If K is pluriregular, then there exist
adherent Banach spaces; for instance, the spaces AC(K) and AL2(K,µ),
where µ◦ = (ddcgK)n, are adherent to A(K) (see, e.g., [62, 53, 63, 66]). For
the condition (6.1) in a general frame of interpolation properties of locally
convex spaces, see [59, 42, 64, 65].

Let K be a pluriregular polynomially convex compact set in Cn and
H ←↩ A(K) be any Hilbert space adherent to A(K). Let

(6.2) pi =
i∑

j=1

ajiej , i ∈ N,

be the orthonormal system in H obtained by the Gram–Schmidt procedure
from the system of monomials ei(z) = zk(i). Denote by HR the Hilbert scale
defined via

(6.3) HR :=
{
x =

∞∑
i=1

ξipi ∈ H : ‖x‖HR :=
( ∞∑
i=1

|ξi|2R2s(i)
)1/2

<∞
}

with R > 1. Consider two one-parameter families of sublevel sets of the
pluripotential Green function:

DR = {z ∈ Cn : gK(z) < lnR}, KR = {z ∈ Cn : gK(z) ≤ lnR}, R > 1.

The system {pi} is a common basis in the spaces A(K), A(Cn), A(DR),
A(KR), and the scale (6.3) satisfies the following embeddings ([62, 63, 66,
64]):

(6.4) A(KR) ↪→ HR ↪→ A(DR), R > 1.
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The following assertion is an easy consequence of the above considerations
and the results of [61] (see Section 3 above).

Theorem 6.1 ([63, 66, 64]). The asymptotic behavior of the leading co-
efficients in (6.2) is determined by the directional Chebyshev constants of K:

lim
k(i)/|k(i)|→θ

|aii|1/s(i) =
1

τ(K, θ)
, θ ∈ Σ◦,

which means that the same limit exists for any subsequence L ∈ Lθ. More-
over, the asymptotics of the geometric mean of the leading coefficients of
degree s is controlled by the principal Chebyshev constant of K:

(6.5) lim
s→∞

∣∣∣ ∏
s(i)=s

aii

∣∣∣1/sNs =
1

τ(K)
=

1

d(K)
.

Proof. Given any Hilbert space H adherent to A(K), consider the char-
acteristic ∆i,H defined by (4.1) with X = H and hi = ei. Then we have

∆i,H =

∥∥∥∥ pi
|aii|

∥∥∥∥
H

=
1

|aii|
, ∆i,HR =

Rs(i)

|aii|
, i ∈ N.

Let G = AL2(K,µ◦) with µ◦ := (ddcgK(z))n and let GR be the scale (6.3)
relative to G instead of H. Let 1 < r < R. Taking into account the embed-
dings (6.4), we have

GR ↪→ A(DR) ↪→ A(Kr) ↪→ Hr ↪→ A(K) ↪→ AC(K) ↪→ G,

hence there are positive constants C1, C2, C3 such that

(6.6) ∆i,G ≤ C1Mi ≤ C2∆i,Hr = C2r
s(i)∆i,H ≤ C3∆i,GR = C3R

s(i)∆i,G

for all i ∈ N. Take any sequence L ∈ Lθ, θ ∈ Σ◦. Since the usual limit exists
in (3.2), (6.6) implies

lim sup
i∈L

(∆i,G)1/s(i) ≤ rs(i) lim
i∈L

(∆i,G)1/s(i) ≤ lim
i∈L

(Mi)
1/s(i)

= τ(K, θ) ≤ R lim inf
i∈L

(∆i,G)1/s(i).

By arbitrariness of r,R, we derive from this and (6.6) that

lim
i∈L

(
1

|aii|

)1/s(i)

= lim
i∈L

(∆i,H)1/s(i) = lim
i∈L

(∆i,G)1/s(i) = τ(K, θ), θ ∈ Σ◦.

To prove (6.5) we repeat all arguments from [61] (proofs of Lemmas 5 and 6
there) applied to τi(H) := (∆i,H)1/s(i) instead of τi = (Mi)

1/s(i).
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Now we give an alternative proof of [13, Corollary 1 on p. 296)].

Corollary 6.2. For R > 1, we have τ(KR, θ)a = Rτ(K, θ) and d(KR)
= Rd(K).

Proof. Let R > 1, 0 < ε < R− 1 and

Mi,R = inf
{
|p|KR : p = ei +

i−1∑
j=1

cj ej

}
, i ∈ N.

Then, by (6.4), HR+ε ↪→ AC(KR) ↪→ HR−ε, hence

c(R− ε)s(i)∆i,H ≤Mi,R ≤ C(R+ ε)s(i)∆i,H .

It remains to apply Theorems 6.1 and 3.2.
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