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The transfinite diameter of the real ball and simplex

by T. Bloom (Toronto), L. Bos (Verona)
and N. Levenberg (Bloomington, IN)

Abstract. We calculate the transfinite diameter for the real unit ball Bd := {x ∈ Rd :
|x| ≤ 1} and the real unit simplex Td := {x ∈ Rd

+ :
∑d

j=1 xj ≤ 1}.

1. Introduction. Suppose that K ⊂ Cd is compact. The transfinite
diameter (and the associated notion of capacity) of K is a measure of the
size of K, important in classical Complex Potential Theory (for d = 1) and
Pluripotential Thoery (for d > 1). It is defined as follows. For n ∈ Z+

consider the monomials zγ , |γ| ≤ n, which we order as {e1(z), . . . , emn(z)}
where ei(z) = zγi , so that the ordering respects the degree, i.e. |γj | < |γi|
implies that j < i. Here mn :=

(
n+d
n

)
is the dimension of the space of

polynomials of degree at most n in d complex variables. Then for mn points
zj ∈ K, 1 ≤ j ≤ mn, the Vandermonde determinant of degree n is defined
to be

vdm(z1, . . . , zmn) := det([ei(zj)])1≤i,j≤mn).

The transfinite diameter of K is

δ(K) := lim
n→∞

(
max

z1,...,zmn∈K
|vdm(z1, . . . , zmn)|

)1/`n
where `n := d

d+1nmn is the degree of homogeneity of vdm(z1, . . . , zmn) con-
sidered as a polynomial on Kmn .

That the limit exists is a result of Zakharyuta [Z] where the following
remarkable formula is proved:

(1.1) δ(K) = exp

{
1

vol(Sd)

�

Sd

log(τ(θ)) dV

}
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where

(1.2) Sd :=
{
θ ∈ Rd : θj ≥ 0 for 1 ≤ j ≤ d, and

d∑
j=1

θj = 1
}

is a symmetric simplex (of dimension d− 1) in Rd and, for θ ∈ Sd,

τ(θ) = τ(θ,K) := lim sup
i→∞, αi/|αi|→θ

inf
{∥∥∥ei(z) +∑

j<i

cjej(z)
∥∥∥1/|αi|

K

}
is the so-called directional Chebyshev constant. We note that, for θ ∈ int(Sd),
Zakharyuta showed that the lim sup in the definition of τ(θ) may be replaced
by an ordinary limit.

In certain cases explicit formulas for the transfinite diameter have been
calculated. Jędrzejowski [J] has given the following formula for the unit com-
plex euclidean ball Bd := {z ∈ Cd : |z| ≤ 1}:

(1.3) δ(Bd) = exp

(
−1

2

d∑
j=2

1

j

)
.

From the product formula of Schiffer and Siciak [SS] we also have, for the
unit cube Qd := [−1, 1]d,

(1.4) δ(Qd) =
1

2
.

Rumely [R] has given a beautiful integral formula for the transfinite di-
ameter using notions of pluripotential theory (see also [DR]). However, this
appears to be difficult to explicitly evaluate, at least in the case of the real
ball in which we are interested.

In this paper we will use Zakharyuta’s formula (1.1) directly, by finding
a formula for τ(θ) and then computing its integral over the simplex, to give
a compact formula (Theorem 2.5 below) for the transfinite diameter of the
real euclidean unit ball Bd := {x ∈ Rd : |x| ≤ 1} and the real unit simplex
Td := {x ∈ Rd+ :

∑d
j=1 xj ≤ 1}.

2. The ball. We begin with some standard facts about univariate or-
thogonal polynomials.

2.1. Univariate Gegenbauer polynomials. Let Cλn(x), n ∈ Z+, λ >
−1/2, denote the Gegenbauer polynomials of degree n and parameter λ, i.e.,
the classical univariate polynomials orthogonal on [−1, 1] with respect to the
inner product

(2.1) 〈f, g〉λ :=

1�

−1
f(x)g(x)wλ(x) dx
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where
wλ(x) := (1− x2)λ−1/2.

It is known that (see e.g. [AS])

Cλn(x) = knx
n + lower degree terms

where

(2.2) kn :=
2nΓ (λ+ n)

n!Γ (λ)

and that
1�

−1
(Cλn(x))

2wλ(x) dx =
π21−2λΓ (n+ 2λ)

n!(n+ λ)(Γ (λ))2
.

If we let Ĉλn(x) := k−1n Cλn(x) denote the associated monic orthogonal poly-
nomials, it follows easily that

Ĉλn(x) = xn + lower degree terms

and that

(2.3) h(n, λ) :=

1�

−1
(Ĉλn(x))

2wλ(x) dx =
π21−2(n+λ)Γ (n+ 1)Γ (n+ 2λ)

(Γ (n+ λ))2(n+ λ)
.

We will make use of the following nth root asymptotics of h(n, λ).

Lemma 2.1. Suppose that an, bn ≥ 0 are such that limn→∞ an/n = a and
limn→∞ bn/n = b with a+ b > 0. Then

lim
n→∞

h(an, bn)
1/n =

aa(a+ 2b)a+2b

22(a+b)(a+ b)2(a+b)
.

Proof. From (2.3) we have

h(an, bn) =
π21−2(an+bn)Γ (an + 1)Γ (an + 2bn)

(Γ (an + bn))2(an + bn)
.

Clearly, the terms π1/n and (an + bn)
1/n both tend to 1 and hence can be

ignored. Further,

(21−2(an+bn))1/n = 21/n−2(an/n+bn/n) → 2−2(a+b)

and hence we are left with showing that

lim
n→∞

(
Γ (an + 1)Γ (an + 2bn)

(Γ (an + bn))2

)1/n

=
aa(a+ 2b)a+2b

(a+ b)2(a+b)
.

But this is an easy consequence of Stirling’s formula, and we are done.
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2.2. A family of orthogonal polynomials on Bd. For µ > −1/2 and
x = (x1, . . . , xd) ∈ Bd let

Wµ(x) = (1− |x|2)µ−1/2

be a generalized Gegenbauer weight. Now, suppose that α ∈ Zd+ is a multi-
index. We define (cf. Prop. 2.3.2 of [DX]) the polynomials

Pα(x) = Ĉλ1α1
(x1)×

(
(1− x21)α2/2Ĉλ2α2

(
x2√
1− x21

))
×
(
(1− x21 − x22)α3/2Ĉλ3α3

(
x3√

1− x21 − x22

))
× · · ·

×
(
(1− x21 − · · · − x2d−1)αd/2Ĉλdαd

(
xd√

1− x21 − · · · − x2d−1

))
where

λ1 = µ+ α2 + α3 + · · ·+ αd + (d− 1)/2,

λ2 = µ+ α3 + α4 + · · ·+ αd + (d− 2)/2,

λ3 = µ+ α4 + α5 + · · ·+ αd + (d− 3)/2,

...
λd = µ,

that is,

λj := µ+ (d− j)/2 +
d∑

k=j+1

αk.

Note that since the weight wλ(x) is symmetric, the polynomials Ĉλn(x) are
even for n even and odd for n odd. Hence the Pα, as defined above, are
indeed d-variate polynomials.

Lemma 2.2. The polynomials Pα(x) are orthogonal with respect to the
inner product

(2.4) 〈f, g〉µ :=
�

Bd

f(x)g(x)Wµ(x) dx.

Proof. This is given in Proposition 2.3.2 of [DX].

Lemma 2.3. The polynomials Pα(x) are monic, i.e., of the form

Pα(x) = xα + lower order terms

where the ordering of the monomials is graded-lexicographic with x1≺· · ·≺xd.
Moreover, �

Bd

(Pα(x))
2Wµ(x) dx =

d∏
j=1

h(αj , λj).
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Proof. The mononoticity is obvious from the construction. The norm is
easily calculated by writing

�

Bd

f(x)Wµ(x) dx =
�

Bd−1

√
1−|x′|2�

−
√

1−|x′|2

f(x′, xd)Wµ(x
′, xd) dxd dx

′,

where x′ := (x1, . . . , xd−1), substituting yd := xd/
√

1− |x′|2, and proceeding
by induction.

2.2.1. The measures Wµ dx are Bernstein–Markov. A measure ν on a
compact set K ⊂ Cd is said to be a Bernstein–Markov measure when there
exist constants C(n) with the property that

lim
n→∞

C(n)1/n = 1

such that for all polynomials p of degree n,

‖p‖K ≤ C(n)‖p‖L2(K;ν).

For many purposes, including the calculation of transfinite diameters, this
means that the uniform norm can be substituted by the L2 norm with respect
to the measure ν.

It turns out that, for the measures Wµ(x) dx, µ ≥ 0, there is a stronger
statement. Specifically, from Lemma 1 of [B2], it follows that, for α = 0,

(2.5) ‖p‖Bd
≤

√
2

ωd

((
n+ d

d

)
+

(
n+ d− 1

d

))
‖p‖L2(Bd;W0dx)

for all polynomials p of degree n. Here ωd is the surface area of the d-dimen-
sional unit sphere in Rd+1. In other words, for this measure, C(n) = O(nd/2)
is of polynomial growth. Similarly, the considerations of [B2] show that C(n)
is also of polynomial growth for all µ ≥ 0.

2.3. The directional Chebyshev constants. Since Wµ(x) dx, µ ≥ 0,
are Bernstein–Markov measures, we may use any of the associated 2-norms,

‖f‖µ := 〈f, f〉1/2µ ,

to compute the directional Chebyshev constants (cf. [B1, p. 320]). Specifically
consider θ ∈ Sd, the unit simplex in Rd (see (1.2)). Then for n = |α| =
α1 + · · ·+ αd we have

τ(θ) = lim
α/n→θ

‖Pα‖1/nµ = lim
α/n→θ

{ d∏
j=1

h(αj , λj)
}1/2n

by Lemma 2.3.
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Suppose now that θ ∈ Sd with θ > 0 (i.e., each component is positive).
Then under the hypothesis that α/n→ θ we have

lim
n→∞

αj/n = θj , 1 ≤ j ≤ d,(2.6)

lim
n→∞

λj/n =
d∑

k=j+1

θk, 1 ≤ j ≤ d.(2.7)

Hence, by Lemma 2.1,

(2.8) lim
n→∞

h(αj , λj)
1/n =

θ
θj
j (θj + 2

∑d
k=j+1 θk)

θj+2
∑d

k=j+1 θk

22(
∑d

k=j θk)(
∑d

k=j θk)
2(
∑d

k=j θk)
=: Hj(θ).

We thus may conclude

Lemma 2.4. For θ ∈ Sd with θ > 0,

τ(θ) =
{ d∏
j=1

Hj(θ)
}1/2

.

2.4. Zakharyuta’s formula for the transfinite diameter. We will
use Zakharyuta’s formula for the transfinite diameter, given in the introduc-
tion:

(2.9) δ(Bd) = exp

{
1

vol(Sd)

�

Sd

log(τ(θ)) dV

}
.

Theorem 2.5. The transfinite diameter of the unit ball Bd is:

(a) for d even,

δ(Bd) =
1

2
exp

(
−1

4

2d+ 1

d

d∑
j=1

1

j
+

1

2
+

1

2
log(2) +

1

4d

d∑
j=1

(−1)j

j

)
,

(b) for d odd,

δ(Bd) =
1

2
exp

(
−1

4

2d+ 1

d

d∑
j=1

1

j
+

1

2
+
d− 1

2d
log(2)− 1

4d

d∑
j=1

(−1)j

j

)
.

Remark. For d = 1 the formula reduces to the classical δ([−1, 1]) = 1/2
and for d = 2 we obtain δ(B2) = 1/

√
2e, in agreement with the result of [B1].

Proof of Theorem 2.5. We use the Zakharyuta formula together with the
formula for τ(θ) given in Lemma 2.1 to obtain

δ(Bd) = exp

(
(d− 1)!

2
(Cd + Fd −Dd − Ed)

)
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where

Cd =
d∑
j=1

�

Sd

log(θ
θj
j ) dV = − 1

(d− 1)!

d∑
j=2

1

j
,

Dd =
d∑
j=1

�

Sd

log(22
∑d

k=j θk) dV =
d+ 1

(d− 1)!
log(2),

Ed =
d∑
j=1

�

Sd

log
(( d∑

k=j

θk

)2(∑d
k=j θk)

)
dV = − 1

2(d− 2)!
,

Fd =
d∑
j=1

�

Sd

log
((
θj + 2

d∑
k=j+1

θk

)θj+2
∑d

k=j+1 θk
)
dV

=
1

2

1

(d− 2)!

{
2 log(2)− 1 +

2�

1

(x− 1)d−2x log(x) dx
}
− 1

2

1

d!

d∑
j=2

1

j
.

The values for the integrals are given in a sequence of lemmas below. Note
that vol(Sd) = 1/(d − 1)!; putting them together and simplifying gives the
result.

We can express integrals over the simplex Sd as univariate integrals by
means of B-splines.

Lemma 2.6. Suppose that a1 ≤ · · · ≤ ad with d ≥ 2 and that f ∈
L1[a1, ad]. Then

�

Sd

f
( d∑
j=1

θjaj

)
dV =

1

(ad − a1)(d− 2)!

∞�

−∞
f(x)B(x | a1, . . . ad) dx

where
B(x | a1, . . . , ad) := (ad − a1)(· − x)d−2+ [a1, . . . , ad]

is the B-spline of degree d− 2 with knots a1, . . . , ad. Here

y+ :=

{
y, y ≥ 0,
0, y < 0,

and f [a1, . . . , ad] denotes the divided difference of the function f at the
points ai.

Proof. This is a standard formula of spline theory, based on the fact that
B-splines are the Peano kernel for divided differences; see, for example, [deB,
p. 88].

We will need the following fact.
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Lemma 2.7. For 1 < j ≤ d and d ≥ 2, we have

B(x | 0, . . . , 0︸ ︷︷ ︸
j−1

, 1, . . . , 1︸ ︷︷ ︸
d−j+1

) =

{(d−2
j−2
)
xd−j(1− x)j−2, x ∈ [0, 1],

0, otherwise.

Proof. This is again a standard fact that follows easily from the recur-
rence formula for B-splines (see [deB, p. 89]).

Lemma 2.8. For 1 ≤ j ≤ d, we have

�

Sd

θj log(θj) dV =
1

(d− 2)!

1�

0

(1− x)d−2x log(x) dx = − 1

d!

d∑
j=2

1

j
.

Hence

Cd =
d∑
j=1

�

Sd

θj log(θj) dV = − 1

(d− 1)!

d∑
j=2

1

j
.

Proof. By symmetry we need only consider j = d. Then, using the inte-
gral formula of Lemma 2.6, we have

�

Sd

θd log(θd) dV =
1

(1− 0)(d− 2)!

∞�

−∞
x log(x)B(x | 0, . . . , 0︸ ︷︷ ︸

d−1

, 1) dx

=
1

(d− 2)!

1�

0

x log(x)(1− x)d−2 dx

since, by Lemma 2.7 with j = d− 1,

B(x | 0, . . . , 0︸ ︷︷ ︸
d−1

, 1) =

{
(1− x)d−2, x ∈ [0, 1],
0, otherwise.

By Lemma 2.9 below with m = d− 2 we obtain

1

(d− 2)!

{
− 1

(d− 1)d

d∑
j=2

1

j

}
and the result follows.

Lemma 2.9. For m ∈ Z+ we have
1�

0

(1− x)mx log(x) dx = − 1

(m+ 1)(m+ 2)

m+2∑
j=2

1

j
.

Proof. This is a special case of formula 1 of §4.253 of [GR], however, for
completeness, we provide an elementary proof. Let Am denote the integral
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in question. Then integrating

Am+1 =

1�

0

(1− x)m+1x log(x) dx

by parts with u = (1− x)m+1 and v′ = x log(x) we easily obtain the recur-
rence

Am+1 =
m+ 1

m+ 3
Am −

1

(m+ 2)(m+ 3)2

from which it is easy to verify the stated formula by induction.

Lemma 2.10. For d ≥ 2 we have

Dd =
d∑
j=1

�

Sd

log(22
∑d

k=j θk) dV =
d+ 1

(d− 1)!
log(2).

Proof. The j = 1 term is slightly different. In fact, for j = 1,
∑d

k=j θk = 1
and the integrand is just 2 log(2), so the integral equals

(2.10)
�

Sd

log(22
∑d

k=1 θk) dV = 2 log(2) vol(Sd) =
2 log(2)

(d− 1)!
.

For the other terms we compute

d∑
j=2

�

Sd

log(22
∑d

k=j θk) dV

= 2 log(2)
d∑
j=2

�

Sd

( d∑
k=j

θk

)
dV

= 2 log(2)
d∑
j=2

1

(1− 0)(d− 2)!

1�

0

xB(x | 0, . . . , 0︸ ︷︷ ︸
j−1

, 1, . . . , 1︸ ︷︷ ︸
d−j+1

) dx

=
2 log(2)

(d− 2)!

d∑
j=2

1�

0

x

(
d− 2

j − 2

)
xd−j(1− x)j−2 dx (by Lemma 2.7)

=
2 log(2)

(d− 2)!

1�

0

x
d∑
j=2

(
d− 2

j − 2

)
xd−j(1− x)j−2 dx

=
2 log(2)

(d− 2)!

1�

0

x
d−2∑
j=0

(
d− 2

j

)
x(d−2)−j(1− x)j dx

=
2 log(2)

(d− 2)!

1�

0

x dx =
log(2)

(d− 2)!
.
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Combining this with (2.10) gives
d∑
j=1

�

Sd

log(22
∑d

k=j θk) dV =
2 log(2)

(d− 1)!
+

log(2)

(d− 2)!

and the result follows.
As pointed out by an anonymous reviewer, this integral can also be com-

puted by completely elementary means. First observe that by symmetry,
�

Sd

θj dV =
�

Sd

θk dV =
1

d
vol(Sd) =

1

d!
.

Then

Dd =

d∑
j=1

�

Sd

log(22
∑d

k=j θk) dV = 2 log(2)

d∑
j=1

d∑
k=j

1

d!

=
2

d!
log(2)

d∑
j=1

(d− j + 1) =
2

d!
log(2)

d(d+ 1)

2
=

d+ 1

(d− 1)!
log(2).

Lemma 2.11. For d ≥ 2 we have

Ed =
d∑
j=1

�

Sd

2
( d∑
k=j

θk

)
log
( d∑
k=j

θk

)
dV = − 1

2(d− 2)!
.

Proof. The j = 1 term is 0 since
∑d

k=1 θk = 1. Hence we compute

d∑
j=2

�

Sd

2
( d∑
k=j

θk

)
log
( d∑
k=j

θk

)
dV

= 2

d∑
j=2

�

Sd

( d∑
k=j

θk

)
log
( d∑
k=j

θk

)
dV

= 2
d∑
j=2

1

(1− 0)(d− 2)!

1�

0

x log(x)B(x | 0, . . . , 0︸ ︷︷ ︸
j−1

, 1, . . . , 1︸ ︷︷ ︸
d−j+1

) dx

=
2

(d− 2)!

1�

0

x log(x)

d∑
j=2

B(x | 0, . . . , 0︸ ︷︷ ︸
j−1

, 1, . . . , 1︸ ︷︷ ︸
d−j+1

) dx

=
2

(d− 2)!

1�

0

x log(x) dx (as in Lemma 2.10)

=
2

(d− 2)!
·
(
−1

4

)
and the result follows.
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Lemma 2.12. For d ≥ 2, we have

Fd =
d∑
j=1

�

Sd

(
θj + 2

d∑
k=j+1

θk

)
log
(
θj + 2

d∑
k=j+1

θk

)
dV

=
1

2

1

(d− 2)!

{
2 log(2)− 1 +

2�

1

(x− 1)d−2x log(x) dx
}
− 1

2

1

d!

d∑
j=2

1

j
.

The univariate integral above is evaluated in Lemma 2.13.

Proof of Lemma 2.12. Let

Ij :=
�

Sd

(
θj + 2

d∑
k=j+1

θk

)
log
(
θj + 2

d∑
k=j+1

θk

)
dV.

We must compute
∑d

j=1 Ij . First note that, by Lemma 2.6,

I1 =
�

Sd

(
θ1 + 2

d∑
k=2

θk

)
log
(
θ2 + 2

d∑
k=2

θk

)
dV(2.11)

=
1

2− 1

1

(d− 2)!

∞�

−∞
x log(x)B(x | 1, 2, . . . , 2︸ ︷︷ ︸

d−1

) dx

=
1

(d− 2)!

∞�

−∞
x log(x)B(x | 1, 2, . . . , 2︸ ︷︷ ︸

d−1

) dx,

while

Id =
�

Sd

θd log(θd) dV =
1

1− 0

1

(d− 2)!

∞�

−∞
x log(x)B(x | 0, . . . , 0︸ ︷︷ ︸

d−1

, 1) dx

=
1

(d− 2)!

∞�

−∞
x log(x)B(x | 0, . . . , 0︸ ︷︷ ︸

d−1

, 1) dx.

Further, for 2 ≤ j ≤ d− 1,

Ij =
�

Sd

(
θj + 2

d∑
k=j+1

θk

)
log
(
θj + 2

d∑
k=j+1

θk

)
dV

=
1

2− 0

1

(d− 2)!

∞�

−∞
x log(x)B(x | 0, . . . , 0︸ ︷︷ ︸

j−1

, 1, 2, . . . , 2︸ ︷︷ ︸
d−j

) dx

=
1

2

1

(d− 2)!

∞�

−∞
x log(x)B(x | 0, . . . , 0︸ ︷︷ ︸

j−1

, 1, 2, . . . , 2︸ ︷︷ ︸
d−j

) dx.



94 T. Bloom et al.

Hence

1

2
I1 +

d−1∑
j=2

Ij +
1

2
Id

=
1

2

1

(d− 2)!

∞�

−∞
x log(x)

{ d∑
j=1

B(x | 0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 2, . . . , 2︸ ︷︷ ︸
d−j

)
}
dx.

However, just as Lemma 2.10, it can be shown (cf. [deB]) that
d∑
j=1

B(x | 0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 2, . . . , 2︸ ︷︷ ︸
d−j

) ≡ 1

on its support, i.e., on (0, 2) in this case. Thus

1

2
I1 +

d−1∑
j=2

Ij +
1

2
Id =

1

2

1

(d− 2)!

2�

0

x log(x) dx =
1

2

1

(d− 2)!
(2 log(2)− 1).

It follows that
d∑
j=1

Ij =
1

2

1

(d− 2)!
(2 log(2)− 1) +

1

2
(I1 + Id).

But, by (2.11),

I1 =
1

(d− 2)!

∞�

−∞
x log(x)B(x | 1, 2, . . . , 2︸ ︷︷ ︸

d−1

) dx

=
1

(d− 2)!

2�

1

(x− 1)d−2x log(x) dx

and from Lemma 2.8,

Id = −
1

d!

d∑
j=2

1

j
.

Putting these together yields the result.

Lemma 2.13. For m ∈ Z+ we have
2�

1

(x− 1)mx log(x) dx = am log(2) + bm

where

am :=


2

m+ 1
, m even,

2

m+ 2
, m odd,
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and

bm := − (−1)m

(m+ 1)(m+ 2)

{
(−1)m −

m+2∑
k=1

(−1)k/k
}
.

Proof. Let Am denote the integral in question. Just as before we may
integrate by parts (with u = (x− 1)m and v′ = x log(x)) to show that

Am+1 = −
m+ 1

m+ 3
Am +

4

m+ 3
log(2)− 2m+ 5

(m+ 2)(m+ 3)2

and from this one can easily verify the given formula by induction.

3. The simplex. By the mapping result of Bloom and Calvi [BC] we
immediately obtain

Theorem 3.1. The transfinite diameter of the simplex Td is given by

δ(Td) = (δ(Bd))
2.

Proof. Just note that Td is the image of Bd under the mapping

(x1, . . . , xd) 7→ (x21, . . . , x
2
d).

4. Concluding remarks. Using our formulas for δ(Bd) and the formula
(1.3) for δ(Bd) we easily find that

lim
d→∞

δ(Bd)
δ(Bd)

=
√
2

showing that the real and complex balls have finitely comparable transfinite
diameters.

Further, for the inscribed cube 1√
d
Qd ⊂ Bd we have

lim
d→∞

δ(Bd)

δ
(

1√
d
Qd
) =

√
2 exp(1− γ)

where γ is Euler’s constant, while for the superscribed cube,

lim
d→∞

δ(Bd)

δ(Qd)
= 0.

Since 1√
d
Qd ⊂ Bd ⊂ Qd it is natural to ask why δ(Bd) is comparable to

the inscribed cube and not to the superscribed cube. However, even in the
euclidean case,

vol(Bd) =
πd/2

Γ (1 + d/2)
∼ 1√

πd

(√
2πe

d

)d
,

by Stirling’s formula, showing that the volume of Bd behaves like that of a
cube with side length proportional to 1/

√
d, i.e., like that of the inscribed

cube.
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