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Lelong classes on toric manifolds and a theorem of Siciak

by Maritza M. Branker (Niagara)
and Małgorzata Stawiska (Ann Arbor, MI)

Abstract. We generalize a theorem of Siciak on the polynomial approximation of
the Lelong class to the setting of toric manifolds with an ample line bundle. We also
characterize Lelong classes by means of a growth condition on toric manifolds with an
ample line bundle and construct an example of a nonample line bundle for which Siciak’s
theorem does not hold.

1. Introduction. There are many connections between pluripotential
theory in Cn (both the classical theory and its weighted analog) and the
study of complex polynomials. For example, the following theorem, due to
Siciak ([Si]; see also [Kl, Theorem 5.1.6]), provides a polynomial approxi-
mation of the Lelong class L of plurisubharmonic (psh) functions in Cn of
logarithmic growth. It also shows a relation between L and the class Hn+ of
nonnegative psh functions in Cn which are absolutely homogeneous of order
one. Recall that a nonnegative psh function is absolutely homogeneous of
order one if u(tz) = |t|u(z) for all t ∈ C and z ∈ Cn.

Theorem 1.1. Let h : Cn → [0,∞) and u : Cn → [−∞,∞) be functions
such that h 6≡ 0 and u 6≡ −∞.

(i) If h ∈ C(Cn)∩Hn+ and h−1(0) = {0}, then h(z) = sup |Q(z)|1/degQ,
z ∈ Cn, where the sup is taken over all complex homogeneous poly-
nomials Q such that |Q|1/ degQ ≤ h in Cn.

(ii) h ∈ Hn+ if and only if h = (lim supj→∞ |Qj |1/j)∗ for some sequence
of complex homogeneous polynomials such that degQj ≤ j. In par-
ticular, if h ∈ Hn+, then log h ∈ L.

(iii) u ∈ L if and only if eu = (lim supj→∞ |Pj |1/j)∗ for some sequence
of complex polynomials on Cn such that degPj ≤ j.
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When one onsiders Cn as the complement of the hyperplane at in-
finity in CPn, the class L(Cn) is in one-to-one correspondence with the
class PSH(CPn, ωFS) of functions quasi-plurisubharmonic with respect to
the Fubini-Study form ωFS (cf. [BS, Proposition 5 and Theorem 1], and the
references given there). There is also a one-to-one correspondence with the
class of positive singular metrics on the hyperplane bundle L over CPn. By
Grauert’s characterization of positive line bundles, all of these correspond
with the class of plurisubharmonic functions on the total space of the uni-
versal bundle L′ over CPn (dual to the hyperplane bundle) which are non-
negative, not identically zero and absolutely homogeneous of order one in
each fiber. Furthermore, homogeneous polynomials of degree d ≥ 1 in L′ can
be thought of as sections of the dth tensor power dL (we use the additive
notation for the tensor product operation) and CPn = Proj

⊕∞
d=0 Γ (Cn, dL).

The notion of homogeneous polynomials on the total space of a (dual) line
bundle L′ and the correspondence between them and holomorphic sections
of tensor powers of L is also valid for ample line bundles over toric manifolds
(see below for precise statements). This is the setting in which we will work
in the present paper. First, we will extend Siciak’s theorem to the setting
of a toric manifold with an ample line bundle. Then, as an application,
we will characterize Lelong classes on such toric manifolds by means of a
growth condition (stated by [Be]). Finally, we will show that the theorem
is not valid when the line bundle is globally generated but not ample. As a
counterexample, we will construct a globally generated line bundle L over
X = CP1 × CP1 (using its properties as a toric manifold) and a continuous
nonnegative plurisubharmonic function h on L′, homogeneous in each fiber
and vanishing only along the zero section, such that h cannot be obtained
as (lim supj→∞ |Qj |1/j)∗ for any sequence Qj ∈ Γ (X, jL).

2. Line bundles over toric varieties. Let us begin by recalling some
facts about toric varieties and line bundles over them. We omit many details,
referring the interested reader to [CLS] to learn more. We will first describe
the construction of an affine toric variety from a rational polyhedral cone
(briefly, a cone). By a cone we understand a set σ = {c1v1 + · · ·+csvs ∈ Rn :
c1, . . . , cs ≥ 0}, where v1, . . . , vs ∈ Zn ⊂ Rn, and we say that σ is generated
by the vectors v1, . . . , vs. Consider the dual cone σ̌ ⊂ M = {m ∈ M :
〈m, v〉 ≥ 0 ∀v ∈ σ}, where M ' Zn is thought of as the dual integral lattice.
The affine semigroup σ̌ ∩M is finitely generated (by Gordan’s Lemma; cf.
[CLS, Proposition 1.2.17]). We define Uσ to be the maximal spectrum of
the ring C[σ̌ ∩ M ]. It is an affine toric variety ([CLS, Theorem 1.2.18]).
The characters zm1 , . . . , zms on the torus T ' (C∗)n associated with the
generatorsm1, . . . ,ms of σ̌∩M introduce affine coordinates x1, . . . , xs on Uσ.
Here zm := zm1

1 . . . zmnn .
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A general toric variety XΣ can be constructed from a fan Σ in Rn, that
is, from a certain collection of cones generated by vectors from Zn. (For
the precise conditions characterizing a fan see e.g. [CLS, Definition 3.1.2]).
Affine pieces are constructed from cones σ ∈ Σ, and then the construction
of XΣ requires gluing any two such pieces along a common face of σ and σ′.
We also mention that torus-invariant hypersurfaces in XΣ are determined by
one-dimensional cones inΣ (e.g., via the so-called orbit-cone correspondence,
[CLS, Theorem 3.2.6 and Proposition 3.2.7]).

Let v1, . . . , vN denote the primitive generators of one-dimensional cones
in Σ. A character on ZN (i.e., an integer-valued function ϕ : ZN 7→ Z) is
determined by its values ai = ϕ(ei), where ei, i = 1, . . . , N , are the vectors of
the standard basis, and it defines a function ϕ : Rn → R by putting ϕ(vi) =
−ai and extending it as a linear function on each cone σ ∈ Σ. We will follow
the convention from [CLS, Definition 6.1.17]: a function ϕ : S → R defined on
a convex set S ⊂ Rn is convex if ϕ(tu+(1−t)tv) ≥ tϕ(u)+(1−t)ϕ(v) for all
u, v ∈ S and t ∈ [0, 1]. Note that this usage reverses the inequality occurring
in the definition of convex functions considered in analysis. The function ϕ
determines a torus-invariant divisor D =

∑N
i=1 aiDi on XΣ , where Di is the

hypersurface corresponding to the cone generated by vi. Conversely, every
such divisor D =

∑N
i=1 aiDi gives rise to a character, which determines a

function ϕD called the support function of D. If D is Cartier, then on each
n-dimensional cone σ ∈ Σ one has 〈mσ, vi〉 = −ai for all vi ∈ σ.

The support function ϕD of a Cartier divisor D on XΣ is called strictly
convex if it is convex and for every n-dimensional cone σ ∈ Σ it satis-
fies ϕD(u + v) > ϕD(u) +ϕD(v) for all u, v not belonging to the same
σ∈Σ. By [CLS, Propositions 4.3.3 and 4.3.8] (see also [Ro, Proposition 2]),
the line bundle associated with D has global sections Γ (XΣ ,OXΣ (D)) =⊕

m∈PD∩Zn C · χ
m, where PD ⊂ Rn is the polyhedron defined by PD =

{m ∈ Rn : 〈m, vi〉 ≥ −ai, i = 1, . . . , N}. By Lemma 6.1.9 in [CLS],
PD = {m ∈ Rn : ϕ(x) ≤ 〈m, v〉 ∀v ∈

⋃
σ∈Σ σ}. By [CLS, Theorem 6.1.10],

ϕD is convex if and only if D is basepoint-free (i.e., OXΣ (D) is generated by
global sections). This in turn is equivalent to ϕD(u) = minm∈PD〈m,u〉 for
all u ∈ Rn. Finally by [CLS, Theorem 6.1.15], D is ample if and only if ϕD
is strictly convex.

In this section we assume that X is a compact toric variety with a line
bundle L = OX(D) coming from a Cartier divisor D with a strictly convex
support function (hence L is ample). Recall Grauert’s ampleness criterion:
a holomorphic line bundle L over a compact complex manifold X is ample
if and only if the zero section Z(L′) of the dual bundle L′ has a strongly
pseudoconvex neighborhood. It follows that Z(L′) can be blown down to a
finite set of points.
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Consider the cone Cϕ = {(x, α) ∈ Rn × R : α ≥ ϕ(x)} in Rn+1. It is
equal to Cone{(0, 1), (vi,−ai) : i = 1, . . . , N}. By [Ro, Proposition 1] (cf.
also [CLS, Exercise 6.1.13]), the function ϕ is convex if and only if Cϕ is a
convex cone.

Now, for σ ∈ Σ let

σ̃ = {(u, α) : u ∈ σ, α ≥ ϕ(u)}
= Cone{(0, 1), (vi,−ai) : vi ∈ σ(1), i = 1, . . . , N}.

(Here σ(1) denotes the collection of all 1-dimensional cones in the fan σ.) By
[CLS, Proposition 7.3.1], the affine variety Uσ̃ is isomorphic to Uσ×C, which
is a trivializing neighborhood for the line bundle OXΣ (D). The projection
induces a map Uσ̃ → C, which is χ(−mσ ,1). This suggests another way of
looking at the sections ofOXΣ (D). Specifically, the following characterization
appears in [Ro, discussion between Lemma 5 and Proposition 3]:

Let Aϕ be the affine toric variety (with the action of the torus Tn+1)
associated with the cone Cϕ, that is, Aϕ = Spec C[Zn+1 ∩ C∗ϕ]. This is the
affine variety obtained by blowing down the zero section of the line bundle
OXΣ (−D). The affine coordinates on Aϕ are given by the characters χm such
that m ∈ PD ∩ Zn. This yields the identification

Γ (XΣ ,OXΣ (D)) = {f : Aϕ → C : f(λ · z) = λf(z), λ ∈ C∗, z ∈ Aϕ},
so the sections of L can be thought of as linear forms on Aϕ. This kind of
identification can be extended to Γ (X, dL). In fact, the following holds:

Proposition 2.1 ([Ba]; [Co, Section 5]; cf. also [CLS, Appendix A
to the Chapter 7]). Let X and L be as above. Consider the graded ring
RD =

⊕
d∈N Γ (X, dL). Then there exists a ring isomorphism between RD

and C[Zn+1 ∩ C∗ϕ], preserving the grading.

The grading in this proposition is given by deg td0χ
m(t) = d, d ≥ 1.

A closely related result, proved using the above isomorphism, is that if one
considers RD as a C-algebra with multiplication of complex functions, then
RD is finitely generated [El]. We can now formulate our first result:

Theorem 2.2. Let X be a toric manifold and L be a line bundle over X
defined by a Cartier divisor D with a strictly convex support function. Let
H : L′ → [0,∞), H 6≡ 0, be a continuous plurisubharmonic function which is
homogeneous in each fiber, with H−1(0) = ZL′, where ZL′ is the zero section
of L′. Then H(z) = sup |Q(z)|1/degQ, where Q is a linear combination of the
variables td0χ

m(t) (a homogeneous polynomial in the coordinates of Aϕ), with
degQ = d and m ∈ dPD, such that |Q|1/degQ ≤ H.

Proof. There is a strictly convex neighborhood Ω of the zero section and
there is r > 0 such that {H < r} ⊂ Ω. By rescaling H, we can assume that
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r = 1. Let a ∈ L′ be such that H(a) = 1 and let g(a) denote the above
supremum evaluated at a. It is enough to show that g(a) ≥ 1.

After blowing down the zero section, we get a holomorphically convex
bounded neighborhood Ω̃ of a point in Aϕ, hence a polynomially convex set.
Hence for any λ ∈ (0, 1) we have K̂λ ⊂ Ω̃, where Kλ = H−1([0, λ]). Now re-
call that the polynomial ring C[Zn+1∩C∗ϕ] is the subring of C[t0, t

±1
1 , . . . , t±1n ]

spanned by the Laurent monomials td0χm(t) with m ∈ dPD, and the sections
of dL correspond exactly to homogeneous polynomials which are sums of
td0χ

m(t). Recall also that the fiber Ljz can be identified with the space of
j-linear functions L′z × · · · × L′z → C. In particular, every section in Lj is a
homogeneous function of degree j on every fiber of L′.

Fix a λ ∈ (0, 1). There exists a µ ∈ (λ, 1) and a homogeneous polynomial
Q (viewed as a homogeneous function on Aϕ) such that Q(µa) ≥ 1 and
‖Q‖Kλ ≤ 1. By homogeneity, λ|Q|1/degQ, so λ ≤ |λdegQQ(µa)|1/degQ ≤
g(µa) = µg(a). Letting λ→ 1 implies that µ→ 1 and 1 ≤ g(a).

We also have the following:

Theorem 2.3. Under the assumptions of Theorem 2.2,

H = (lim sup
j→∞

|Qj |1/j)∗

for some sequence Qj of homogeneous polynomials on Aϕ with degQj ≤ j.

Proof. Let H : L′ → [0,∞), H 6≡ 0, be a continuous plurisubharmonic
function which is homogeneous in each fiber, with H−1(0) = ZL′ , where
ZL′ is the zero section of L′. The set Ω = {z : H(z) < 1} is a balanced
pseudoconvex neighbourhood of ZL′ . We let Φ denote the map which blows
down the zero section of L′, and let Ω̃ denote the set that Ω maps to.

Since Ω̃ is holomorphically convex, there exists a holomorphic function
F̃ on Ω̃ which does not extend beyond Ω̃. Observe that Ω̃ is a balanced
neighborhood of 0 in Aϕ so F̃ has a homogeneous expansion. That is, F̃ (z) =∑∞

j=0Qj(z) for z ∈ Ω̃, where Qj denotes a homogeneous polynomial with
degQj ≤ j. Define v(z) = (lim supj→∞ |Qj(z)|1/j)∗ for z ∈ Aϕ. By Cauchy’s
convergence criterion for numerical series, (lim supj→∞ |Qj(z)|1/j)∗ ≤ 1 for
z ∈ Ω̃. Consequently Ω̃ = {z ∈ Aϕ : v(z) < 1}. By the homogeneity of v
and H we have v ≡ H on Aϕ.

It is quite straightforward to show that the existence of a plurisubhar-
monic function H : L′ → [0,∞) as in Theorem 2.2 is equivalent to the
existence of a positive singular hermitian metric on L, i.e., to L being pseu-
doeffective. Namely ([BS], Theorem 1 and the references there), given such
an H and a system of trivializations θi : L′|Ui → Ui × C, the functions
hi(x) = log(H ◦ θ−1i (x, t)/|t|), x ∈ Ui, t 6= 0, give a positive singular metric
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hL on L, and the same formula defines H as in Theorem 2.2 if the collection
{hi} gives a positive singular metric. As an example of a positive singular
metric one can take log |s|, where s is a holomorphic section of L. From
[GZ] we have the following relation between positive singular metrics and
quasi-plurisubharmonic functions: Consider the metric with weight λ (or fix
any smooth metric on the line bundle L over X), and set ω = ddcλ. The class
PSH(X,ω) of functions u ∈ L1(X,R ∪ {−∞}) such that u is upper semi-
continuous and satisfies ddcu ≥ −ω can be obtained by taking all positive
singular metrics ψ on L and setting u = ψ−λ. Conversely, if u ∈ PSH(X,ω),
then u + λ defines a positive singular metric on L. We call PSH(X,ω) the
Lelong class on X.

In analogy to the case of CPn, a growth condition for plurisubharmonic
functions on a complex torus was introduced in [Be, Section 4]. It generalizes
the growth condition for the Lelong class in Cn with a view to studying quasi-
plurisubharmonic functions on toric manifolds. Moreover, it is equivalent to
the statement that an ω-quasi-psh function v on a toric manifold X corre-
sponds uniquely to a plurisubharmonic function u on the torus Tn satisfying

u(z1, . . . , zn) ≤ ψ(z1, . . . , zn) +O(1)

:= sup
m∈PD

〈m, (log |z1|, . . . , log |zn|)〉+O(1).

(Note that ψ is the composition of the support function of PD with the
map z 7→ (log |z1|, . . . , log |zn|).) Accordingly, u−ψ+λ is a positive singular
metric.

We will now apply our approximation results from the previous a section
to prove that this condition provides a unique characterization of ω-quasi-psh
functions.

Theorem 2.4. Let X = XΣ be a n-dimensional toric manifold with a
complete fan Σ and let D be a very ample divisor on X. Let u be a plurisub-
harmonic function on the torus Tn. Then the function

v = u(z1, . . . , zn)− ψ(log |z1|, . . . , log |zn|)
extends to an ω-psh function on X if and only if

u(z1, . . . , zn) ≤ ψ(log |z1|, . . . , log |zn|) +O(1)

:= sup
m∈PD∩M

〈m, (log |z1|, . . . , log |zn|)〉+O(1).

Proof. If u is a psh function satisfying the growth condtion, then v
and its extension to X satisfy ddcv ≥ ddc(−ψ) = −[D]. Conversely, by
Theorem 2.3, u − ψ + λ = (lim supj→∞(1/j) log |Qj |)∗ for some sequence
Qj ∈ Γ (X,OX(jD)), j = 1, 2, . . . . We have (1/j) log |Qj | − λ ≤ O(1) for
all j, and the inequality persists under the upper limit and upper semicon-
tinuous regularization, so u− ψ ≤ O(1).
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3. A counterexample. The problem of approximation of arbitrary
plurisubharmonic functions by functions of the form log |f |, with f holo-
morphic, dates back to Lelong ([Le]) and Bremermann ([Br1], [Br2]). In
the cited articles of the latter author, the problem of approximating psh
functions by so-called Hartogs functions (a class which includes log |f |) was
solved positively in a pseudoconvex domain in Cn. Also, counterexamples
were given that such approximation may be impossible when the domain is
not pseudoconvex. Having this problem in mind, one may ask whether in
Siciak’s theorem the assumption that the line bundle is ample can be re-
laxed. Now we will answer this question in the negative. More specifically,
we will present a globally generated (basepoint-free) nonample line bun-
dle L on X = P1 × P1 and a plurisubharmonic function H : L′ → [0,∞),
H 6≡ 0, which is homogeneous in each fiber of L′ and which is not of the form
H(z) = sup |Q(z)|1/degQ for any collection of sections Q with |Q|1/degQ ≤ H.
We need the following ingredients:

1) The fan Σ for X = CP1 × CP1 and affine coordinate patches (cf.
[CLS, Example 3.1.12]): The fan Σ consists of the following cones in R2:
the 0-dimensional cone {(0, 0)}; four one-dimensional cones generated by
the vectors ±ei, i = 1, 2, where e1, e2 are the vectors of the canonical ba-
sis in R2; four two-dimensional cones σI , σII , σIII , σIV equal to the cor-
responding quadrants in R2. Taking dual cones one gets affine coordinate
neighborhoods in P1 × P1: UI = SpecC[x, y]; UII = SpecC[x−1, y]; UIII =
SpecC[x−1, y−1]; UIV = SpecC[x, y−1].

2) A divisor on P1 × P1: let D±i be the divisors corresponding to the ray
generators ±ei, i = 1, 2. We will take D = D+

1 −D
−
1 +D+

2 +D−2 .

3) The support function associated withD: IfD =
∑
aρDρ, then ϕD(uρ)

= −aρ on the ray generator uρ and ϕD extends as a linear function to each
cone σ ∈ Σ ([CLS, Definition 4.2.11 and Theorem 4.2.12]). The values of
ϕ on the ray generators are: ϕ(1, 0) = −1, ϕ(0, 1) = −1, ϕ(−1, 0) = 1,
ϕ(0,−1) = −1. Thus the support function of D is ϕD(x, y) = −x − y for
y ≥ 0 and ϕD(x, y) = −x+ y for y ≤ 0 and all real x.

Proposition 3.1. The divisor D in CP1×CP1 is basepoint-free, but not
ample.

Proof. According to [CLS, Theorem 6.1.10(a), (g)], a torus-invariant di-
visor D is basepoint-free if and only if ϕD is convex, and according to [CLS,
Theorem 6.1.15], a divisor D is ample if and only if ϕD is strictly convex.
The function ϕD(x, y) is convex, but not strictly convex, since ϕD(1, 0) +
ϕD(−1, 0) = ϕD(0, 0).

4) The polytope associated with D (cf. [CLS, Lemma 6.1.9]): This is a
degenerate polytope in R2: m1 = 0, −1 ≤ m2 ≤ 1.
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The cone C∗ϕ (which equals the cone over PD × {1}) is generated by the
vectors (−1,−1, 1), (−1, 1, 1).

5) Sections of the line bundle L = O(D) ([CLS, Propositions 4.3.3 and
4.3.8]): Γ (X,O(D)) = {az−11 z−12 t+ bz−11 z2t+ cz−11 t} : a, b, c ∈ C}. A similar
representation is valid for Γ (X,O(nD)), n ≥ 1.

6) The total space of the line bundle L′ = O(−D) ([CLS, §7.3]) mi-
nus the zero section: the affine coordinate neighborhoods are determined by
the cones σ̃ = Cone {(0, 0, 1), (uρ, aρ) : ρ ∈ σ(1)} and σ ∈ Σ. We thus
have ŨI = SpecC[z−11 z−12 t, z1, z2]; ŨII = SpecC[z−11 z−12 t, z−11 , z2]; ŨIII =

SpecC[z−11 z2t, z
−1
1 , z−12 ]; ŨIV = SpecC[z−11 z2t, z1, z

−1
2 ].

7) Let us now define a function on the total space on L′ as follows:
H(ζ1, ζ2, τ) := |t|, i.e., H equals |ζ1ζ2τ | on σ1 ∪ σ4 , |ζ1τ/ζ2| on σ2 and
|ζ2τ/ζ1| on σ3. Then H is plurisubharmonic, homogeneous in each fiber, and
satisfies H−1(0) = ZL′ , but it cannot be approximated by combinations of
sections of L.
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