
ANNALES
POLONICI MATHEMATICI

106 (2012)

Potentials with respect to the pluricomplex Green function

by Urban Cegrell (Umeå)

Dedicated to Professor Józef Siciak

Abstract. For µ a positive measure, we estimate the pluricomplex potential of µ,
Pµ(x) =

	
Ω
g(x, y) dµ(y), where g(x, y) is the pluricomplex Green function (relative to Ω)

with pole at y.

1. Introduction. Denote by PSH(Ω) the plurisubharmonic functions
on Ω and by PSH−(Ω) the subclass of negative functions. A set Ω ⊂ Cn
is said to be a hyperconvex domain if it is open, bounded, connected and
if there exists ϕ ∈ PSH−(Ω) such that {z ∈ Ω; ϕ(z) < −c} ⊂⊂ Ω for all
c > 0. For µ a positive measure on Ω we define the pluricomplex potential of
µ (relative to Ω):

Pµ(x) =
�

Ω

g(x, y) dµ(y)

where g(x, y) is the pluricomplex Green function (relative to Ω) with pole
at y. We refer to [10] for facts about the pluricomplex Green function.

We let E0 denote the family of all bounded plurisubharmonic functions
ϕ defined on Ω such that

lim
z→ξ

ϕ(z) = 0 for every ξ ∈ ∂Ω, and
�

Ω

(ddcϕ)n <∞

where (ddc)n is the complex Monge–Ampère operator. Let E1 denote the
family of plurisubharmonic functions u defined on Ω such that there exists
a decreasing sequence {uj}, uj ∈ E0, that converges pointwise to u on Ω as
j tends to ∞, and

sup
j≥1

�

Ω

(−uj)(ddcuj)n <∞.
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If only supj≥1
	
Ω(dd

cuj)
n <∞ we say that u ∈ F .

Finally, a negative plurisubharmonic function on Ω belongs to E if it is
locally the restriction of a function in F(Ω).

The complex Monge–Ampère operator is well-defined on E .
For background and details, see [9], [10], [11], [12], [8], [5] and [6].
Throughout, we assume Ω to be a hyperconvex domain and µ to be a

positive measure with 0 < µ(Ω) <∞.
The purpose of this paper is to prove the following theorem.

Theorem 1.1. If 0 < µ(Ω) <∞, then Pµ(x) ∈ F(Ω) and
�
−h(ddcPµ)n ≤

( �
(−h)1/n dµ

)n
≤ [µ(Ω)]n−1

�
−h dµ, ∀h ∈ PSH−(Ω).

2. Proof of Theorem 1.1. The last inequality follows from the Hölder
inequality.

If suppµ ⊂⊂ Ω then Pµ(x) is a negative plurisubharmonic function,
bounded near the boundary of Ω. (It tends to zero at the boundary.) There-
fore, Pµ ∈ E .

We first claim: If µ is a compactly supported measure, Pµ ∈ F and
h ∈ E0, then �

−h(ddcPµ)n ≤
( �

(−h(w))1/n dµ(w)
)n
.

Following an idea of Carlehed [2] and [3], we consider, for w1, . . . , wn∈Cn,�

Ω

h(x)ddcg(x,w1)∧ · · · ∧ ddcg(x,wn) =
�

Ω

g(x,w1)dd
ch(x)∧ · · · ∧ ddcg(x,wn)

(The equality follows from integration by parts, which is valid in F .) By
Theorem 5.5 in [6], we have

�

Ω

−h(x)ddcg(x,w1) ∧ · · · ∧ ddcg(x,wn)

≤
[ �
−h(x)(ddcg(x,w1))

n
]1/n
× · · · ×

[ �
−h(x)(ddcg(x,wn))n

]1/n
= (−h(w1))

1/n . . . (−h(wn))1/n,
so �

Ω

−g(x,w1)dd
ch(x) ∧ · · · ∧ ddcg(x,wn) ≤ (−h(w1))

1/n . . . (−h(wn))1/n.

Integrating the inequality n times gives
�
−h(x)(ddcPµ(x))n ≤

( �
(−h(w))1/n dµ(w)

)n
,

which proves the claim.
To prove the theorem, it is thus enough to prove that Pµ ∈ F .
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We can choose Pµj ∈ F where µj is a sequence of finite weighted sums of
Dirac measures with total mass = µ(Ω), converging weakly to µ as j →∞.
It follows from the claim that

	
(ddcPµj )

n ≤ (µ(Ω))n and consequently	
(ddcPµ)

n ≤ (µ(Ω))n so Pµ ∈ F and the proof is complete.

Actually, using the estimate 0≥g(x, y)≥ log |x−y|−supz,w∈Ω log |z−w|,
one proves that Pµj tends weakly to Pµ as j →∞.

3. A general Chern–Levine–Nirenberg theorem. We now use The-
orem 1.1 to generalize a theorem of Chern–Levine–Nirenberg [7]. See also [1],
[9] and [4].

Theorem 3.1. Assume K is a compact subset of Ω. Then there is a
constant d such that�

K

−h(ddcu)n ≤ d[sup
z∈Ω
−u]n

�

Ω

−h dµ,

∀u ∈ PSH−(Ω) ∩ L∞(Ω), ∀h ∈ PSH−(Ω).

Proof. It is no restriction to assume thatK is not pluripolar,−1 < u ∈ E0
and h ∈ E0. Let 0 > −c > supz∈K Pµ(z). Then Pµ/c < −1 onK so for h ∈ E0
we have

�

K

−h(ddcu)n =
�

K

−h
(
ddcmax

(
u,
Pµ
c

))n
≤ 1

cn

�

Ω

−h(ddcPµ)n ≤
µ(Ω)n−1

cn

�

Ω

−h dµ

where the last inequality follows from Theorem 1.1.

Corollary 3.2. Assume that K is a compact subset of Ω. Then there
is a constant d such that�

K

(ddcu)n ≤ d[sup
z∈Ω
−u]n−1

�

Ω

−u dµ, ∀u ∈ PSH−(Ω) ∩ L∞(Ω).

Proof. Again, it is no restriction to assume that K is not pluripolar and
that −1 < u ∈ E0. Let 0 > −c > supz∈K Pµ(z). Then Pµ/c < −1 on K so

�

K

(ddcu)n =
�

K

ddcu ∧
(
ddcmax

(
u,
Pµ
c

))n−1
≤ 1

cn−1

�

Ω

−Pµ
c
ddcu ∧ (ddcPµ)

n−1 =
1

cn

�

Ω

−u(ddcPµ)n

≤ µ(Ω)n−1

cn

�

Ω

−u dµ

where the last inequality follows from Theorem 1.1.
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4. Functions of finite pluricomplex energy. The class E1 was in-
troduced and studied in [5]. We already know that when µ(Ω) < ∞ then
Pµ ∈ F .

Theorem 4.1. If 0 < ν ≤ (−u)(n−1)/n(ddcv)n where u, v ∈ E1 then
Pν ∈ E1.

Proof. Theorem 1.1 gives�
−h(ddcPν)n ≤

( �
(−h)1/n dν

)n
and by the Hölder inequality and Theorem 3.2 in [5] we get�
−h(ddcPν)n ≤

( �
(−h)1/n(−u)(n−1)/n(ddcv)n

)n
≤

�
−h(ddcv)n

( �
−u(ddcv)n

)n−1
≤
( �
−h(ddch)n

)1/(n+1)( �
−v(ddcv)n

)n/(n+1)

×
( �
−u(ddcu)n

)(n−1)/(n+1)( �
−v(ddcv)n

)n(n−1)/(n+1)

so in particular
�
−Pν(ddcPν)n ≤ C

( �
−Pν(ddcPν)n

)1/(n+1)

and it follows that Pν ∈ E1.
Remark. In the theorem, it is enough to assume that the inequality 0 ≤

ν ≤ (−u)(n−1)/n(ddcv)n, where u, v ∈ E1, holds true in the “plurisubharmonic
order” only.
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