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Abstract. For p a positive measure, we estimate the pluricomplex potential of p,
P.(x) = SQ g(z,y) du(y), where g(x,y) is the pluricomplex Green function (relative to {2)
with pole at y.

1. Introduction. Denote by PSH(f2) the plurisubharmonic functions
on {2 and by PSH™(£2) the subclass of negative functions. A set 2 C C"
is said to be a hyperconver domain if it is open, bounded, connected and
if there exists ¢ € PSH™({2) such that {z € 2; p(2) < —c} CC 2 for all
¢ > 0. For u a positive measure on {2 we define the pluricomplex potential of
w (relative to £2):

Pu(z) = \ g(z,y) duly)
[0

where g(z,y) is the pluricomplex Green function (relative to {2) with pole
at y. We refer to [10] for facts about the pluricomplex Green function.

We let & denote the family of all bounded plurisubharmonic functions
© defined on {2 such that

lim p(z) =0 for every £ € 0f2, and S(ddcgo)” < 00

z—E€ 0
where (dd®)™ is the complex Monge-Ampére operator. Let & denote the
family of plurisubharmonic functions u defined on {2 such that there exists
a decreasing sequence {u;}, u; € &, that converges pointwise to u on {2 as
7 tends to oo, and
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If only sup;s §,(dd°u;)"™ < oo we say that u € F.

Finally, a negative plurisubharmonic function on {2 belongs to £ if it is
locally the restriction of a function in F(£2).

The complex Monge-Ampeére operator is well-defined on £.

For background and details, see [9], [10], [11], [12], [8], [5] and [6].

Throughout, we assume {2 to be a hyperconvex domain and p to be a
positive measure with 0 < p(£2) < oo.

The purpose of this paper is to prove the following theorem.

THEOREM 1.1. If 0 < pu(£2) < oo, then P,(x) € F(§2) and
[ ~n(daep,)" < (S (—h)M/™ du)” < (WD) | ~hdu, Vh e PSH(2).

2. Proof of Theorem 1.1. The last inequality follows from the Hélder
inequality.

If suppp CC 2 then P,(x) is a negative plurisubharmonic function,
bounded near the boundary of §2. (It tends to zero at the boundary.) There-
fore, P, € £.

We first claim: If p is a compactly supported measure, P, € F and
h € &, then

J=ndaP)" < (§(=h(w)" du(w)) .
Following an idea of Carlehed [2] and [3], we consider, for wy, ..., w, € C",
S h(z)dd®g(z,w1) A--- ANdd°g(z,wy,) = S g(z,wy)ddh(x) A+ ANddCg(x,wy)
2 (9}

(The equality follows from integration by parts, which is valid in F.) By
Theorem 5.5 in [0], we have

| —h(z)ddg(z,wi) A - Addg(z, wp)
2

< [§-n(e)dagte 0] " o [ -hia) (@, w)"

= (=h(w))/" .. (=h(wa))'",

1/n

SO
| —g(z, w)ddh(z) A -+ Addg(m,wn) < (—h(wi))™ . (=h(wn))™.
9]
Integrating the inequality n times gives
[ =h(@)(ddPu@)" < (§(=h(w)" du(w))",
which proves the claim.
To prove the theorem, it is thus enough to prove that P, € F.
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We can choose P,; € F where p; is a sequence of finite weighted sums of
Dirac measures with total mass = p(f2), converging weakly to u as j — oo.
It follows from the claim that {(dd°P,,)" < (u(£2))" and consequently
§(dd°P,)™ < (u(£2))" so P, € F and the proof is complete.

Actually, using the estimate 0> g(x, y) >log |z —y| —sup, ,ep log |z —w,
one proves that P, tends weakly to F, as j — oo.

3. A general Chern—Levine—Nirenberg theorem. We now use The-
orem 1.1 to generalize a theorem of Chern-Levine-Nirenberg [7]. See also [1],
[9] and [4].

THEOREM 3.1. Assume K is a compact subset of {2. Then there is a
constant d such that

S —h(ddu)™ < d[sup —u]" S —hdpu,
K z€(2 0
Vu € PSH™ (£2) N L>(12), Yh € PSH™ (12).
Proof. It is no restriction to assume that K is not pluripolar, —1 < u € &
and h € &. Let 0 > —¢ > sup,c g Py(2). Then P,/c < —1 on K so for h € &

we have
c, \n c Pu "
| —h(ddw)" = | —h( dd°max( u, -
C

n—1
| ~h(ddcp)" < % | —ndu
2 ¢ 2

where the last inequality follows from Theorem 1.1. m
COROLLARY 3.2. Assume that K is a compact subset of £2. Then there
15 a constant d such that
| (dd°uw)™ < dfsup —u]" " | —udp, Vu € PSH™(£2) N L>(£2).
K z€Q2 0O
Proof. Again, it is no restriction to assume that K is not pluripolar and
that —1 <wu € &. Let 0 > —c¢ > sup,cx Pu(2). Then P,/c < —1 on K so

| (ddew)™ = | dd°u n <ddc M <u 1}))%1

K K

1 PH c c n—1 1 c n

< | —=Hddu n (dd°P,)" T = | —u(da°p,)
2 2

0 n—1

< 1(£2) [ —udu
C'I'L
Q

where the last inequality follows from Theorem 1.1. m
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4. Functions of finite pluricomplex energy. The class £ was in-

troduced and studied in [5]. We already know that when p({2) < oo then
P, eF.

THEOREM 4.1. If 0 < v < (—u)™V/"(ddv)" where u,v € & then

P, e 81.

Proof. Theorem 1.1 gives

J—h(da*P,)" < (§(=h)!/" du)n

and by the Holder inequality and Theorem 3.2 in [5] we get
[=h(ddeP,) < (| (=1 (=u) =D/ (ddcw) )"

< [-h(ddvy" (§~u(dacv")"
< (J-taany) " (§-otdaor)
X (S *U(ddcu)n) (n=1)/(n+1) (S —v(dd%)") n(n—1)/(n+1)

n/(n+1)

so in particular

[~P.(ddP,)" < C(|-P(dd°P,)") Y(n+1)

and it follows that P, € £1. =

REMARK. In the theorem, it is enough to assume that the inequality 0 <

v < (—u)= /" (dd°v)", where u, v € &1, holds true in the “plurisubharmonic
order” only.
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