# Curvature properties of a semi-symmetric metric connection on $S$-manifolds 

by Mehmet Akif Akyol (Bingöl), Aysel Turgut Vanli (Ankara), and Luis M. Fernández (Sevilla)


#### Abstract

In this study, $S$-manifolds endowed with a semi-symmetric metric connection naturally related with the $S$-structure are considered and some curvature properties of such a connection are given. In particular, the conditions of semi-symmetry, Ricci semisymmetry and Ricci-projective semi-symmetry of this semi-symmetric metric connection are investigated.


1. Introduction. In 1963, Yano [28] introduced the notion of $f$-structure on an $m$-dimensional $\mathrm{C}^{\infty}$ manifold $M$, as a non-vanishing tensor field $\varphi$ of type $(1,1)$ on $M$ which satisfies $\varphi^{3}+\varphi=0$ and has constant rank $r$. It is known that $r$ is even, say $r=2 n$. Moreover, $T M$ splits into two complementary subbundles $\operatorname{Im} \varphi$ and $\operatorname{ker} \varphi$ and the restriction of $\varphi$ to $\operatorname{Im} \varphi$ determines a complex structure on this subbundle. It is also known that the existence of an $f$-structure on $M$ is equivalent to a reduction of the structure group to $U(n) \times O(s)$ (see [3]), where $s=m-2 n$. Almost complex $(s=0)$ and almost contact $(s=1)$ are well-known examples of $f$ structures. The case $s=2$ appeared in the study of hypersurfaces in almost contact manifolds [5, 12], which motivated Goldberg and Yano [13] to define globally framed $f$-manifolds (also called metric $f$-manifolds or $f$.pk-manifolds).

A wide class of globally framed $f$-manifolds was introduced by Blair in [3] according to the following definition: a metric $f$-structure is said to be a $K$-structure if the fundamental 2-form $\Phi$ given by $\Phi(X, Y)=g(X, \varphi Y)$ for any vector fields $X$ and $Y$ on $M$ is closed and the normality condition holds, that is, $[\varphi, \varphi]+2 \sum_{i=1}^{s} d \eta^{i} \otimes \xi_{i}=0$, where $[\varphi, \varphi]$ denotes the Nijenhuis torsion of $\varphi, \xi_{i}$ are the structure vector fields and $\eta^{i}$ their dual 1 -forms, $i=1, \ldots, s$ (see Section 2 for further details). A $K$-manifold is called an $S$-manifold

[^0]Key words and phrases: $S$-manifold, semi-symmetric metric connection, semi-symmetry properties.
if $d \eta^{k}=\Phi$ for all $k=1, \ldots, s$. $S$-manifolds have been studied by several authors (see, for example, [4, 6, 14, 17]).

Further, in 1924 Friedmann and Schouten [11] introduced the notion of semi-symmetric linear connection on a differentiable manifold. Later, Hayden [15] introduced the idea of metric connection with torsion on a Riemannian manifold. In 1970, Yano [29] made a systematic study of semisymmetric metric connections on a Riemannian manifold. More precisely, if $\nabla$ is a linear connection in a differentiable manifold $M$, then the torsion tensor $T$ of $\nabla$ is given by $T(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y]$ for any vector fields $X$ and $Y$ on $M$. The connection $\nabla$ is said to be symmetric if the torsion tensor $T$ vanishes, otherwise it is said to be non-symmetric. The connection $\nabla$ is said to be semi-symmetric if $T$ is of the form $T(X, Y)=\eta(Y) X-\eta(X) Y$ for any $X, Y$, where $\eta$ is a 1-form on $M$. Moreover, if $g$ is a (pseudo)-Riemannian metric on $M$, then $\nabla$ is called a metric connection if $\nabla g=0$, otherwise it is called non-metric. It is well known that the Riemannian connection is the unique metric and symmetric linear connection on a Riemannian manifold.

It is worth pointing out here that (pseudo)-Riemannian manifolds endowed with a semi-symmetric metric connection are a particular case of the so-called Riemann-Cartan spaces (see, for instance, [23), which have many physical applications. Thus, in the framework of general relativity theory, space-time is supplied with torsion in addition to curvature due to a known relationship between the torsion of an asymmetric metric connection and the spin tensor of matter. More physical applications of the notion of torsion were also discovered by Penrose [19]. There are various physical problems involving specifically semi-symmetric metric connections; for instance, the displacement on the earth surface following a fixed point is metric and semisymmetric [22]. In this context, the interesting report of Suhendro [24] can be consulted. On the other hand, several authors have studied semi-symmetric metric connections on different types of Riemannian and semi-Riemannian manifolds (see, among many others, [2, 7, 8, 10, 18, 20, 25]).

The purpose of this paper is to link the two notions commented above by investigating the curvature properties of a certain semi-symmetric metric connection defined on $S$-manifolds and naturally related to the $S$-structure. To this end, in Section 2 we give a brief introduction to $S$-manifolds and in Section 3 we define a semi-symmetric metric connection on an $S$-manifold, obtaining some general results. In Section 4, we investigate the curvature and the Ricci tensor fields of such a connection. In particular, we prove that an $S$-manifold has constant $f$-sectional curvature with respect to this semisymmetric metric connection if and only if it also has constant $f$-sectional curvature with respect to the Riemannian connection, giving the relationship between both constants. Consequently, the curvature of this semi-symmetric metric connection is completely determined by its $f$-sectional curvature.

Finally, in the last section, we present some results concerning the semisymmetry, Ricci semi-symmetry and Ricci-projective semi-symmetry properties of a semi-symmetric metric connection. In particular, we prove that if an $S$-manifold is semi-symmetric with respect to such a connection, then it is of constant $f$-sectional curvature zero. We point out that the results obtained in the final section establish a clear difference between the cases $s \leq 2$ and $s>2$.
2. Preliminaries on $S$-manifolds. A $(2 n+s)$-dimensional differentiable manifold $M$ is called a metric $f$-manifold if there exist a $(1,1)$ type tensor field $\varphi$, vector fields $\xi_{1}, \ldots, \xi_{s}, 1$-forms $\eta^{1}, \ldots, \eta^{s}$ and a Riemannian metric $g$ on $M$ such that

$$
\begin{gather*}
\varphi^{2}=-I+\sum_{i=1}^{s} \eta^{i} \otimes \xi_{i}, \quad \eta^{i}\left(\xi_{j}\right)=\delta_{i j}, \quad \varphi \xi_{i}=0, \quad \eta^{i} \circ \varphi=0  \tag{2.1}\\
g(\varphi X, \varphi Y)=g(X, Y)-\sum_{i=1}^{s} \eta^{i}(X) \eta^{i}(Y) \tag{2.2}
\end{gather*}
$$

for any $X, Y \in \mathcal{X}(M), i, j \in\{1, \ldots, s\}$, and moreover

$$
\begin{equation*}
\eta^{i}(X)=g\left(X, \xi_{i}\right), \quad g(X, \varphi Y)=-g(\varphi X, Y) \tag{2.3}
\end{equation*}
$$

Then, a 2-form $\Phi$ is defined by $\Phi(X, Y)=g(X, \varphi Y)$ for any $X, Y \in \mathcal{X}(M)$, called the fundamental 2-form. In what follows, we denote by $\mathcal{M}$ the distribution spanned by the structure vector fields $\xi_{1}, \ldots, \xi_{s}$, and by $\mathcal{L}$ its orthogonal complementary distribution. Thus, $\mathcal{X}(M)=\mathcal{L} \oplus \mathcal{M}$. If $X \in \mathcal{M}$, then $\varphi X=0$, and if $X \in \mathcal{L}$, then $\eta^{i}(X)=0$ for any $i \in\{1, \ldots, s\}$, that is, $\varphi^{2} X=-X$.

In a metric $f$-manifold, special local orthonormal bases of vector fields can be considered. Let $U$ be a coordinate neighborhood and $E_{1}$ a unit vector field on $U$ orthogonal to the structure vector fields. Then, from (2.1)-(2.3), $\varphi E_{1}$ is also a unit vector field on $U$ orthogonal to $E_{1}$ and the structure vector fields. Next, if possible, let $E_{2}$ be a unit vector field on $U$ orthogonal to $E_{1}$, $\varphi E_{1}$ and the structure vector fields and so on. The local orthonormal basis

$$
\left\{E_{1}, \ldots, E_{n}, \varphi E_{1}, \ldots, \varphi E_{n}, \xi_{1}, \ldots, \xi_{s}\right\}
$$

so obtained is called an $f$-basis. Moreover, a metric $f$-manifold is normal if

$$
[\varphi, \varphi]+2 \sum_{i=1}^{s} d \eta^{i} \otimes \xi_{i}=0
$$

where $[\varphi, \varphi]$ denotes the Nijenhuis tensor field associated to $\varphi$. A metric $f$-manifold is said to be an $S$-manifold if it is normal and

$$
\eta^{1} \wedge \cdots \wedge \eta^{s} \wedge\left(d \eta^{i}\right)^{n} \neq 0 \quad \text { and } \quad \Phi=d \eta^{i}, 1 \leq i \leq s
$$

Observe that, if $s=1$, an $S$-manifold is a Sasakian manifold. For $s \geq 2$, examples of $S$-manifolds can be found in [3, 4, 14].

The following results are known for the Riemannian connection of an $S$-manifold:

THEOREM 2.1 ([3]). An $S$-manifold $\left(M, \varphi, \xi_{i}, \eta^{i}, g\right)$ satisfies the condition

$$
\begin{equation*}
\left(\nabla_{X}^{*} \varphi\right) Y=\sum_{i=1}^{s}\left\{g(\varphi X, \varphi Y) \xi_{i}+\eta^{i}(Y) \varphi^{2} X\right\} \tag{2.4}
\end{equation*}
$$

for all $X, Y \in \mathcal{X}(M)$, where $\nabla^{*}$ denotes the Riemannian connection with respect to $g$.

Thus, from 2.4 we deduce that

$$
\begin{equation*}
\nabla_{X}^{*} \xi_{i}=-\varphi X \tag{2.5}
\end{equation*}
$$

for any $X \in \mathcal{X}(M), i \in\{1, \ldots, s\}$.
Finally, for the curvature tensor field of the Riemannian connection of an $S$-manifold, we recall:

ThEOREM 2.2 ([6]). Let $\left(M, \varphi, \xi_{i}, \eta^{i}, g\right)$ be an $S$-manifold of dimension $2 n+s$. Then,

$$
\begin{gather*}
R^{*}(X, Y) \xi_{i}=\sum_{j=1}^{s}\left\{\eta^{j}(X) \varphi^{2} Y-\eta^{j}(Y) \varphi^{2} X\right\}  \tag{2.6}\\
R^{*}\left(X, \xi_{i}\right) Y=-\sum_{j=1}^{s}\left\{g(\varphi X, \varphi Y) \xi_{j}+\eta^{j}(Y) \varphi^{2} X\right\} \tag{2.7}
\end{gather*}
$$

for all $X, Y \in \mathcal{X}(M), i, j \in\{1, \ldots, s\}$, where $R^{*}$ denotes the curvature tensor field of the Riemannian connection.

Corollary 2.3 ([6]). Let $\left(M, \varphi, \xi_{i}, \eta^{i}, g\right)$ be an $S$-manifold of dimension $2 n+s$. Then

$$
\begin{align*}
R^{*}\left(\xi_{i}, X, \xi_{j}, Y\right) & =-g(\varphi X, \varphi Y)  \tag{2.8}\\
K^{*}\left(\xi_{i}, X\right) & =g(\varphi X, \varphi X)  \tag{2.9}\\
S^{*}\left(X, \xi_{i}\right) & =2 n \sum_{i=1}^{s} \eta^{i}(X) \tag{2.10}
\end{align*}
$$

for all $X, Y \in \mathcal{X}(M), i, j \in\{1, \ldots, s\}$, where $K^{*}$ and $S^{*}$ denote respectively the sectional curvature and the Ricci tensor field of the Riemannian connection.

Consequently, from (2.9), if $s \geq 2$, an $S$-manifold cannot have constant sectional curvature. For this reason, it is necessary to introduce a more restrictive curvature. In general, a plane section $\pi$ on a metric $f$-manifold
$\left(M, \varphi, \xi_{i}, \eta^{i}, g\right)$ is said to be an $f$-section if it is determined by a unit vector $X$, normal to the structure vector fields and $\varphi X$. The sectional curvature of $\pi$ is called an $f$-sectional curvature. An $S$-manifold is said to be an $S$-space-form if it has constant $f$-sectional curvature $c$; it is then denoted by $M(c)$. The curvature tensor field $R^{*}$ of $M(c)$ satisfies (see [17])

$$
\begin{array}{r}
R^{*}(X, Y, Z, W)=\sum_{i, j=1}^{s}\left\{g(\varphi X, \varphi W) \eta^{i}(Y) \eta^{j}(Z)\right.  \tag{2.11}\\
-g(\varphi X, \varphi Z) \eta^{i}(Y) \eta^{j}(W)+g(\varphi Y, \varphi Z) \eta^{i}(X) \eta^{j}(W) \\
\left.-g(\varphi Y, \varphi W) \eta^{i}(X) \eta^{j}(Z)\right\} \\
+\frac{c+3 s}{4}\{g(\varphi X, \varphi W) g(\varphi Y, \varphi Z)-g(\varphi X, \varphi Z) g(\varphi Y, \varphi W)\} \\
+\frac{c-s}{4}\{\Phi(X, W) \Phi(Y, Z)-\Phi(X, Z) \Phi(Y, W)-2 \Phi(X, Y) \Phi(Z, W)\}
\end{array}
$$

for any $X, Y, Z, W \in \mathcal{X}(M)$.
3. A semi-symmetric metric connection on $S$-manifolds. From now on, let $M$ denote an $S$-manifold $\left(M, \varphi, \xi_{i}, \eta^{i}, g\right)$ of dimension $2 n+s$. We define a new connection on $M$ by

$$
\begin{equation*}
\nabla_{X} Y=\nabla_{X}^{*} Y+\sum_{j=1}^{s} \eta^{j}(Y) X-\sum_{j=1}^{s} g(X, Y) \xi_{j} \tag{3.1}
\end{equation*}
$$

for any $X, Y \in \mathcal{X}(M)$. It is easy to show that $\nabla$ is a linear connection on $M$. Moreover, we can prove:

Theorem 3.1. Let $M$ be an $S$-manifold. The linear connection $\nabla d e-$ fined in (3.1) is a semi-symmetric metric connection on $M$.

Proof. By (3.1) and the fact that the Riemannian connection is torsionfree, the torsion tensor $T$ of the connection $\nabla$ is given by

$$
\begin{equation*}
T(X, Y)=\sum_{j=1}^{s}\left\{\eta^{j}(Y) X-\eta^{j}(X) Y\right\} \tag{3.2}
\end{equation*}
$$

for any $X, Y \in \mathcal{X}(M)$. Moreover, by using (3.1) again, for all $X, Y, Z \in$ $\mathcal{X}(M)$ and since $\nabla^{*}$ is a metric connection, we have

$$
\begin{equation*}
\left(\nabla_{X} g\right)(Y, Z)=0 \tag{3.3}
\end{equation*}
$$

From (3.2) and (3.3) we conclude that the linear connection $\nabla$ is a semisymmetric metric connection on $M$.

For example, let us consider $\mathbb{R}^{2 n+s}$ with its standard $S$-structure given in [14]:

$$
\begin{gathered}
\eta^{a}=\frac{1}{2}\left(d z^{a}-\sum_{i=1}^{n} y^{i} d x^{i}\right), \quad \xi_{a}=2 \frac{\partial}{\partial z^{a}} \\
g=\sum_{\alpha=1}^{s} \eta^{a} \otimes \eta^{a}+\frac{1}{4}\left(\sum_{i=1}^{n}\left(d x^{i} \otimes d x^{i}+d y^{i} \otimes d y^{i}\right)\right) \\
\varphi\left(\sum_{i=1}^{n}\left(X_{i} \frac{\partial}{\partial x^{i}}+Y_{i} \frac{\partial}{\partial y^{i}}\right)\right. \\
\left.+\sum_{a} Z_{a} \frac{\partial}{\partial z^{\alpha}}\right) \\
=\sum_{i=1}^{n}\left(Y_{i} \frac{\partial}{\partial x^{i}}-X_{i} \frac{\partial}{\partial y^{i}}\right)+\sum_{\alpha=1}^{s} \sum_{i=1}^{n} Y_{i} y^{i} \frac{\partial}{\partial z^{\alpha}}
\end{gathered}
$$

where $\left(x^{i}, y^{i}, z^{a}\right), i=1, \ldots, n$ and $\alpha=1, \ldots, s$, are the cartesian coordinates. It is known that, with this structure, $\mathbb{R}^{2 n+s}$ is an $S$-space-form of constant $f$-sectional curvature $c=-3 s$. If, following [14], we denote

$$
\left(x^{1}, \ldots, x^{n}, y^{1}, \ldots, y^{n}, z^{1}, \ldots, z^{s}\right)=\left(x^{1}, \ldots, x^{2 n+s}\right)
$$

the Christoffel symbols of the semi-symmetric metric connection defined in (3.1) are given by

$$
\begin{gathered}
\Gamma_{a i}^{b}=\Gamma_{a i}^{* b}-\frac{1}{2} s y_{i} \delta_{a b}-2 \sum_{\alpha=2 n+1}^{2 n+s} g_{a i} \delta_{\alpha b}, \quad \Gamma_{a \lambda}^{b}=\Gamma_{a \lambda}^{* b}-2 \sum_{\alpha=2 n+1}^{2 n+s} g_{a \lambda} \delta_{\alpha b} \\
\Gamma_{a \beta}^{b}=\Gamma_{a \beta}^{* b}+\frac{1}{2} \delta_{a b}-2 \sum_{\alpha=2 n+1}^{2 n+s} g_{a \beta} \delta_{\alpha b}
\end{gathered}
$$

for any $a, b \in\{1, \ldots, 2 n+s\}, i \in\{1, \ldots, n\}, \lambda \in\{n+1, \ldots, 2 n\}$ and $\beta \in\{2 n+1, \ldots, 2 n+s\}$, where $\Gamma_{a i}^{* b}, \Gamma_{a \lambda}^{* b}$ and $\Gamma_{a \alpha}^{* b}$ denote the Christoffel symbols of the Riemannian connection of $\mathbb{R}^{2 n+s}$ (see [14] for the details).

Throughout this paper, we always use the letter $\nabla$ to denote the semisymmetric metric connection defined in (3.1). Observe that, following the notation of [2, 29], in this case the 1-form $\pi$ and the vector field $P$ which define the connection $\nabla$ are

$$
\pi=\sum_{i=1}^{s} \eta^{i} \quad \text { and } \quad P=\sum_{i=1}^{s} \xi_{i}
$$

Proposition 3.2. Let $M$ be an $S$-manifold. Then

$$
\begin{align*}
\nabla_{X} \xi_{i} & =-\varphi X+X-\sum_{j=1}^{s} \eta^{i}(X) \xi_{j}  \tag{3.4}\\
\left(\nabla_{X} \eta_{i}\right) Y & =g(X, \varphi Y)+g(X, Y)-\sum_{j=1}^{s} \eta^{i}(X) \eta^{j}(Y) \tag{3.5}
\end{align*}
$$

for any $X, Y \in \mathcal{X}(M)$ and $i \in\{1, \ldots, s\}$.

Proof. First, (3.4) is a direct consequence of (3.1), taking into account (2.5). Now, by using (3.3) and (3.4), since

$$
\left(\nabla_{X} \eta^{i}\right)(Y)=X \eta^{i}(Y)-\eta^{i}\left(\nabla_{X} Y\right)=g\left(Y, \nabla_{X} \xi_{i}\right),
$$

we deduce (3.5).
Theorem 3.3. Let $M$ be an $S$-manifold. Then

$$
\begin{equation*}
\left(\nabla_{X} \varphi\right) Y=\sum_{i=1}^{s}\left\{(g(\varphi X, \varphi Y)-g(X, \varphi Y)) \xi_{i}+\eta^{i}(Y)\left(\varphi^{2} X-\varphi X\right)\right\} \tag{3.6}
\end{equation*}
$$

for all $X, Y \in \mathcal{X}(M)$.
Proof. From (3.1), we get

$$
\left(\nabla_{X} \varphi\right) Y=\left(\nabla_{X}^{*} \varphi\right) Y-\sum_{i=1}^{s} \eta^{i}(Y) \varphi X-\sum_{i=1}^{s} g(X, \varphi Y) \xi_{i} .
$$

Therefore, we obtain the result from (2.4).
By using (2.1) and (3.6), we easily prove:
Corollary 3.4. Let $M$ be an $S$-manifold. Then

$$
\begin{gather*}
\left(\nabla_{X} \varphi\right) \xi_{i}=-\varphi \nabla_{X} \xi_{i}=\varphi^{2} X-\varphi X,  \tag{3.7}\\
\nabla_{\xi_{i}} \varphi X=\varphi \nabla_{\xi_{i}} X, \tag{3.8}
\end{gather*}
$$

for all $X \in \mathcal{X}(M), i \in\{1, \ldots, s\}$.
4. The curvature of $\nabla$. Let $M$ be an $S$-manifold endowed with the semi-symmetric metric connection $\nabla$ defined in (3.1). From formula (2.3) in [2], if $R$ and $R^{*}$ denote the curvature tensor fields of $\nabla$ and $\nabla^{*}$, respectively, then

$$
\begin{align*}
R(X, Y) Z= & R^{*}(X, Y) Z+s\{g(X, \varphi Z) Y  \tag{4.1}\\
& -g(Y, \varphi Z) X+g(Y, Z) \varphi X) \\
& -g(X, Z) \varphi Y+g(X, Z) Y-g(Y, Z) X\} \\
& +\sum_{i, j=1}^{s}\left\{\eta^{i}(Y) \eta^{j}(Z) X-\eta^{i}(X) \eta^{j}(Z) Y\right. \\
& \left.+g(Y, Z) \eta^{i}(X) \xi_{j}-g(X, Z) \eta^{i}(Y) \xi_{j}\right\}
\end{align*}
$$

for all $X, Y, Z \in \mathcal{X}(M)$.
First, we want to investigate the sectional curvature associated with $\nabla$. To this end, we need to establish the following symmetry for $R$ which can be deduced from (4.1):

Proposition 4.1. Let $M$ be an $S$-manifold. Then

$$
\begin{align*}
& R(X, Y, Z, W)-R(Z, W, X, Y)=2 s\{g(X, \varphi Z) g(Y, W)  \tag{4.2}\\
& \quad-g(Y, \varphi Z) g(X, W)-g(X, \varphi W) g(Y, Z)+g(Y, \varphi W) g(X, Z)\}
\end{align*}
$$

for any $X, Y, Z, W \in \mathcal{X}(M)$.
Moreover, from (2.6), 2.7) and (4.1), we get some formulas involving the structure vector fields:

Proposition 4.2. Let $M$ be an $S$-manifold. Then

$$
\begin{align*}
R(X, Y) \xi_{i}= & \sum_{j=1}^{s}\left\{\eta^{i}(X) \nabla_{Y} \xi_{j}-\eta^{i}(Y) \nabla_{X} \xi_{j}\right.  \tag{4.3}\\
& \left.+\eta^{j}(X)\left(\varphi^{2} Y-Y\right)-\eta^{j}(Y)\left(\varphi^{2} X-X\right)\right\} \tag{4.4}
\end{align*}
$$

$$
\begin{align*}
R\left(\xi_{i}, \xi_{j}\right) X= & \sum_{k=1}^{s}\left\{\eta^{k}(X)\left(\xi_{i}-\xi_{j}\right)+\left(\eta^{j}(X)-\eta^{i}(X)\right) \xi_{k}\right\}  \tag{4.6}\\
& +s\left(\eta^{i}(X) \xi_{j}-\eta^{j}(X) \xi_{i}\right) \\
R\left(\xi_{i}, \xi_{j}\right) \xi_{k}= & \xi_{i}-\xi_{j}-\left(\delta_{i k}-\delta_{j k}\right) \sum_{l=1}^{s} \xi_{l}+s\left(\delta_{i k} \xi_{j}-\delta_{j k} \xi_{i}\right), \tag{4.7}
\end{align*}
$$

for all $X, Y \in \mathcal{X}(M)$ and $i, j, k \in\{1, \ldots, s\}$.
Now, by using the above propositions, we can prove the following theorem for the sectional curvature $K$ of $\nabla$.

Theorem 4.3. Let $M$ be an $S$-manifold. Then the sectional curvature of $\nabla$ satisfies
(i) $K(X, Y)=K^{*}(X, Y)-s$,
(ii) $K\left(X, \xi_{i}\right)=K\left(\xi_{i}, X\right)=2-s$,
(iii) $K\left(\xi_{i}, \xi_{j}\right)=K\left(\xi_{j}, \xi_{i}\right)=2-s$,
for any $X, Y \in \mathcal{L}$ and $i, j \in\{1, \ldots, s\}, i \neq j$.
Proof. First, from (4.1), if $X, Y \in \mathcal{L}$, then

$$
R(X, Y, Y, X)=R^{*}(X, Y, Y, X)+s\left(g(X, Y)^{2}-g(X, X) g(Y, Y)\right)
$$

and we deduce (i). Now, from (4.4), if $X \in \mathcal{L}$,

$$
R\left(\xi_{i}, X\right) X=g(X, X)\left\{2 \sum_{j=1}^{s} \xi_{j}-s \xi_{i}\right\}
$$

for any $i \in\{1, \ldots, s\}$. Then, taking into account 4.2), we obtain (ii). Finally, (iii) is a direct consequence of (4.7).

Therefore, if $s \neq 2$, an $S$-manifold cannot be of constant sectional curvature with respect to the semi-symmetric metric connection defined in 4.1). But, what about the $f$-sectional curvature? First, we have:

Proposition 4.4. Let $M$ be an $S$-manifold. Then

$$
\begin{equation*}
R(\varphi X, \varphi Y, \varphi Z, \varphi W)=R(X, Y, Z, W) \tag{4.8}
\end{equation*}
$$

for any $X, Y, Z, W \in \mathcal{L}$.
Proof. This is a direct computation from (4.1) taking into account that (see [3])

$$
R^{*}(\varphi X, \varphi Y, \varphi Z, \varphi W)=R^{*}(X, Y, Z, W)
$$

for any $X, Y, Z, W \in \mathcal{L}$.
Consequently, the $f$-sectional curvature of $\nabla$ is well defined, since, by using (4.8), we find that, for any unit vector field $X \in \mathcal{L}$,

$$
\begin{equation*}
R(X, \varphi X, \varphi X, X)=R^{*}(X, \varphi X, \varphi X, X)-s \tag{4.9}
\end{equation*}
$$

Then, taking into account (2.11), from (4.1) and (4.9) we can deduce the following theorem:

Theorem 4.5. Let $M$ be an $S$-manifold. Then the $f$-sectional curvature associated with the semi-symmetric metric connection $\nabla$ is constant if and only if the $f$-sectional curvature associated with the Riemannian connection is constant. In this case, if $c$ denotes the constant $f$-sectional curvature of the Riemannian connection, then $c-s$ is the constant $f$-sectional curvature of $\nabla$. Moreover, the curvature tensor field of $\nabla$ is completely determined by $c$ and it is given by

$$
\begin{aligned}
R(X, Y, Z, W)= & \sum_{i, j=1}^{s}\left\{2 g(X, W) \eta^{i}(Y) \eta^{j}(Z)-2 g(Y, W) \eta^{i}(X) \eta^{j}(Z)\right. \\
& \left.+2 g(Y, Z) \eta^{i}(X) \eta^{j}(W)-2 g(X, Z) \eta^{i}(Y) \eta^{j}(W)\right\} \\
& +\sum_{i, j, k=1}^{s}\left\{\eta^{i}(X) \eta^{k}(Y) \eta^{j}(Z) \eta^{k}(W)\right. \\
& \left.-\eta^{k}(X) \eta^{i}(Y) \eta^{j}(Z) \eta^{k}(W)\right\} \\
& \left.+\eta^{k}(X) \eta^{i}(Y) \eta^{k}(Z) \eta^{j}(W)-\eta^{i}(X) \eta^{k}(Y) \eta^{j}(W) \eta^{k}(Z)\right\} \\
& +\frac{c+3 s}{4}\{g(\varphi X, \varphi W) g(\varphi Y, \varphi Z)-g(\varphi X, \varphi Z) g(\varphi Y, \varphi W)\} \\
& +\frac{c-s}{4}\{\Phi(X, W) \Phi(Y, Z) \\
& -\Phi(X, Z) \Phi(Y, W)-2 \Phi(X, Y) \Phi(Z, W)\} \\
& +s\{g(\varphi Z, X) g(Y, W)-g(X, W) g(\varphi Z, Y) \\
& +g(Y, Z) g(\varphi X, W)+g(X, Z) g(Y, W) \\
& -g(Y, Z) g(X, W)-g(X, Z) g(\varphi Y, W)\}
\end{aligned}
$$

for any $X, Y, Z, W \in \mathcal{X}(M)$.
For the Ricci tensor field $S$ of the connection $\nabla$, from formula (2.6) in [2] we deduce that

$$
\begin{align*}
S(X, Y) & =S^{*}(X, Y)  \tag{4.10}\\
& +(2 n+s-2)\left\{\sum_{i, j=1}^{s} \eta^{i}(X) \eta^{j}(Y)-s g(X, \varphi Y)-s g(X, Y)\right\}
\end{align*}
$$

for any $X, Y \in \mathcal{X}(M)$, where $S^{*}$ denotes the Ricci tensor field of the Riemannian connection and, as before, $\operatorname{dim}(M)=2 n+s$. Since $S^{*}$ is a symmetric tensor field, we deduce that

$$
\begin{equation*}
S(X, Y)-S(Y, X)=-2(2 n+s-2) g(X, \varphi Y) \tag{4.11}
\end{equation*}
$$

for any $X, Y \in \mathcal{X}(M)$. Therefore, $S$ is not a symmetric tensor field. Moreover, by using 2.10 we obtain

Proposition 4.6. Let $M$ be an $S$-manifold. Then

$$
\begin{equation*}
S\left(X, \xi_{i}\right)=S\left(\xi_{i}, X\right)=(4 n+s-2) \sum_{j=1}^{s} \eta^{j}(X)-s(2 n+s-2) \eta^{i}(X) \tag{4.12}
\end{equation*}
$$

for any $X \in \mathcal{X}(M)$ and $i \in\{1, \ldots, s\}$.
Corollary 4.7. Let $M$ be an $S$-manifold. Then

$$
\begin{equation*}
S\left(\xi_{j}, \xi_{i}\right)=(4 n+s-2)-s(2 n+s-2) \delta_{i j} \tag{4.13}
\end{equation*}
$$

for any $i, j=\{1, \ldots, s\}$.

Now, we can prove:
Proposition 4.8. Let $M$ be an $S$-manifold. Then

$$
\begin{equation*}
S(\varphi X, \varphi Y)=S(X, Y) \tag{4.14}
\end{equation*}
$$

for any $X, Y \in \mathcal{L}$.
Proof. This is a direct consequence of 4.10 taking into account that

$$
S^{*}(\varphi X, \varphi Y)=S^{*}(X, Y)
$$

(see Proposition 3.7 in [6]).
Corollary 4.9. Let $M$ be an $S$-manifold. Then

$$
\begin{equation*}
S(X, Y)=S(\varphi X, \varphi Y)+\sum_{i, j=1}^{s} \eta^{i}(X) \eta^{j}(Y) S\left(\xi_{i}, \xi_{j}\right) \tag{4.15}
\end{equation*}
$$

for all $X, Y \in \mathcal{X}(M)$.
Proof. We can put

$$
X=X_{0}+\sum_{i=1}^{s} \eta^{i}(X) \xi_{i} \quad \text { and } \quad Y=Y_{0}+\sum_{j=1}^{s} \eta^{j}(Y) \xi_{j}
$$

where $X_{0}, Y_{0} \in \mathcal{L}$. Then, since from (2.3) and 4.12), $S\left(X_{0}, \xi_{j}\right)=S\left(\xi_{i}, Y_{0}\right)$ $=0$, we obtain

$$
\begin{equation*}
S(X, Y)=S\left(X_{0}, Y_{0}\right)+\sum_{i, j=1}^{s} \eta^{i}(X) \eta^{j}(Y) S\left(\xi_{i}, \xi_{j}\right) \tag{4.16}
\end{equation*}
$$

Now, by 2.1) and 4.14), $S\left(X_{0}, Y_{0}\right)=S\left(\varphi X_{0}, \varphi Y_{0}\right)=S(\varphi X, \varphi Y)$ and the proof is complete.
5. Semi-symmetry properties of an $S$-manifold with respect to $\nabla$. Let us recall that, given a Riemannian manifold $(M, g)$ of dimension $n \geq 3$ endowed with a linear connection $\nabla$ whose curvature tensor field is denoted by $R$, for any $(0, k)$-tensor field $T$ on $M, k \geq 1$, the $(0, k+2)$-tensor field $R . T$ is defined by

$$
\begin{align*}
(R . T)\left(X_{1}, \ldots,\right. & \left.X_{k}, X, Y\right)  \tag{5.1}\\
& =-\sum_{i=1}^{k} T\left(X_{1}, \ldots, X_{i-1}, R(X, Y) X_{i}, X_{i+1}, \ldots, X_{k}\right)
\end{align*}
$$

for any $X, Y, X_{1}, \ldots, X_{k} \in \mathcal{X}(M)$. In this context, $M$ is said to be semisymmetric with respect to $\nabla$ if $R . R=0$, and Ricci semi-symmetric if $R . S=0$, where $S$ denotes the Ricci tensor field of $\nabla$. For the Riemannian connection it is known that semi-symmetry implies Ricci semi-symmetry (for
more details, [9, 26] and references therein can be consulted; specifically, for the contact geometry case we recommend the papers [16, 21, 27]).

In this context, for the semi-symmetric metric connection defined in 3.1 on an $S$-manifold $M$ we can prove:

Theorem 5.1. Let $M$ be a $(2 n+s)$-dimensional $S$-manifold $(n \geq 1)$ which is a semi-symmetric manifold with respect to the semi-symmetric metric connection $\nabla$. Then $M$ has constant $f$-sectional curvature $c=0$ with respect to $\nabla$.

Proof. If $R . R=0$, then from (5.1) we deduce that

$$
\begin{align*}
& R\left(R\left(X, \xi_{i}\right) X, \varphi X, \varphi X, \xi_{j}\right)+R\left(X, R\left(X, \xi_{i}\right) \varphi X, \varphi X, \xi_{j}\right)  \tag{5.2}\\
& \quad+R\left(X, \varphi X, R\left(X, \xi_{i}\right) \varphi X, \xi_{j}\right)+R\left(X, \varphi X, \varphi X, R\left(X, \xi_{i}\right) \xi_{j}\right)=0
\end{align*}
$$

for any unit vector field $X \in \mathcal{L}$ and any $i, j=1, \ldots, s$. By using (4.4) and (4.5), a direct expansion of (5.2) gives $\left(2-s \delta_{i j}\right) R(X, \varphi X, \varphi X, X)=0$, which completes the proof.

Therefore, from Theorem 4.5 we deduce:
Corollary 5.2. A semi-symmetric $(2 n+s)$-dimensional $(n \geq 1) S$ manifold with respect to the semi-symmetric metric connection $\nabla$ is an $S$ -space-form of constant $f$-sectional curvature equal to $s$.

We point out that it is known that if an $S$-manifold is semi-symmetric with respect to the Riemannian connection $\nabla^{*}$, then it is also an $S$-spaceform of constant $f$-sectional curvature equal to $s$ ([1]).

Moreover, we have:
Theorem 5.3. Let $M$ be a $(2 n+s)$-dimensional $S$-manifold with $n \geq 1$ and $s \geq 3$. Then $M$ cannot be a Ricci semi-symmetric manifold with respect to the semi-symmetric metric connection $\nabla$.

Proof. Suppose that $R . S=0$. Then, from (5.1),

$$
\begin{equation*}
S\left(R\left(X, \xi_{i}\right) \xi_{j}, \varphi X\right)+S\left(\xi_{j}, R\left(X, \xi_{i}\right) \varphi X\right)=0 \tag{5.3}
\end{equation*}
$$

for any unit vector field $X \in \mathcal{L}$ and any $i, j \in\{1, \ldots, s\}, i \neq j$. Now, by using 4.5,

$$
\begin{equation*}
S\left(R\left(X, \xi_{i}\right) \xi_{j}, \varphi X\right)=2 S(X, \varphi X) \tag{5.4}
\end{equation*}
$$

Next, from (4.4) and 4.13),

$$
\begin{equation*}
S\left(\xi_{j}, R\left(X, \xi_{i}\right) \varphi X\right)=-s(4 n+s-2) \tag{5.5}
\end{equation*}
$$

Consequently, if we insert (5.4) and (5.5) into (5.3), we get

$$
\begin{equation*}
2 S(X, \varphi X)=(4 n+s-2) s \tag{5.6}
\end{equation*}
$$

But, since from (2.1) and 4.14), $S(\varphi X, X)=-S(X, \varphi X)$, using (5.6), we deduce $S(X, \varphi X)-S(\varphi X, X)=(4 n+s-2) s$. But, from 4.11 we obtain that $S(X, \varphi X)-S(\varphi X, X)=2(2 n+s-2) s$, which is a contradiction.

Concerning the case $s=2$, we can prove the following theorem.
Theorem 5.4. Let $M$ be a $(2 n+2)$-dimensional $S$-manifold, $n \geq 1$. If $M$ is a Ricci semi-symmetric manifold with respect to the semi-symmetric metric connection $\nabla$, then the Ricci tensor field of $\nabla$ satisfies

$$
S(X, Y)=-4 n g(X, \varphi Y)+\sum_{i, j=1}^{2} \eta^{i}(X) \eta^{j}(Y) S\left(\xi_{i}, \xi_{j}\right)
$$

for any $X, Y \in \mathcal{X}(M)$.
Proof. By 2.1 and (4.16), it is sufficient to prove that $S(X, Y)=$ $-4 n g(X, \varphi Y)$ for any $X, Y \in \mathcal{L}$.

So let $X, Y \in \mathcal{L}$. Then, since $R . S=0$, from (5.1) we obtain

$$
\begin{equation*}
S\left(R\left(X, \xi_{1}\right) \xi_{2}, Y\right)+S\left(\xi_{2}, R\left(X, \xi_{1}\right) Y\right)=0 \tag{5.7}
\end{equation*}
$$

But, by using (4.5) we get $S\left(R\left(X, \xi_{1}\right) \xi_{2}, Y\right)=2 S(X, Y)$, and by using (4.4) and 4.13) we obtain $S\left(\xi_{2}, R\left(X, \xi_{1}\right) Y\right)=8 n g(X, \varphi Y)$. Consequently, 5.7) yields the assertion.

For Sasakian manifolds (case $s=1$ ), we can prove:
Theorem 5.5. Let $M$ be a $(2 n+1)$-Sasakian manifold, $n \geq 1$. If $M$ is a Ricci semi-symmetric manifold with respect to the semi-symmetric metric connection $\nabla$, then the Ricci tensor field of $\nabla$ satisfies

$$
S(X, Y)-S(X, \varphi Y)=2 n\{g(X, Y)-g(X, \varphi Y)\}
$$

for any $X, Y \in \mathcal{L}$.
Proof. Since $R . S=0$, the definition (5.1) gives

$$
\begin{equation*}
S(R(X, \xi) \xi, Y)+S(\xi, R(X, \xi) Y)=0 \tag{5.8}
\end{equation*}
$$

But, from 4.5 and 4.14 we get $S(R(X, \xi) \xi, Y)=S(X, Y)-S(X, \varphi Y)$, and from 4.4) and 4.13), $S(\xi, R(X, \xi) Y)=2 n\{g(X, \varphi Y)-g(X, Y)\}$. Now, (5.8) gives the conclusion.

Finally, we consider the Weyl projective curvature tensor field of $\nabla$ given by

$$
\begin{equation*}
P(X, Y) Z=R(X, Y) Z-\frac{1}{\operatorname{dim}(M)-1}\{S(Y, Z) X-S(X, Z) Y\} \tag{5.9}
\end{equation*}
$$

for any $X, Y, Z, \in \mathcal{X}(M)$. Then the $S$-manifold $M$ is said to be Ricciprojectively semi-symmetric with respect to the semi-symmetric metric con-
nection $\nabla$ if $P . S=0$, where, taking into account (5.9),

$$
\begin{align*}
(5.10) & (P . S)(X, Y, Z, W)  \tag{5.10}\\
& =-S(P(X, Y) Z, W)-S(Z, P(X, Y) W) \\
& =(R . S)(X, Y, Z, W) \\
+\frac{1}{2 n+s-1}\{S(X, W)(S(Y, Z) & -S(Z, Y))+S(Y, W)(S(Z, X)-S(X, Z))\}
\end{align*}
$$

for any $X, Y, Z, W \in \mathcal{X}(M)$. We can prove the following theorem.
THEOREM 5.6. Let $M$ be $a(2 n+s)$-dimensional $S$-manifold, $n \geq 1$. Then:
(i) If $s \geq 3, M$ cannot be Ricci-projectively semi-symmetric with respect to $\nabla$.
(ii) If $s=2$ and $M$ is Ricci-projectively semi-symmetric with respect to $\nabla$, then the Ricci tensor field of $\nabla$ satisfies

$$
S(X, Y)=-4 n g(X, \varphi Y)+\sum_{i, j=1}^{2} \eta^{i}(X) \eta^{j}(Y) S\left(\xi_{i}, \xi_{j}\right)
$$

for any $X, Y \in \mathcal{X}(M)$.
(iii) If $M$ is a Ricci-projectively semi-symmetric Sasakian manifold (that is, if $s=1$ ) with respect to $\nabla$, then the Ricci tensor field of $\nabla$ satisfies

$$
S(X, Y)-S(X, \varphi Y)=2 n\{g(X, Y)-g(X, \varphi Y)\}
$$

for any $X, Y \in \mathcal{L}$.
Proof. By using (2.1), 4.11 and 5.10, we get

$$
(P . S)\left(X, \xi_{i}, \xi_{j}, Y\right)=(R . S)\left(X, \xi_{i}, \xi_{j}, Y\right)
$$

for any $X, Y \in \mathcal{L}$ and $i, j \in\{1, \ldots, s\}$. Consequently, we complete the proof by using the same line of reasoning as in Theorems 5.35 .5 .

Acknowledgements. The third author is partially supported by the PAI group FQM-327 (Junta de Andalucía, Spain, 2011) and by the MEC project MTM 2011-22621 (MEC, Spain, 2011).

This paper was written during a stay of Mehmet Akif Akyol at the University of Sevilla supported by the University of Bingol.

## References

[1] M. A. Akyol, A. T. Vanli and L. M. Fernández, Semi-symmetry properties of Smanifolds endowed with a semi-symmetric non metric connection, submitted (2011).
[2] B. Barua and A. K. Ray, Some properties od a semi-symmetric metric connection in a Riemannian manifold, Indian J. Pure Appl. Math. 16 (1985), 736-740.
[3] D. E. Blair, Geometry of manifolds with structural group $U(n) \times O(s)$, J. Differential Geom. 4 (1970), 155-167.
[4] D. E. Blair, On a generalization of the Hopf fibration, An. Ştiinţ. Univ. Al. I. Cuza Iaşi 17 (1971), 171-177.
[5] D. E. Blair and G. D. Ludden, Hypersurfaces in almost contact manifolds, Tôhoku Math. J. 21 (1969), 354-362.
[6] J. L. Cabrerizo, L. M. Fernández and M. Fernández, The curvature tensor fields on f-manifolds with complemented frames, An. Ştiinţ. Univ. Al. I. Cuza Iaşi 36 (1990), 151-161.
[7] U. C. De and S. C. Biswas, On a type of semi-symmetric metric connection on a Riemannian manifold, Publ. Inst. Math. (Beograd) (N.S) 61 (1997), 90-96.
[8] U. C. De and J. Sengupta, On a type of semi-symmetric metric connection on an almost contact metric manifold, Facta Univ. Ser. Math. Inform. 16 (2001), 87-96.
[9] R. Deszcz, On pseudosymmetric spaces, Bull. Soc. Math. Belg. Sér. A 44 (1992), 1-34.
[10] K. L. Duggal and R. Sharma, Semi-symmetric metric connections in a pseudoRiemannian manifold, Windsor Mathematics Report 85-11, 1985.
[11] A. Friedmann und J. A. Schouten, Über die Geometrie der halbsymmetrischen Übertragung, Math. Z. 21 (1924), 211-223.
[12] S. I. Goldberg and K. Yano, Globally framed f-manifolds, Illinois J. Math. 15 (1971), 456-474.
[13] S. I. Goldberg and K. Yano, On normal globally framed manifolds, Tôhoku Math. J. 22 (1970), 362-370.
[14] I. Hasegawa, Y. Okuyama and T. Abe, On p-th Sasakian manifolds, J. Hokkaido Univ. Education 37 (1986), 1-16.
[15] H. A. Hayden, Subspaces of a space with torsion, Proc. London Math. Soc. 34 (1932), 27-50.
[16] Q. Khan, On an Einstein projective Sasakian manifold, Novi Sad J. Math. 36 (2006), 97-102.
[17] M. Kobayashi and S. Tsuchiya, Invariant submanifolds of an $f$-manifold with complemented frames, Kodai Math. Sem. Rep. 24 (1972), 430-450.
[18] C. Murathan and C. Özgür, Riemannian manifolds with a semi-symmetric metric connection satisfying some semisymmetry conditions, Proc. Estonian Acad. Sci. 57 (2008), 210-216.
[19] R. Penrose, Spinors and torsion in general relativity, Found. Phys. 13 (1983), 325339.
[20] S. Y. Perktas, E. Kiliç and M. M. Tripathi, On a semi-symmetric metric connection in a Lorentzian para-Sasakian manifold, Diff. Geom. Dynam. Systems 12 (2010), 299-310.
[21] D. Perrone, Contact Riemannian manifolds satisfying $R(X, \xi) \cdot R=0$, Yokohama Math. J. 39 (1992), 141-149.
[22] J. A. Schouten, Ricci Calculus. An Introduction to Tensor Calculus and its Geometric Application, Springer, Berlin, 1954.
[23] S. E. Stepanov and I. A. Gordeeva, Pseudo-Killing and pseudo-harmonic vector fields on a Riemann-Cartan manifold, Math. Notes 87 (2010), 248-257.
[24] I. Suhendro, A new semi-symmetric unified field theory of the classical fields of gravity and electromagnetism, Progr. Phys. 4 (2007), 47-62.
[25] S. Sular and C. Özgür, Warped products with a semi-symmetric metric connection, Taiwanese J. Math. 15 (2011), 1701-1719.
[26] Z. I. Szabó, Structure theorems on Riemannian spaces satisfying $R(X, Y) \cdot R=0 I$, the local version, J. Differential Geom. 17 (1982), 531-582.
[27] T. Takahashi, Sasakian manifolds with pseudo-Riemannian metric, Tôhoku Math. J. 21 (1969), 271-290.
[28] K. Yano, On a structure defined by a tensor field $f$ of type $(1,1)$ satisfying $f^{3}+f=0$, Tensor 14 (1963), 99-109.
[29] K. Yano, On semi-symmetric metric connection, Rev. Roumaine Math. Pures Appl. 15 (1970), 1579-1586.

Mehmet Akif Akyol
Department of Mathematics
Faculty of Arts and Sciences
Bingol University
12000 Bingöl, Turkey
E-mail: makyol@bingol.edu.tr
Luis M. Fernández
Departmento de Geometría y Topología
Facultad de Matemáticas
Universidad de Sevilla
Apartado de Correos 1160
41080 Sevilla, Spain
E-mail: lmfer@us.es

Aysel Turgut Vanli
Department of Mathematics
Faculty of Arts and Sciences
Gazi University
06500 Ankara, Turkey
E-mail: avanli@gazi.edu.tr

Received 2.12.2011
and in final form 13.2.2012


[^0]:    2010 Mathematics Subject Classification: 53C05, 53C15, 53C25.

