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Curvature properties of a semi-symmetric metric connection
on S-manifolds

by MEHMET AKIF AKYOL (Bing6l), AYSEL TURGUT VANLI (Ankara),
and Luis M. FERNANDEZ (Sevilla)

Abstract. In this study, S-manifolds endowed with a semi-symmetric metric connec-
tion naturally related with the S-structure are considered and some curvature properties
of such a connection are given. In particular, the conditions of semi-symmetry, Ricci semi-
symmetry and Ricci-projective semi-symmetry of this semi-symmetric metric connection
are investigated.

1. Introduction. In 1963, Yano [2§] introduced the notion of f-struc-
ture on an m-dimensional C* manifold M, as a non-vanishing tensor field
¢ of type (1,1) on M which satisfies ¢ + ¢ = 0 and has constant rank r.
It is known that r is even, say r = 2n. Moreover, T'M splits into two com-
plementary subbundles Im ¢ and ker ¢ and the restriction of ¢ to Im
determines a complex structure on this subbundle. It is also known that
the existence of an f-structure on M is equivalent to a reduction of the
structure group to U(n) x O(s) (see [3]), where s = m — 2n. Almost com-
plex (s = 0) and almost contact (s = 1) are well-known examples of f-
structures. The case s = 2 appeared in the study of hypersurfaces in al-
most contact manifolds [5, 12], which motivated Goldberg and Yano [13]
to define globally framed f-manifolds (also called metric f-manifolds or
f.pk-manifolds).

A wide class of globally framed f-manifolds was introduced by Blair in
[3] according to the following definition: a metric f-structure is said to be a
K -structure if the fundamental 2-form @ given by ®(X,Y) = g(X, ¢Y) for
any vector fields X and Y on M is closed and the normality condition holds,
that is, [p, p]+2 > 7, dn'®&; = 0, where [, ¢] denotes the Nijenhuis torsion
of ¢, &; are the structure vector fields and #n* their dual 1-forms, i =1,...,s
(see Section 2 for further details). A K-manifold is called an S-manifold
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if dn* = & for all k=1,...,s. S-manifolds have been studied by several
authors (see, for example, [4, 6l 14, 17]).

Further, in 1924 Friedmann and Schouten [11] introduced the notion of
semi-symmetric linear connection on a differentiable manifold. Later, Hay-
den [I5] introduced the idea of metric connection with torsion on a Rie-
mannian manifold. In 1970, Yano [29] made a systematic study of semi-
symmetric metric connections on a Riemannian manifold. More precisely, if
V is a linear connection in a differentiable manifold M, then the torsion ten-
sor T of Vis given by T(X,Y) = VxY —Vy X —[X, Y] for any vector fields
X and Y on M. The connection V is said to be symmetric if the torsion ten-
sor 1" vanishes, otherwise it is said to be non-symmetric. The connection V is
said to be semi-symmetric if T is of the form T'(X,Y) = n(Y)X —n(X)Y for
any X, Y, where 7 is a 1-form on M. Moreover, if g is a (pseudo)-Riemannian
metric on M, then V is called a metric connection if Vg = 0, otherwise it is
called non-metric. It is well known that the Riemannian connection is the
unique metric and symmetric linear connection on a Riemannian manifold.

It is worth pointing out here that (pseudo)-Riemannian manifolds en-
dowed with a semi-symmetric metric connection are a particular case of the
so-called Riemann—Cartan spaces (see, for instance, [23]), which have many
physical applications. Thus, in the framework of general relativity theory,
space-time is supplied with torsion in addition to curvature due to a known
relationship between the torsion of an asymmetric metric connection and the
spin tensor of matter. More physical applications of the notion of torsion
were also discovered by Penrose [19]. There are various physical problems
involving specifically semi-symmetric metric connections; for instance, the
displacement on the earth surface following a fixed point is metric and semi-
symmetric [22]. In this context, the interesting report of Suhendro [24] can be
consulted. On the other hand, several authors have studied semi-symmetric
metric connections on different types of Riemannian and semi-Riemannian
manifolds (see, among many others, [2, [7, [8] 10} 18 20, 25]).

The purpose of this paper is to link the two notions commented above
by investigating the curvature properties of a certain semi-symmetric metric
connection defined on S-manifolds and naturally related to the S-structure.
To this end, in Section [2| we give a brief introduction to S-manifolds and in
Section |3| we define a semi-symmetric metric connection on an S-manifold,
obtaining some general results. In Section [4, we investigate the curvature
and the Ricci tensor fields of such a connection. In particular, we prove that
an S-manifold has constant f-sectional curvature with respect to this semi-
symmetric metric connection if and only if it also has constant f-sectional
curvature with respect to the Riemannian connection, giving the relationship
between both constants. Consequently, the curvature of this semi-symmetric
metric connection is completely determined by its f-sectional curvature.
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Finally, in the last section, we present some results concerning the semi-
symmetry, Ricci semi-symmetry and Ricci-projective semi-symmetry prop-
erties of a semi-symmetric metric connection. In particular, we prove that
if an S-manifold is semi-symmetric with respect to such a connection, then
it is of constant f-sectional curvature zero. We point out that the results
obtained in the final section establish a clear difference between the cases
s<2and s> 2.

2. Preliminaries on S-manifolds. A (2n + s)-dimensional differen-
tiable manifold M is called a metric f-manifold if there exist a (1,1) type
tensor field ¢, vector fields &1,. .., &, 1-forms o', ..., n° and a Riemannian
metric g on M such that

i=1

(2:2) 9(pX, oY) = g(X,Y) = > n'(X)n'(Y),
i=1

for any X, Y € X(M), i,j € {1,...,s}, and moreover

(2.3) n'(X) =9(X,&), 9(X,9Y) = —g(pX,Y).

Then, a 2-form @ is defined by ¢(X,Y) = g(X, ¢Y) for any X, Y € X (M),
called the fundamental 2-form. In what follows, we denote by M the dis-
tribution spanned by the structure vector fields &1,...,&, and by L its
orthogonal complementary distribution. Thus, X (M) = LS M. If X € M,
then ¢ X = 0, and if X € £, then n*(X) =0 for any i € {1,...,s}, that is,
X =-X.

In a metric f-manifold, special local orthonormal bases of vector fields
can be considered. Let U be a coordinate neighborhood and F4 a unit vector
field on U orthogonal to the structure vector fields. Then, from 7,
pF is also a unit vector field on U orthogonal to E; and the structure vector
fields. Next, if possible, let Fs be a unit vector field on U orthogonal to E1,
wFE7 and the structure vector fields and so on. The local orthonormal basis

{E17'"7En7SDE17"’7QDEn7€17'"758}

so obtained is called an f-basis. Moreover, a metric f-manifold is normal if
S
[, el +2) dn' @& =0,
i=1

where [p, p] denotes the Nijenhuis tensor field associated to ¢. A metric
f-manifold is said to be an S-manifold if it is normal and
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Observe that, if s = 1, an S-manifold is a Sasakian manifold. For s > 2,
examples of S-manifolds can be found in [3, [4] 14].

The following results are known for the Riemannian connection of an
S-manifold:

THEOREM 2.1 ([3]). An S-manifold (M, e, &, 1%, g) satisfies the condi-
tion

(2.4) (Vi)Y =) {g(eX,0Y)& + n'(Y)p* X}
=1

for all XY € X(M), where V* denotes the Riemannian connection with
respect to g.

Thus, from ([2.4)) we deduce that
(2.5) V& =—pX

for any X e X(M), i € {1,...,s}.
Finally, for the curvature tensor field of the Riemannian connection of
an S-manifold, we recall:

THEOREM 2.2 ([6]). Let (M,p,&,n, g) be an S-manifold of dimension
2n 4+ s. Then,

(2.6) (X, Y)& = Z{n )Y — 1) (V) X},
(2.7) R*(X,&)Y Z{g X, Y )& + 1/ (YV)e* X},
j=1

for all XY € X(M), i,5 € {1,...,s}, where R* denotes the curvature
tensor field of the Riemannian connection.

CoROLLARY 2.3 ([6]). Let (M, p,&,n', g) be an S-manifold of dimension
2n + s. Then

(2.9) K*(&,X) = g(¢X, pX),
(2.10) SH(X,&) =2n) n'(X)
=1

for all XY € X(M), i,j € {1,...,s}, where K* and S* denote respec-
tively the sectional curvature and the Ricci tensor field of the Riemannian
connection.

Consequently, from (2.9)), if s > 2, an S-manifold cannot have constant
sectional curvature. For this reason, it is necessary to introduce a more re-
strictive curvature. In general, a plane section 7 on a metric f-manifold
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(M, p,&,n%, g) is said to be an f-section if it is determined by a unit vec-
tor X, normal to the structure vector fields and ¢.X. The sectional curva-
ture of 7 is called an f-sectional curvature. An S-manifold is said to be an
S-space-form if it has constant f-sectional curvature c; it is then denoted
by M(c). The curvature tensor field R* of M (c) satisfies (see [17])

(211)  RY(X,Y,Z,W) = > {g(eX, eW)n'(Y)1/(Z)
ij=1

— (X, 0Z)" (Y )) (W) + g(oY, 0 Z)n" (X)) (W)

—g(Y, W) (X' (2)}

)
¢t 5 {9(e X, oW)g(pY, 0 Z) — g(0 X, pZ)g(¢Y, oW)}

+c ; 8{@(X, WHYS(Y,Z) —d(X,Z)P(Y, W) —2&(X,Y)P(Z, W)}

+

for any X, Y, Z, W € X(M).

3. A semi-symmetric metric connection on S-manifolds. From
now on, let M denote an S-manifold (M, ¢, &, n', g) of dimension 2n + s.
We define a new connection on M by

(3.1) VxY =ViY + ) (V)X =) g(X,Y)g
=1 =1

for any X,Y € X(M). It is easy to show that V is a linear connection on M.
Moreover, we can prove:

THEOREM 3.1. Let M be an S-manifold. The linear connection V de-
fined in (3.1) is a semi-symmetric metric connection on M.

Proof. By (3.1]) and the fact that the Riemannian connection is torsion-
free, the torsion tensor T of the connection V is given by

(3.2) T(X,Y)=> {# (V)X —/(X)Y}
j=1

for any X,Y € X(M). Moreover, by using (3.1) again, for all X,Y,Z €
X (M) and since V* is a metric connection, we have
(3.3) (Vxg)(Y. Z) = 0.

From (3.2)) and (3.3) we conclude that the linear connection V is a semi-

symmetric metric connection on M. =

For example, let us consider R?"*¢ with its standard S-structure given
in [14]:
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1 S o)
= 5 (dZa — z;yzdﬂfl), fa = 2@,
1=

g= Zna ®n® + %(Z(dmz ® dz' + dy' @ dyi)),
a=1 =1

- 0 0 0
o X (g + i) + o)
= )
=;<Yiaxi— >+221@y6a,

a=1i=1
where (z%,9%,2%),i =1,...,n and a = 1,...,s, are the cartesian coordi-
nates. It is known that, with this structure, R?"** is an S-space-form of
constant f-sectional curvature ¢ = —3s. If, following [14], we denote

(x17"'7xn7y17---,yn,zl7...,zs) — (l’l,...’xzn—i_s),

the Christoffel symbols of the semi-symmetric metric connection defined in
(3.1) are given by

2n+s 2n+s

* ]' *
Iy=1T,0~ 55Yi0ab — 2 D Gaibars Tn=T3 =2 > garbas,
a=2n+1 a=2n+1
2n+s
Iyg=Thh+ 5 =2 Y YapSab,
a=2n-+1

for any a,b € {1,....2n+ s}, i € {1,....,n}, A € {n+1,...,2n} and
g€ {2n+1,...,2n + s}, where F;lb, I’*b and F*b denote the Chrlstoffel
symbols of the Riemannian connection of R2”+S (see [14] for the details).
Throughout this paper, we always use the letter V to denote the semi-
symmetric metric connection defined in . Observe that, following the
notation of [2, 29], in this case the 1-form 7 and the vector field P which

define the connection V are

= 3 ¢ and P= : ;.
> n > &
=1 i=1

PROPOSITION 3.2. Let M be an S—mam'fold Then

(3.4) Vx&i=—pX+X — 277 )&
7=1
(3.5) (Vxm)Y = g(X,9Y) +g(X,Y) Zn

for any XY € X(M) and i € {1,...,s}.
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Proof. First, is a direct consequence of (3.1]), taking into account
. Now, by usmg and . since
(Vxi')(Y ) = Xn'(Y) =" (VxY) = g(Y, Vx&),
we deduce (3.5)). =
THEOREM 3.3. Let M be an S-manifold. Then

(3.6) (Vx@)Y = {(9(pX,0Y) = g(X,0Y ))& + 7' (V)(¢* X — X)}
i=1

for all X, Y € X(M).
Proof. From (3.1)), we get

(Vxe)Y = (Vip)Y =Y 1/ (Y)eX =Y g(X,pY)&.
=1 i=1

Therefore, we obtain the result from (2.4)). =
By using (2.1)) and (3.6)), we easily prove:

COROLLARY 3.4. Let M be an S-manifold. Then

(3.7) (Vxe)& = —pVx& = ¢’ X — X,
(3.8) Ve, X = Ve, X

forall X e X(M), i € {1,...,s}.

4. The curvature of V. Let M be an S-manifold endowed with the
semi-symmetric metric connection V defined in (3.1)). From formula (2.3)
in [2], if R and R* denote the curvature tensor fields of V and V*, respec-
tively, then
(4.1) R(X,Y)Z = R"(X,Y)Z + s{g(X, 02)Y

—9(Y,pZ)X + g(Y, Z)pX)
- g(X Z2)eY +9(X, 2)Y — g(Y, Z) X }

+ Z{n )X —n (X (2)Y
,j=1
+9(Y, 20" (X)&; — 9(X, Z)n' (V) }
for all X|Y,Z € X(M).
First, we want to investigate the sectional curvature associated with V.
To this end, we need to establish the following symmetry for R which can

be deduced from (4.1)):



78 M. A. Akyol et al.

PropoOSITION 4.1. Let M be an S-manifold. Then
(12)  R(X,Y,Z,W) — R(Z,W,X,Y) = 25{g(X,Z)g(V, W)
—9(Y,0Z)g(X, W) — g(X,oW)g(Y, Z) + g(Y, oW)g(X, Z)}
forany X,Y, Z, W € X(M).

Moreover, from (2.6)), (2.7) and (4.1), we get some formulas involving
the structure vector fields:

PROPOSITION 4.2. Let M be an S-manifold. Then
(43) R(X,Y)& = Z{n Wy —n'(Y)Vx¢

1 T(X)(@Y —Y) =P (YV)(¢*X = X)},
(44) R(X,&)Y = 22{77 )X = g(X,Y)}

+8{( (X, 0Y) + g(X, V)& + 7 (V) (X — X)}

+ Z {n (X + 0 (V)&
7,k=1
— (X >’“( )&+ &)}
(45) R(X,&)& =2X — Z{n )+ &)+ 7 (X&)

k=1

+5{77 ( )fz"’éz](‘:@X X)}+523 Z 77 gl,
k,l=1

(4.6) R(&,&)X =) {n"(X)(& — &) + (0 (X) — 0 (X))&}
=1
+s(n'(X)&; — 1/ (X)&),
(A7) R(&.&)& =& — & — (O — 0ji) > & + s(0in&; — 0jus),
=

forall X, Y € X(M) and i,j,k € {1,...,s}.
Now, by using the above propositions, we can prove the following theo-
rem for the sectional curvature K of V.
THEOREM 4.3. Let M be an S-manifold. Then the sectional curvature
of V satisfies
(1) K(va) = K*(Xa Y) -
(i) K(X,&)=K(&,X)=2—s,
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(iil) K(&, &) = K(&5,8) =2 -5,
forany X, Y € L andi,j€{l,...,s}, 1 #].
Proof. First, from , if X,Y € L, then
R(X,Y)Y,X) = R*(X,Y,Y, X) + 5(9(X,Y)? - g(X, X)g(Y.Y)),
and we deduce (i). Now, from (4.4)), if X € L,

R(&, X)X = Q(X,X){st:ﬁj - 8&}
j=1

forany i € {1,...,s}. Then, taking into account (4.2]), we obtain (ii). Finally,
(iii) is a direct consequence of (4.7)). m

Therefore, if s # 2, an S-manifold cannot be of constant sectional curva-
ture with respect to the semi-symmetric metric connection defined in (4.1J).
But, what about the f-sectional curvature? First, we have:

PROPOSITION 4.4. Let M be an S-manifold. Then
(4.8) R(pX, oY, 0oZ,oW) = R(X,Y,Z, W)
forany XY, Z,W € L.
Proof. This is a direct computation from taking into account that
(see [3])
R (X, 9Y, 0Z,oW) = RY(X,Y, Z, W)

forany X, Y, Z W e L. n

Consequently, the f-sectional curvature of V is well defined, since, by
using (4.8)), we find that, for any unit vector field X € L,

(4.9) R(X,pX,pX,X)=R(X,pX,pX,X) —s.
Then, taking into account (2.11)), from (4.1)) and (4.9)) we can deduce the

following theorem:

THEOREM 4.5. Let M be an S-manifold. Then the f-sectional curvature
associated with the semi-symmetric metric connection V is constant if and
only if the f-sectional curvature associated with the Riemannian connection
is constant. In this case, if ¢ denotes the constant f-sectional curvature of
the Riemannian connection, them ¢ — s is the constant f-sectional curvature
of V. Moreover, the curvature tensor field of V is completely determined by
c and it is given by
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R(X,Y,Z,W) = Z{2QXW "Y' (2) = 29(Y, W) (X’ (2)
i,j=1

+29(Y, Z)n" (X))’ (W) — 29(X, Z)n' (V) (W)}
+ > A XOn ) (20 (W)
i,5,k=1
=1 (X' V) (Z)n* (W)} |
+ 0 (X' (V) (2)n (W) = " (X)n™ (Y )’ (W)n*(2)}
< + 5 {g(saX7 eW)g(pY,0Z) — g(p X, pZ)g(pY, W)}
(X, W)®(Y, Z)
— (X, 2)D(Y, W) — 20(X,Y)D(Z, W)}
+5{9(pZ, X)g(Y, W) — g(X, W)g(¢Z,Y)
+9(Y, Z)g(p X, W) + g(X, Z)g(Y, W)
—g(Y, Z)g(X, W) — g(X, Z)g(¢Y, W)}
forany X, Y, Z, W € X(M).

For the Ricci tensor field S of the connection V, from formula (2.6) in [2]
we deduce that

(4.10)  S(X,Y) = S*(X,Y)

S
+@n+s =2 3w (X0 (V) = sg(X, ¢Y) - sg(X, V) }
ij=1

forany X, Y € X(M), where S* denotes the Ricci tensor field of the Rieman-
nian connection and, as before, dim(M) = 2n + s. Since S* is a symmetric
tensor field, we deduce that
(4.11) S(X,Y)-S(Y,X)=-22n+s—2)g9(X, ¢Y)
for any X,Y € X(M). Therefore, S is not a symmetric tensor field. More-
over, by using (2.10) we obtain

PROPOSITION 4.6. Let M be an S—mam'fold Then

(4.12) S(X,&)=S(&,X) = (4n+s5—2) Z" —s(2n + s — 2)n'(X)
forany X € X(M) and i € {1,...,s}.

COROLLARY 4.7. Let M be an S-manifold. Then
(4.13) S5(&,&) = (An+s—2) —s(2n+ s — 2)d;;

foranyi,j ={1,...,s}.
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Now, we can prove:
PROPOSITION 4.8. Let M be an S-manifold. Then
(4.14) S(eX,pY)=85(X,Y)
for any X,Y € L.
Proof. This is a direct consequence of taking into account that
S* (X, YY) =S*(X,Y)
(see Proposition 3.7 in [6]). =

COROLLARY 4.9. Let M be an S-manifold. Then

(4.15) S(X,Y) = S(pX,@Y) + Y n'(X)/ (Y)S(&, &)
i,j=1
forall X, Y € X(M).
Proof. We can put

X =Xo+» n'(X)& and Y = Yo+Zn )5,
i=1 =

where X,Yy € £. Then, since from and (| - S(Xo,&5) = S(&,Yo)
= 0, we obtain

(4.16) S(X,Y) = S(X0,Y0) + > 0" (X)n? (V)S(&. &)
ij=1
Now, by [2.1) and ([€.14), S(Xo,Yo) = S(pXo, pYo) = S(pX,¢Y) and
the proof is complete "

5. Semi-symmetry properties of an S-manifold with respect
to V. Let us recall that, given a Riemannian manifold (M, g) of dimension
n > 3 endowed with a linear connection V whose curvature tensor field is
denoted by R, for any (0, k)-tensor field T"on M, k > 1, the (0, k + 2)-tensor
field R.T is defined by

(5.1) (RT)(Xy,..., Xk,X Y)

= —ZT X1, Xio1, RX, V)X, Xi1, .., X3

for any X,Y, Xq,..., X € X(M) In this context, M is said to be semi-
symmetric with respect to V if R.R = 0, and Ricci semi-symmetric if
R.S = 0, where S denotes the Ricci tensor field of V. For the Riemannian
connection it is known that semi-symmetry implies Ricci semi-symmetry (for
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more details, [9] [26] and references therein can be consulted; specifically, for
the contact geometry case we recommend the papers [16, 21 27]).

In this context, for the semi-symmetric metric connection defined in (3.1}
on an S-manifold M we can prove:

THEOREM 5.1. Let M be a (2n + s)-dimensional S-manifold (n > 1)
which is a semi-symmetric manifold with respect to the semi-symmetric met-
ric connection V. Then M has constant f-sectional curvature ¢ = 0 with
respect to V.

Proof. If R.R = 0, then from (5.1)) we deduce that

for any unit vector field X € £ and any i,j = 1,...,s. By using (4.4]) and
(4.5)), a direct expansion of (5.2]) gives (2—s6;;) R(X, X, X, X) = 0, which

completes the proof. m

Therefore, from Theorem [£.5| we deduce:

COROLLARY 5.2. A semi-symmetric (2n + s)-dimensional (n > 1) S-
manifold with respect to the semi-symmetric metric connection V is an S-
space-form of constant f-sectional curvature equal to s.

We point out that it is known that if an S-manifold is semi-symmetric
with respect to the Riemannian connection V*, then it is also an S-space-
form of constant f-sectional curvature equal to s ([I]).

Moreover, we have:

THEOREM 5.3. Let M be a (2n + s)-dimensional S-manifold with n > 1
and s > 3. Then M cannot be a Ricci semi-symmetric manifold with respect
to the semi-symmetric metric connection V.

Proof. Suppose that R.S = 0. Then, from (5.1)),
(5.3) S(R(X, )&, pX) + S(&5, R(X, &) X) =0
for any unit vector field X € £ and any 4,5 € {1,...,s}, i # j. Now, by

using (L5),

(5.4) S(R(X,&)&5, pX) = 25(X, pX).
Next, from and ,
(5.5) S(&, R(X, &)pX) = —s(4n + 5 —2).

Consequently, if we insert (5.4]) and (5.5)) into (5.3)), we get
(5.6) 25(X,9X) = (4n+ s —2)s.
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But, since from and (| , S(pX, X) = =S(X,¢X), using (5.6), we
deduce S(X, ch) S((pX X) (4n + s — 2)s. But, from (4.11)) we obtain
that S(X, pX) — S(¢X, X) = 2(2n + s — 2)s, which is a contradiction. =

Concerning the case s = 2, we can prove the following theorem.

THEOREM 5.4. Let M be a (2n + 2)-dimensional S-manifold, n > 1. If
M is a Ricci semi-symmetric manifold with respect to the semi-symmetric
metric connection V, then the Ricci tensor field of V satisfies
2

S(X,Y) = —4ng(X,0Y) + Y ' (X)n/ (V)S(&i, &)
ij=1
for any XY € X(M).
Proof. By and (4.16), it is sufficient to prove that S(X,Y) =
—4ng(X, ¢Y) for any X,Y € L.
So let X,Y € L. Then, since R.S =0, from (5.1 we obtain
(5.7) S(R(X,61)&2,Y) + S(&2, R(X,61)Y) = 0.

But, by using (4.5)) we get S(R(X,&1)&2,Y) = 2S5(X,Y), and by using (4.4)
and (4.13) we obtain S(&, R(X,£1)Y) = 8ng(X, ¢Y). Consequently, (5.7))
yields the assertion. m

For Sasakian manifolds (case s = 1), we can prove:

THEOREM 5.5. Let M be a (2n + 1)-Sasakian manifold, n > 1. If M is
a Ricci semi-symmetric manifold with respect to the semi-symmetric metric
connection V, then the Ricci tensor field of V satisfies

S(X,Y) = 5(X,9Y) = 2n{g(X,Y) — g(X, pY)}
for any XY € L.
Proof. Since R.S = 0, the definition (b.1)) gives

(5.8) S(R (X §)E,Y)+ 56 R(X,§Y) =
But, from and ( we get S (X,8)¢8,Y) = S(X,Y) — S(X,¢Y),
and from (4.4 and - S R )Y) =2n{g(X,¢Y)—g(X,Y)}. Now,

gives the conclusion. =
Finally, we consider the Weyl projective curvature tensor field of V given
by
1
dim(M) — 1
for any X,Y,Z, € X(M). Then the S-manifold M is said to be Ricci-
projectively semi-symmetric with respect to the semi-symmetric metric con-

(5.9) P(X,Y)Z=R(X,Y)Z - {S(Y,2)X — 8(X,Z)Y}
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nection V if P.S = 0, where, taking into account (5.9)),
(5.10) (P.S)(X,Y,Z,W) = —S(P(X,Y)Z,W) — 8(Z, P(X,Y)W)
— (RS)(X,Y, Z,W)

to s 1SS 2) = S(2,Y)) + SV, W)(S(2, X) = S(X, 2))}

for any XY, Z, W € X(M). We can prove the following theorem.

THEOREM 5.6. Let M be a (2n + s)-dimensional S-manifold, n > 1.
Then:

(i) If s > 3, M cannot be Ricci-projectively semi-symmetric with re-
spect to V.
(i1) If s =2 and M is Ricci-projectively semi-symmetric with respect to
V, then the Ricci tensor field of V satisfies
2
S(X,Y) = —4ng(X, oY) + Y 7' (X)n/ (V)S(4:, &)
ij=1
for any X, Y € X(M).

(iii) If M is a Ricci-projectively semi-symmetric Sasakian manifold (that
is, if s = 1) with respect to V, then the Ricci tensor field of V
satisfies

S(X,Y) = S(X,9Y) =2n{g(X,Y) — g(X, ¢Y)}
for any XY € L.

Proof. By using (2.1), (4.11) and (5.10)), we get

forany X, Y € L and 4,5 € {1,...,s}. Consequently, we complete the proof
by using the same line of reasoning as in Theorems [5.3 "
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