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Curvature properties of a semi-symmetric metric connection
on S-manifolds

by Mehmet Akif Akyol (Bingöl), Aysel Turgut Vanli (Ankara),
and Luis M. Fernández (Sevilla)

Abstract. In this study, S-manifolds endowed with a semi-symmetric metric connec-
tion naturally related with the S-structure are considered and some curvature properties
of such a connection are given. In particular, the conditions of semi-symmetry, Ricci semi-
symmetry and Ricci-projective semi-symmetry of this semi-symmetric metric connection
are investigated.

1. Introduction. In 1963, Yano [28] introduced the notion of f -struc-
ture on an m-dimensional C∞ manifold M , as a non-vanishing tensor field
ϕ of type (1, 1) on M which satisfies ϕ3 + ϕ = 0 and has constant rank r.
It is known that r is even, say r = 2n. Moreover, TM splits into two com-
plementary subbundles Imϕ and kerϕ and the restriction of ϕ to Imϕ
determines a complex structure on this subbundle. It is also known that
the existence of an f -structure on M is equivalent to a reduction of the
structure group to U(n) × O(s) (see [3]), where s = m − 2n. Almost com-
plex (s = 0) and almost contact (s = 1) are well-known examples of f -
structures. The case s = 2 appeared in the study of hypersurfaces in al-
most contact manifolds [5, 12], which motivated Goldberg and Yano [13]
to define globally framed f -manifolds (also called metric f -manifolds or
f .pk-manifolds).

A wide class of globally framed f -manifolds was introduced by Blair in
[3] according to the following definition: a metric f -structure is said to be a
K-structure if the fundamental 2-form Φ given by Φ(X,Y ) = g(X,ϕY ) for
any vector fields X and Y on M is closed and the normality condition holds,
that is, [ϕ,ϕ]+2

∑s
i=1 dη

i⊗ξi = 0, where [ϕ,ϕ] denotes the Nijenhuis torsion
of ϕ, ξi are the structure vector fields and ηi their dual 1-forms, i = 1, . . . , s
(see Section 2 for further details). A K-manifold is called an S-manifold
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if dηk = Φ for all k = 1, . . . , s. S-manifolds have been studied by several
authors (see, for example, [4, 6, 14, 17]).

Further, in 1924 Friedmann and Schouten [11] introduced the notion of
semi-symmetric linear connection on a differentiable manifold. Later, Hay-
den [15] introduced the idea of metric connection with torsion on a Rie-
mannian manifold. In 1970, Yano [29] made a systematic study of semi-
symmetric metric connections on a Riemannian manifold. More precisely, if
∇ is a linear connection in a differentiable manifold M , then the torsion ten-
sor T of ∇ is given by T (X,Y ) = ∇XY −∇YX− [X,Y ] for any vector fields
X and Y on M . The connection ∇ is said to be symmetric if the torsion ten-
sor T vanishes, otherwise it is said to be non-symmetric. The connection∇ is
said to be semi-symmetric if T is of the form T (X,Y ) = η(Y )X−η(X)Y for
any X,Y , where η is a 1-form on M . Moreover, if g is a (pseudo)-Riemannian
metric on M , then ∇ is called a metric connection if ∇g = 0, otherwise it is
called non-metric. It is well known that the Riemannian connection is the
unique metric and symmetric linear connection on a Riemannian manifold.

It is worth pointing out here that (pseudo)-Riemannian manifolds en-
dowed with a semi-symmetric metric connection are a particular case of the
so-called Riemann–Cartan spaces (see, for instance, [23]), which have many
physical applications. Thus, in the framework of general relativity theory,
space-time is supplied with torsion in addition to curvature due to a known
relationship between the torsion of an asymmetric metric connection and the
spin tensor of matter. More physical applications of the notion of torsion
were also discovered by Penrose [19]. There are various physical problems
involving specifically semi-symmetric metric connections; for instance, the
displacement on the earth surface following a fixed point is metric and semi-
symmetric [22]. In this context, the interesting report of Suhendro [24] can be
consulted. On the other hand, several authors have studied semi-symmetric
metric connections on different types of Riemannian and semi-Riemannian
manifolds (see, among many others, [2, 7, 8, 10, 18, 20, 25]).

The purpose of this paper is to link the two notions commented above
by investigating the curvature properties of a certain semi-symmetric metric
connection defined on S-manifolds and naturally related to the S-structure.
To this end, in Section 2 we give a brief introduction to S-manifolds and in
Section 3 we define a semi-symmetric metric connection on an S-manifold,
obtaining some general results. In Section 4, we investigate the curvature
and the Ricci tensor fields of such a connection. In particular, we prove that
an S-manifold has constant f -sectional curvature with respect to this semi-
symmetric metric connection if and only if it also has constant f -sectional
curvature with respect to the Riemannian connection, giving the relationship
between both constants. Consequently, the curvature of this semi-symmetric
metric connection is completely determined by its f -sectional curvature.
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Finally, in the last section, we present some results concerning the semi-
symmetry, Ricci semi-symmetry and Ricci-projective semi-symmetry prop-
erties of a semi-symmetric metric connection. In particular, we prove that
if an S-manifold is semi-symmetric with respect to such a connection, then
it is of constant f -sectional curvature zero. We point out that the results
obtained in the final section establish a clear difference between the cases
s ≤ 2 and s > 2.

2. Preliminaries on S-manifolds. A (2n + s)-dimensional differen-
tiable manifold M is called a metric f -manifold if there exist a (1, 1) type
tensor field ϕ, vector fields ξ1, . . . , ξs, 1-forms η1, . . . , ηs and a Riemannian
metric g on M such that

ϕ2 = −I +
s∑
i=1

ηi ⊗ ξi, ηi(ξj) = δij , ϕξi = 0, ηi ◦ ϕ = 0,(2.1)

g(ϕX,ϕY ) = g(X,Y )−
s∑
i=1

ηi(X)ηi(Y ),(2.2)

for any X,Y ∈ X (M), i, j ∈ {1, . . . , s}, and moreover

(2.3) ηi(X) = g(X, ξi), g(X,ϕY ) = −g(ϕX, Y ).

Then, a 2-form Φ is defined by Φ(X,Y ) = g(X,ϕY ) for any X,Y ∈ X (M),
called the fundamental 2-form. In what follows, we denote by M the dis-
tribution spanned by the structure vector fields ξ1, . . . , ξs, and by L its
orthogonal complementary distribution. Thus, X (M) = L⊕M. If X ∈M,
then ϕX = 0, and if X ∈ L, then ηi(X) = 0 for any i ∈ {1, . . . , s}, that is,
ϕ2X = −X.

In a metric f -manifold, special local orthonormal bases of vector fields
can be considered. Let U be a coordinate neighborhood and E1 a unit vector
field on U orthogonal to the structure vector fields. Then, from (2.1)–(2.3),
ϕE1 is also a unit vector field on U orthogonal to E1 and the structure vector
fields. Next, if possible, let E2 be a unit vector field on U orthogonal to E1,
ϕE1 and the structure vector fields and so on. The local orthonormal basis

{E1, . . . , En, ϕE1, . . . , ϕEn, ξ1, . . . , ξs}
so obtained is called an f -basis. Moreover, a metric f -manifold is normal if

[ϕ,ϕ] + 2
s∑
i=1

dηi ⊗ ξi = 0,

where [ϕ,ϕ] denotes the Nijenhuis tensor field associated to ϕ. A metric
f -manifold is said to be an S-manifold if it is normal and

η1 ∧ · · · ∧ ηs ∧ (dηi)n 6= 0 and Φ = dηi, 1 ≤ i ≤ s.
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Observe that, if s = 1, an S-manifold is a Sasakian manifold. For s ≥ 2,
examples of S-manifolds can be found in [3, 4, 14].

The following results are known for the Riemannian connection of an
S-manifold:

Theorem 2.1 ([3]). An S-manifold (M,ϕ, ξi, η
i, g) satisfies the condi-

tion

(2.4) (∇∗Xϕ)Y =

s∑
i=1

{g(ϕX,ϕY )ξi + ηi(Y )ϕ2X}

for all X,Y ∈ X (M), where ∇∗ denotes the Riemannian connection with
respect to g.

Thus, from (2.4) we deduce that

(2.5) ∇∗Xξi = −ϕX
for any X ∈ X (M), i ∈ {1, . . . , s}.

Finally, for the curvature tensor field of the Riemannian connection of
an S-manifold, we recall:

Theorem 2.2 ([6]). Let (M,ϕ, ξi, η
i, g) be an S-manifold of dimension

2n+ s. Then,

R∗(X,Y )ξi =

s∑
j=1

{ηj(X)ϕ2Y − ηj(Y )ϕ2X},(2.6)

R∗(X, ξi)Y = −
s∑
j=1

{g(ϕX,ϕY )ξj + ηj(Y )ϕ2X},(2.7)

for all X,Y ∈ X (M), i, j ∈ {1, . . . , s}, where R∗ denotes the curvature
tensor field of the Riemannian connection.

Corollary 2.3 ([6]). Let (M,ϕ, ξi, η
i, g) be an S-manifold of dimension

2n+ s. Then

R∗(ξi, X, ξj , Y ) = −g(ϕX,ϕY ),(2.8)

K∗(ξi, X) = g(ϕX,ϕX),(2.9)

S∗(X, ξi) = 2n

s∑
i=1

ηi(X),(2.10)

for all X,Y ∈ X (M), i, j ∈ {1, . . . , s}, where K∗ and S∗ denote respec-
tively the sectional curvature and the Ricci tensor field of the Riemannian
connection.

Consequently, from (2.9), if s ≥ 2, an S-manifold cannot have constant
sectional curvature. For this reason, it is necessary to introduce a more re-
strictive curvature. In general, a plane section π on a metric f -manifold



Semi-symmetric metric connection on S-manifolds 75

(M,ϕ, ξi, η
i, g) is said to be an f -section if it is determined by a unit vec-

tor X, normal to the structure vector fields and ϕX. The sectional curva-
ture of π is called an f -sectional curvature. An S-manifold is said to be an
S-space-form if it has constant f -sectional curvature c; it is then denoted
by M(c). The curvature tensor field R∗ of M(c) satisfies (see [17])

(2.11) R∗(X,Y, Z,W ) =

s∑
i,j=1

{g(ϕX,ϕW )ηi(Y )ηj(Z)

−g(ϕX,ϕZ)ηi(Y )ηj(W ) + g(ϕY, ϕZ)ηi(X)ηj(W )

−g(ϕY, ϕW )ηi(X)ηj(Z)}

+
c+ 3s

4
{g(ϕX,ϕW )g(ϕY, ϕZ)− g(ϕX,ϕZ)g(ϕY, ϕW )}

+
c− s

4
{Φ(X,W )Φ(Y,Z)− Φ(X,Z)Φ(Y,W )− 2Φ(X,Y )Φ(Z,W )}

for any X,Y, Z,W ∈ X (M).

3. A semi-symmetric metric connection on S-manifolds. From
now on, let M denote an S-manifold (M,ϕ, ξi, η

i, g) of dimension 2n + s.
We define a new connection on M by

(3.1) ∇XY = ∇∗XY +

s∑
j=1

ηj(Y )X −
s∑
j=1

g(X,Y )ξj

for any X,Y ∈ X (M). It is easy to show that ∇ is a linear connection on M .
Moreover, we can prove:

Theorem 3.1. Let M be an S-manifold. The linear connection ∇ de-
fined in (3.1) is a semi-symmetric metric connection on M .

Proof. By (3.1) and the fact that the Riemannian connection is torsion-
free, the torsion tensor T of the connection ∇ is given by

(3.2) T (X,Y ) =
s∑
j=1

{ηj(Y )X − ηj(X)Y }

for any X,Y ∈ X (M). Moreover, by using (3.1) again, for all X,Y, Z ∈
X (M) and since ∇∗ is a metric connection, we have

(3.3) (∇Xg)(Y, Z) = 0.

From (3.2) and (3.3) we conclude that the linear connection ∇ is a semi-
symmetric metric connection on M .

For example, let us consider R2n+s with its standard S-structure given
in [14]:
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ηa =
1

2

(
dza −

n∑
i=1

yidxi
)
, ξa = 2

∂

∂za
,

g =

s∑
α=1

ηa ⊗ ηa +
1

4

( n∑
i=1

(dxi ⊗ dxi + dyi ⊗ dyi)
)
,

ϕ

( n∑
i=1

(
Xi

∂

∂xi
+ Yi

∂

∂yi

)
+
∑
a

Za
∂

∂zα

)

=

n∑
i=1

(
Yi

∂

∂xi
−Xi

∂

∂yi

)
+

s∑
α=1

n∑
i=1

Yiy
i ∂

∂zα
,

where (xi, yi, za), i = 1, . . . , n and α = 1, . . . , s, are the cartesian coordi-
nates. It is known that, with this structure, R2n+s is an S-space-form of
constant f -sectional curvature c = −3s. If, following [14], we denote

(x1, . . . , xn, y1, . . . , yn, z1, . . . , zs) = (x1, . . . , x2n+s),

the Christoffel symbols of the semi-symmetric metric connection defined in
(3.1) are given by

Γ bai = Γ ∗bai −
1

2
syiδab − 2

2n+s∑
α=2n+1

gaiδαb, Γ baλ = Γ ∗baλ − 2

2n+s∑
α=2n+1

gaλδαb,

Γ baβ = Γ ∗baβ +
1

2
δab − 2

2n+s∑
α=2n+1

gaβδαb,

for any a, b ∈ {1, . . . , 2n + s}, i ∈ {1, . . . , n}, λ ∈ {n + 1, . . . , 2n} and
β ∈ {2n + 1, . . . , 2n + s}, where Γ ∗bai , Γ ∗baλ and Γ ∗baα denote the Christoffel
symbols of the Riemannian connection of R2n+s (see [14] for the details).

Throughout this paper, we always use the letter ∇ to denote the semi-
symmetric metric connection defined in (3.1). Observe that, following the
notation of [2, 29], in this case the 1-form π and the vector field P which
define the connection ∇ are

π =

s∑
i=1

ηi and P =

s∑
i=1

ξi.

Proposition 3.2. Let M be an S-manifold. Then

∇Xξi = −ϕX +X −
s∑
j=1

ηi (X) ξj ,(3.4)

(∇Xηi)Y = g(X,ϕY ) + g (X,Y )−
s∑
j=1

ηi(X)ηj(Y ),(3.5)

for any X,Y ∈ X (M) and i ∈ {1, . . . , s}.
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Proof. First, (3.4) is a direct consequence of (3.1), taking into account
(2.5). Now, by using (3.3) and (3.4), since

(∇Xηi)(Y ) = Xηi(Y )− ηi(∇XY ) = g(Y,∇Xξi),

we deduce (3.5).

Theorem 3.3. Let M be an S-manifold. Then

(3.6) (∇Xϕ)Y =
s∑
i=1

{(g(ϕX,ϕY )− g(X,ϕY ))ξi + ηi(Y )(ϕ2X − ϕX)}

for all X,Y ∈ X (M).

Proof. From (3.1), we get

(∇Xϕ)Y = (∇∗Xϕ)Y −
s∑
i=1

ηi(Y )ϕX −
s∑
i=1

g(X,ϕY )ξi.

Therefore, we obtain the result from (2.4).

By using (2.1) and (3.6), we easily prove:

Corollary 3.4. Let M be an S-manifold. Then

(∇Xϕ)ξi = −ϕ∇Xξi = ϕ2X − ϕX,(3.7)

∇ξiϕX = ϕ∇ξiX,(3.8)

for all X ∈ X (M), i ∈ {1, . . . , s}.

4. The curvature of ∇. Let M be an S-manifold endowed with the
semi-symmetric metric connection ∇ defined in (3.1). From formula (2.3)
in [2], if R and R∗ denote the curvature tensor fields of ∇ and ∇∗, respec-
tively, then

R(X,Y )Z = R∗(X,Y )Z + s{g(X,ϕZ)Y(4.1)

− g(Y, ϕZ)X + g(Y,Z)ϕX)

− g(X,Z)ϕY + g(X,Z)Y − g(Y,Z)X}

+

s∑
i,j=1

{ηi(Y )ηj(Z)X − ηi(X)ηj(Z)Y

+ g(Y,Z)ηi(X)ξj − g(X,Z)ηi(Y )ξj}

for all X,Y, Z ∈ X (M).

First, we want to investigate the sectional curvature associated with ∇.
To this end, we need to establish the following symmetry for R which can
be deduced from (4.1):
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Proposition 4.1. Let M be an S-manifold. Then

(4.2) R(X,Y, Z,W )−R(Z,W,X, Y ) = 2s{g(X,ϕZ)g(Y,W )

− g(Y, ϕZ)g(X,W )− g(X,ϕW )g(Y,Z) + g(Y, ϕW )g(X,Z)}
for any X,Y, Z,W ∈ X (M).

Moreover, from (2.6), (2.7) and (4.1), we get some formulas involving
the structure vector fields:

Proposition 4.2. Let M be an S-manifold. Then

R(X,Y )ξi =
s∑
j=1

{ηi(X)∇Y ξj − ηi(Y )∇Xξj(4.3)

+ ηj(X)(ϕ2Y − Y )− ηj(Y )(ϕ2X −X)},

R(X, ξi)Y = 2
s∑
j=1

{ηj(Y )X − g(X,Y )ξj}(4.4)

+ s{(g(X,ϕY ) + g(X,Y ))ξi + ηi(Y )(ϕX −X)}

+

s∑
j,k=1

{ηj(X)(ηj(Y ) + ηi(Y ))ξk

− ηj(X)ηk(Y )(ξj + ξi)},

R(X, ξi)ξj = 2X −
s∑

k=1

{ηk(X)(ξk + ξi) + ηj(X)ξk}(4.5)

+ s{ηj(X)ξi + δij(ϕX −X)}+ δij

s∑
k,l=1

ηk(X)ξl,

R(ξi, ξj)X =
s∑

k=1

{ηk(X)(ξi − ξj) + (ηj(X)− ηi(X))ξk}(4.6)

+s(ηi(X)ξj − ηj(X)ξi),

R(ξi, ξj)ξk = ξi − ξj − (δik − δjk)
s∑
l=1

ξl + s(δikξj − δjkξi),(4.7)

for all X,Y ∈ X (M) and i, j, k ∈ {1, . . . , s}.
Now, by using the above propositions, we can prove the following theo-

rem for the sectional curvature K of ∇.

Theorem 4.3. Let M be an S-manifold. Then the sectional curvature
of ∇ satisfies

(i) K(X,Y ) = K∗(X,Y )− s,
(ii) K(X, ξi) = K(ξi, X) = 2− s,
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(iii) K(ξi, ξj) = K(ξj , ξi) = 2− s,

for any X,Y ∈ L and i, j ∈ {1, . . . , s}, i 6= j.

Proof. First, from (4.1), if X,Y ∈ L, then

R(X,Y, Y,X) = R∗(X,Y, Y,X) + s(g(X,Y )2 − g(X,X)g(Y, Y )),

and we deduce (i). Now, from (4.4), if X ∈ L,

R(ξi, X)X = g(X,X)
{

2

s∑
j=1

ξj − sξi
}

for any i ∈ {1, . . . , s}. Then, taking into account (4.2), we obtain (ii). Finally,
(iii) is a direct consequence of (4.7).

Therefore, if s 6= 2, an S-manifold cannot be of constant sectional curva-
ture with respect to the semi-symmetric metric connection defined in (4.1).
But, what about the f -sectional curvature? First, we have:

Proposition 4.4. Let M be an S-manifold. Then

(4.8) R(ϕX,ϕY, ϕZ, ϕW ) = R(X,Y, Z,W )

for any X,Y, Z,W ∈ L.

Proof. This is a direct computation from (4.1) taking into account that
(see [3])

R∗(ϕX,ϕY, ϕZ, ϕW ) = R∗(X,Y, Z,W )

for any X,Y, Z,W ∈ L.

Consequently, the f -sectional curvature of ∇ is well defined, since, by
using (4.8), we find that, for any unit vector field X ∈ L,

(4.9) R(X,ϕX,ϕX,X) = R∗(X,ϕX,ϕX,X)− s.

Then, taking into account (2.11), from (4.1) and (4.9) we can deduce the
following theorem:

Theorem 4.5. Let M be an S-manifold. Then the f -sectional curvature
associated with the semi-symmetric metric connection ∇ is constant if and
only if the f -sectional curvature associated with the Riemannian connection
is constant. In this case, if c denotes the constant f -sectional curvature of
the Riemannian connection, then c− s is the constant f -sectional curvature
of ∇. Moreover, the curvature tensor field of ∇ is completely determined by
c and it is given by
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R(X,Y, Z,W ) =

s∑
i,j=1

{2g(X,W )ηi(Y )ηj(Z)− 2g(Y,W )ηi(X)ηj(Z)

+ 2g(Y, Z)ηi(X)ηj(W )− 2g(X,Z)ηi(Y )ηj(W )}

+
s∑

i,j,k=1

{ηi(X)ηk(Y )ηj(Z)ηk(W )

− ηk(X)ηi(Y )ηj(Z)ηk(W )}
+ ηk(X)ηi(Y )ηk(Z)ηj(W )− ηi(X)ηk(Y )ηj(W )ηk(Z)}

+
c+ 3s

4
{g(ϕX,ϕW )g(ϕY, ϕZ)− g(ϕX,ϕZ)g(ϕY, ϕW )}

+
c− s

4
{Φ(X,W )Φ(Y, Z)

− Φ(X,Z)Φ(Y,W )− 2Φ(X,Y )Φ(Z,W )}
+ s{g(ϕZ,X)g(Y,W )− g(X,W )g(ϕZ, Y )

+ g(Y,Z)g(ϕX,W ) + g(X,Z)g(Y,W )

− g(Y,Z)g(X,W )− g(X,Z)g(ϕY,W )}
for any X,Y, Z,W ∈ X (M).

For the Ricci tensor field S of the connection ∇, from formula (2.6) in [2]
we deduce that

(4.10) S(X,Y ) = S∗(X,Y )

+ (2n+ s− 2)
{ s∑
i,j=1

ηi(X)ηj(Y )− sg(X,ϕY )− sg(X,Y )
}

for any X,Y ∈ X (M), where S∗ denotes the Ricci tensor field of the Rieman-
nian connection and, as before, dim(M) = 2n+ s. Since S∗ is a symmetric
tensor field, we deduce that

(4.11) S(X,Y )− S(Y,X) = −2(2n+ s− 2)g(X,ϕY )

for any X,Y ∈ X (M). Therefore, S is not a symmetric tensor field. More-
over, by using (2.10) we obtain

Proposition 4.6. Let M be an S-manifold. Then

(4.12) S(X, ξi) = S(ξi, X) = (4n+ s− 2)

s∑
j=1

ηj(X)− s(2n+ s− 2)ηi(X)

for any X ∈ X (M) and i ∈ {1, . . . , s}.
Corollary 4.7. Let M be an S-manifold. Then

(4.13) S(ξj , ξi) = (4n+ s− 2)− s(2n+ s− 2)δij

for any i, j = {1, . . . , s}.
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Now, we can prove:

Proposition 4.8. Let M be an S-manifold. Then

(4.14) S(ϕX,ϕY ) = S(X,Y )

for any X,Y ∈ L.

Proof. This is a direct consequence of (4.10) taking into account that

S∗(ϕX,ϕY ) = S∗(X,Y )

(see Proposition 3.7 in [6]).

Corollary 4.9. Let M be an S-manifold. Then

(4.15) S(X,Y ) = S(ϕX,ϕY ) +
s∑

i,j=1

ηi(X)ηj(Y )S(ξi, ξj)

for all X,Y ∈ X (M).

Proof. We can put

X = X0 +
s∑
i=1

ηi(X)ξi and Y = Y0 +
s∑
j=1

ηj(Y )ξj ,

where X0, Y0 ∈ L. Then, since from (2.3) and (4.12), S(X0, ξj) = S(ξi, Y0)
= 0, we obtain

(4.16) S(X,Y ) = S(X0, Y0) +
s∑

i,j=1

ηi(X)ηj(Y )S(ξi, ξj).

Now, by (2.1) and (4.14), S(X0, Y0) = S(ϕX0, ϕY0) = S(ϕX,ϕY ) and
the proof is complete.

5. Semi-symmetry properties of an S-manifold with respect
to ∇. Let us recall that, given a Riemannian manifold (M, g) of dimension
n ≥ 3 endowed with a linear connection ∇ whose curvature tensor field is
denoted by R, for any (0, k)-tensor field T on M , k ≥ 1, the (0, k+2)-tensor
field R.T is defined by

(5.1) (R.T )(X1, . . . , Xk, X, Y )

= −
k∑
i=1

T (X1, . . . , Xi−1, R(X,Y )Xi, Xi+1, . . . , Xk)

for any X,Y,X1, . . . , Xk ∈ X (M). In this context, M is said to be semi-
symmetric with respect to ∇ if R.R = 0, and Ricci semi-symmetric if
R.S = 0, where S denotes the Ricci tensor field of ∇. For the Riemannian
connection it is known that semi-symmetry implies Ricci semi-symmetry (for
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more details, [9, 26] and references therein can be consulted; specifically, for
the contact geometry case we recommend the papers [16, 21, 27]).

In this context, for the semi-symmetric metric connection defined in (3.1)
on an S-manifold M we can prove:

Theorem 5.1. Let M be a (2n + s)-dimensional S-manifold (n ≥ 1)
which is a semi-symmetric manifold with respect to the semi-symmetric met-
ric connection ∇. Then M has constant f -sectional curvature c = 0 with
respect to ∇.

Proof. If R.R = 0, then from (5.1) we deduce that

(5.2) R(R(X, ξi)X,ϕX,ϕX, ξj) +R(X,R(X, ξi)ϕX,ϕX, ξj)

+R(X,ϕX,R(X, ξi)ϕX, ξj) +R(X,ϕX,ϕX,R(X, ξi)ξj) = 0

for any unit vector field X ∈ L and any i, j = 1, . . . , s. By using (4.4) and
(4.5), a direct expansion of (5.2) gives (2−sδij)R(X,ϕX,ϕX,X) = 0, which
completes the proof.

Therefore, from Theorem 4.5 we deduce:

Corollary 5.2. A semi-symmetric (2n + s)-dimensional (n ≥ 1) S-
manifold with respect to the semi-symmetric metric connection ∇ is an S-
space-form of constant f -sectional curvature equal to s.

We point out that it is known that if an S-manifold is semi-symmetric
with respect to the Riemannian connection ∇∗, then it is also an S-space-
form of constant f -sectional curvature equal to s ([1]).

Moreover, we have:

Theorem 5.3. Let M be a (2n+ s)-dimensional S-manifold with n ≥ 1
and s ≥ 3. Then M cannot be a Ricci semi-symmetric manifold with respect
to the semi-symmetric metric connection ∇.

Proof. Suppose that R.S = 0. Then, from (5.1),

(5.3) S(R(X, ξi)ξj , ϕX) + S(ξj , R(X, ξi)ϕX) = 0

for any unit vector field X ∈ L and any i, j ∈ {1, . . . , s}, i 6= j. Now, by
using (4.5),

(5.4) S(R(X, ξi)ξj , ϕX) = 2S(X,ϕX).

Next, from (4.4) and (4.13),

(5.5) S(ξj , R(X, ξi)ϕX) = −s(4n+ s− 2).

Consequently, if we insert (5.4) and (5.5) into (5.3), we get

(5.6) 2S(X,ϕX) = (4n+ s− 2)s.
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But, since from (2.1) and (4.14), S(ϕX,X) = −S(X,ϕX), using (5.6), we
deduce S(X,ϕX)− S(ϕX,X) = (4n+ s− 2)s. But, from (4.11) we obtain
that S(X,ϕX)− S(ϕX,X) = 2(2n+ s− 2)s, which is a contradiction.

Concerning the case s = 2, we can prove the following theorem.

Theorem 5.4. Let M be a (2n + 2)-dimensional S-manifold, n ≥ 1. If
M is a Ricci semi-symmetric manifold with respect to the semi-symmetric
metric connection ∇, then the Ricci tensor field of ∇ satisfies

S(X,Y ) = −4ng(X,ϕY ) +
2∑

i,j=1

ηi(X)ηj(Y )S(ξi, ξj)

for any X,Y ∈ X (M).

Proof. By (2.1) and (4.16), it is sufficient to prove that S(X,Y ) =
−4ng(X,ϕY ) for any X,Y ∈ L.

So let X,Y ∈ L. Then, since R.S = 0, from (5.1) we obtain

(5.7) S(R(X, ξ1)ξ2, Y ) + S(ξ2, R(X, ξ1)Y ) = 0.

But, by using (4.5) we get S(R(X, ξ1)ξ2, Y ) = 2S(X,Y ), and by using (4.4)
and (4.13) we obtain S(ξ2, R(X, ξ1)Y ) = 8ng(X,ϕY ). Consequently, (5.7)
yields the assertion.

For Sasakian manifolds (case s = 1), we can prove:

Theorem 5.5. Let M be a (2n+ 1)-Sasakian manifold, n ≥ 1. If M is
a Ricci semi-symmetric manifold with respect to the semi-symmetric metric
connection ∇, then the Ricci tensor field of ∇ satisfies

S(X,Y )− S(X,ϕY ) = 2n{g(X,Y )− g(X,ϕY )}

for any X,Y ∈ L.

Proof. Since R.S = 0, the definition (5.1) gives

(5.8) S(R(X, ξ)ξ, Y ) + S(ξ,R(X, ξ)Y ) = 0.

But, from (4.5) and (4.14) we get S(R(X, ξ)ξ, Y ) = S(X,Y ) − S(X,ϕY ),
and from (4.4) and (4.13), S(ξ,R(X, ξ)Y ) = 2n{g(X,ϕY )−g(X,Y )}. Now,
(5.8) gives the conclusion.

Finally, we consider the Weyl projective curvature tensor field of ∇ given
by

(5.9) P (X,Y )Z = R(X,Y )Z − 1

dim(M)− 1
{S(Y,Z)X − S(X,Z)Y }

for any X,Y, Z,∈ X (M). Then the S-manifold M is said to be Ricci-
projectively semi-symmetric with respect to the semi-symmetric metric con-
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nection ∇ if P.S = 0, where, taking into account (5.9),

(P.S)(X,Y, Z,W ) = −S(P (X,Y )Z,W )− S(Z,P (X,Y )W )(5.10)

= (R.S)(X,Y, Z,W )

+
1

2n+ s− 1
{S(X,W )(S(Y, Z)− S(Z, Y )) + S(Y,W )(S(Z,X)− S(X,Z))}

for any X,Y, Z,W ∈ X (M). We can prove the following theorem.

Theorem 5.6. Let M be a (2n + s)-dimensional S-manifold, n ≥ 1.
Then:

(i) If s ≥ 3, M cannot be Ricci-projectively semi-symmetric with re-
spect to ∇.

(ii) If s = 2 and M is Ricci-projectively semi-symmetric with respect to
∇, then the Ricci tensor field of ∇ satisfies

S(X,Y ) = −4ng(X,ϕY ) +
2∑

i,j=1

ηi(X)ηj(Y )S(ξi, ξj)

for any X,Y ∈ X (M).
(iii) If M is a Ricci-projectively semi-symmetric Sasakian manifold (that

is, if s = 1) with respect to ∇, then the Ricci tensor field of ∇
satisfies

S(X,Y )− S(X,ϕY ) = 2n{g(X,Y )− g(X,ϕY )}
for any X,Y ∈ L.

Proof. By using (2.1), (4.11) and (5.10), we get

(P.S)(X, ξi, ξj , Y ) = (R.S)(X, ξi, ξj , Y )

for any X,Y ∈ L and i, j ∈ {1, . . . , s}. Consequently, we complete the proof
by using the same line of reasoning as in Theorems 5.3–5.5.
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J. 22 (1970), 362–370.

[14] I. Hasegawa, Y. Okuyama and T. Abe, On p-th Sasakian manifolds, J. Hokkaido
Univ. Education 37 (1986), 1–16.

[15] H. A. Hayden, Subspaces of a space with torsion, Proc. London Math. Soc. 34 (1932),
27–50.

[16] Q. Khan, On an Einstein projective Sasakian manifold, Novi Sad J. Math. 36 (2006),
97–102.

[17] M. Kobayashi and S. Tsuchiya, Invariant submanifolds of an f-manifold with com-
plemented frames, Kodai Math. Sem. Rep. 24 (1972), 430–450.
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[20] S. Y. Perktas, E. Kiliç and M. M. Tripathi, On a semi-symmetric metric connection
in a Lorentzian para-Sasakian manifold, Diff. Geom. Dynam. Systems 12 (2010),
299–310.

[21] D. Perrone, Contact Riemannian manifolds satisfying R(X, ξ).R = 0, Yokohama
Math. J. 39 (1992), 141–149.

[22] J. A. Schouten, Ricci Calculus. An Introduction to Tensor Calculus and its Geo-
metric Application, Springer, Berlin, 1954.

[23] S. E. Stepanov and I. A. Gordeeva, Pseudo-Killing and pseudo-harmonic vector
fields on a Riemann–Cartan manifold, Math. Notes 87 (2010), 248–257.

[24] I. Suhendro, A new semi-symmetric unified field theory of the classical fields of
gravity and electromagnetism, Progr. Phys. 4 (2007), 47–62.

[25] S. Sular and C. Özgür, Warped products with a semi-symmetric metric connection,
Taiwanese J. Math. 15 (2011), 1701–1719.

http://dx.doi.org/10.2748/tmj/1178242948
http://dx.doi.org/10.1007/BF01187468
http://dx.doi.org/10.2748/tmj/1178242763
http://dx.doi.org/10.1112/plms/s2-34.1.27
http://dx.doi.org/10.2996/kmj/1138846636
http://dx.doi.org/10.3176/proc.2008.4.02
http://dx.doi.org/10.1007/BF01906181
http://dx.doi.org/10.1134/S0001434610010311


86 M. A. Akyol et al.
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