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On existence theorems for semilinear
equations and applications

by Fang Zhang and Feng Wang (Changzhou)

Abstract. Existence results for semilinear operator equations without the assump-
tion of normal cones are obtained by the properties of a fixed point index for A-proper
semilinear operators established by Cremins. As an application, the existence of positive
solutions for a second order m-point boundary value problem at resonance is considered.

1. Introduction and preliminaries. Coincidence degree theory ap-
pears to be a convenient framework for studying various types of equations
of the form Lx = Nx when L−1 does not exist (see [14]), in the same way as
Leray–Schauder’s degree is extremely useful for considering cases where L
is invertible (see [11]). The concept of fixed point index for A-proper maps
of the form L−N in cones, with L a Fredholm operator of index zero and
N some nonlinear operator, has been introduced in [3]. In [4], Cremins es-
tablished the existence of positive solutions to semilinear operator equations
defined on a quasinormal or normal cone in a Banach space. The purpose
of this paper is to obtain existence results for semilinear operator equations
without exploiting the notion of normal cones.

We first review some of the standard facts on A-proper mappings and
Fredholm operators. Let X and Y be Banach spaces, D a linear subspace
of X, {Xn} ⊂ D, and {Yn} ⊂ Y sequences of oriented finite-dimensional
subspaces such that Qny → y in Y for every y and dist(x,Xn) → 0 for
every x ∈ D where Qn : Y → Yn and Pn : X → Xn are sequences of
continuous linear projections. The projection scheme Γ = {Xn, Yn, Pn, Qn}
is then said to be admissible for maps from D ⊂ X to Y .

A map T : D ⊂ X → Y is called approximation-proper (abbreviated
A-proper) at a point y ∈ Y with respect to the admissible scheme Γ if Tn ≡
QnT |D∩Xn is continuous for each n ∈ N and whenever {xnj : xnj ∈ D∩Xnj}

2010 Mathematics Subject Classification: 34B18, 47H11.
Key words and phrases: fixed point index, A-proper semilinear operators, resonance,
boundary value problem, positive solutions.

DOI: 10.4064/ap107-2-2 [123] c© Instytut Matematyczny PAN, 2013



124 F. Zhang and F. Wang

is bounded with Tnjxnj → y, then there exists a subsequence {xnjk
} such

that xnjk
→ x ∈ D and Tx = y. T is simply called A-proper if it is A-proper

at all points of Y .
L : domL ⊂ X → Y is a Fredholm operator of index zero if ImL is

closed and dim KerL = codim ImL <∞. Then X and Y may be expressed
as direct sums X = X0⊕X1, Y = Y0⊕Y1 with continuous linear projections
P : X → KerL = X0 and Q : Y → Y0. The restriction of L to domL ∩X1,
denoted L1, is a bijection onto ImL = Y1 with continuous inverse L−11 :
Y1 → domL ∩ X1. Since X0 and Y0 have the same finite dimension, there
exists a continuous bijection J : Y0 → X0. If we let H = L + J−1P , then
H : domL ⊂ X → Y is a linear bijection with bounded inverse.

Cremins [3] defined a fixed point index indK([L,N ], Ω) for A-proper
maps of the form L−N acting on cones, which has the usual properties of
the classical fixed point index, that is, existence, normalization, additivity
and homotopy invariance. In this paper, we focus on some applications of
this theory. Let K be a cone in the Banach space X, and Ω ⊂ X open and
bounded such that ΩK = Ω∩K 6= ∅. We set K1 = H(K∩domL). We make
the following assumptions:

(A1) L : domL→ Y is Fredholm of index zero.
(A2) L− λN is A-proper for λ ∈ [0, 1].
(A3) N is bounded and P + JQN + L−11 (I −Q)N maps K to K.

The following two lemmas will be used in this paper.

Lemma 1.1 ([3]). Under assumptions (A1)–(A3), if moreover θ ∈ Ω
⊂ X and Lx 6= µNx− (1− µ)J−1Px on ∂ΩK for µ ∈ [0, 1], then

indK([L,N ], Ω) = {1}.
Lemma 1.2 ([3], [17]). Under assumptions (A1)–(A3), if moreover there

exists e ∈ K1 \ {θ} such that

Lx−Nx 6= µe

for every x ∈ ∂ΩK and all µ ≥ 0, then indK([L,N ], Ω) = {0}.

2. Main results. In this section we will give the following existence
theorems for semilinear equations, which, to the best of our knowledge, are
new.

Theorem 2.1. Under assumptions (A1)–(A3), if moreover θ ∈ Ω ⊂ X,
and

Nx � Lx for any x ∈ ∂ΩK ,(2.1)

where the partial order is induced by the cone K1 in Y , then

indK([L,N ], Ω) = {1}.
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Proof. We show that

Lx 6= µNx− (1− µ)J−1Px for any x ∈ ∂ΩK , µ ∈ [0, 1].(2.2)

Indeed, if there exist x1 ∈ ∂ΩK and µ1 ∈ [0, 1] such that Lx1 = µ1Nx1 −
(1− µ1)J−1Px1, then (L+ J−1P )x1 = µ1(N + J−1P )x1 ≤ (N + J−1P )x1.
So

Nx1 ≥ Lx1,
which contradicts (2.1). Hence (2.2) is true, and so the proof is finished by
Lemma 1.1.

Theorem 2.2. Under assumptions (A1)–(A3), if moreover

Nx � Lx for any x ∈ ∂ΩK ,(2.3)

where the partial order is induced by the cone K1 in Y , then

indK([L,N ], Ω) = {0}.
Proof. We show that

Lx−Nx 6= µe for any x ∈ ∂ΩK , µ ≥ 0.(2.4)

Indeed, if there exist x2 ∈ ∂ΩK and µ2 ≥ 0 such that Lx2 − Nx2 = µ2e,
then we obtain Lx2 = Nx2 + µ2e ≥ Nx2. So Nx2 ≤ Lx2, which contradicts
(2.3). Hence (2.4) is true, and so the proof is finished by Lemma 1.2.

Theorem 2.3. Under assumptions (A1)–(A3), if moreover θ ∈ Ω ⊂ X,
Lx 6= Nx on ∂ΩK and

‖Nx+ J−1Px‖ ≤ ‖Lx+ J−1Px‖ for any x ∈ ∂ΩK ,(2.5)

then
indK([L,N ], Ω) = {1}.

Proof. We show that

Lx 6= µNx− (1− µ)J−1Px for any x ∈ ∂ΩK , µ ∈ [0, 1].(2.6)

Indeed, if there exist x3 ∈ ∂ΩK and µ3 ∈ [0, 1] such that Lx3 = µ3Nx3 −
(1−µ3)J−1Px3, then µ3 ∈ (0, 1) and (L+ J−1P )x3 = µ3(N + J−1P )x3. So

‖(N + J−1P )x3‖ =
1

µ3
‖(L+ J−1P )x3‖ > ‖(L+ J−1P )x3‖,

which contradicts (2.5). Hence (2.6) is true, and so the proof is finished by
Lemma 1.1.

Theorem 2.4. Under assumptions (A1)–(A3), suppose Lx 6= Nx on
∂ΩK . Suppose that there exists e ∈ K1 \ {θ} such that

‖y + µe‖ > ‖y‖ for any µ > 0, y ∈ K1.

If moreover

‖Nx+ J−1Px‖ ≥ ‖Lx+ J−1Px‖ for any x ∈ ∂ΩK ,(2.7)
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then

indK([L,N ], Ω) = {0}.

Proof. We show that

Lx−Nx 6= µe for any x ∈ ∂ΩK , µ ≥ 0.(2.8)

Indeed, if there exist x4 ∈ ∂ΩK and µ4 ≥ 0 such that Lx4 − Nx4 = µ4e,
then µ4 > 0 and

‖Lx4 + J−1Px4‖ = ‖Nx4 + J−1Px4 + µ4e‖ > ‖Nx4 + J−1Px4‖,
which contradicts (2.7). Hence (2.8) is true, and so the proof is finished by
Lemma 1.2.

Theorem 2.5. Assume (A1)–(A3) hold. Suppose Ω1 and Ω2 are bounded
open sets in X such that θ ∈ Ω1 and Ω1 ⊂ Ω2, Ω2 ∩K ∩ domL 6= ∅. If one
of the following two conditions is satisfied:

(C1) Nx � Lx for all x ∈ ∂Ω1 ∩K and Nx � Lx for all x ∈ ∂Ω2 ∩K,
(C2) Nx � Lx for all x ∈ ∂Ω1 ∩K and Nx � Lx for all x ∈ ∂Ω2 ∩K,

then there exists x ∈ (Ω2 \Ω1) ∩K such that Lx = Nx.

Proof. This follows from Theorem 2.1 and 2.2.

Theorem 2.6. Assume (A1)–(A3) hold. Suppose Ω1 and Ω2 are bounded
open sets in X such that θ ∈ Ω1 and Ω1 ⊂ Ω2, Ω2 ∩ K ∩ domL 6= ∅.
Moreover, suppose that there exists e ∈ K1 \ {θ} such that

‖y + µe‖ > ‖y‖ for any µ > 0, y ∈ K1.

If one of the following two conditions is satisfied:

(C3) ‖Nx+ J−1Px‖ ≤ ‖Lx+ J−1Px‖ for all x ∈ ∂Ω1 ∩K and
‖Nx+ J−1Px‖ ≥ ‖Lx+ J−1Px‖ for all x ∈ ∂Ω2 ∩K,

(C4) ‖Nx+ J−1Px‖ ≥ ‖Lx+ J−1Px‖ for all x ∈ ∂Ω1 ∩K and
‖Nx+ J−1Px‖ ≤ ‖Lx+ J−1Px‖ for all x ∈ ∂Ω2 ∩K,

then there exists x ∈ (Ω2 \Ω1) ∩K such that Lx = Nx.

Proof. This follows from Theorems 2.3 and 2.4.

Remark 2.1. When using Theorems 2.4 and 2.6, we find that the con-
dition that ‖y + µe‖ > ‖y‖ for any µ > 0 and y ∈ K1 is easily satisfied. For
example, let Y be the space of continuous functions, and K1 be the cone of
positive functions. It is worth mentioning that the condition ‖y+µe‖ > ‖y‖
for any µ > 0, y ∈ K1 is slightly stronger than the quasinormality condition
by Remark 2 of [4].

Remark 2.2. In Theorems 2.1−2.3, 2.5, we do not use the assumption
that the cones are normal.
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3. Positive solutions to an m-point boundary value problem at
resonance. The goal of this section is to apply Theorem 2.5 to discuss
the existence of positive solutions for the following m-point boundary value
problem at resonance:

−x′′(t) = f(t, x(t), x′(t), x′′(t)), t ∈ (0, 1),(3.1)

x′(0) = 0, x(1) =
m−2∑
i=1

aix(ηi),(3.2)

where m ≥ 3 is an integer, ai ≥ 0, ηi ∈ (0, 1) (i = 1, . . . ,m−2) are constants
satisfying

∑m−2
i=1 ai = 1, 0 < η1 < · · · < ηm−2 < 1, in which the highest order

derivative may appear nonlinearly.

The study of multi-point boundary value problems for linear second or-
der differential equations was initiated by Bitsadze and Samarskĭı [2] and
continued by Il’in and Mŏıseev [8]. Since then, nonlinear multi-point bound-
ary value problems have been studied by many authors: for example, see [5],
[6], [12], [13], [16], [20] and the references therein. However, as far positive
solutions are concerned, most of the results pertain to non-resonance prob-
lems; to the best of our knowledge, only few papers deal with the existence
of positive solutions of multi-point boundary value problems at resonance:
see [1], [3], [7], [10], [15], [16]–[19].

Recently, for (3.1), when the nonlinear term f does not depend on the
derivative, Infante and Zima [10] proved the existence of positive solutions of
multi-point boundary value problems at resonance via the Leggett–Williams
norm-type theorem. In [9], Infante also studied the existence of positive
solutions of (3.1) under the boundary value conditions

x(0) = 0, αx(η) = x(1), 0 < η < 1, αη < 1,

by means of the theory of fixed point index for weakly inward A-proper
maps.

Let

X = C2[0, 1] ∩
{
x : x′(0) = 0, x(1) =

m−2∑
i=1

aix(ηi)
}
, Y = C[0, 1].

For every x ∈ X, denote its norm by

‖x‖X = max{ sup
t∈[0,1]

|x(t)|, sup
t∈[0,1]

|x′(t)|, sup
t∈[0,1]

|x′′(t)|},

and for every y ∈ Y, denote its norm by ‖y‖Y = supt∈[0,1] |y(t)|. We can prove
that X and Y are Banach spaces. Let K = {x ∈ X : x(t) ≥ 0, t ∈ [0, 1]};
then K is a cone of X.
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For notational convenience, we set

li(s) :=

{
1− ηi, 0 ≤ s ≤ ηi,
1− s, ηi < s ≤ 1,

for i = 1, . . . ,m− 2, and

G(t, s)

:=


(1− s)2

2
+

5 + 3t2

3
∑m−2

i=1 ai(1− η2i )

m−2∑
i=1

aili(s), 0 ≤ t ≤ s ≤ 1,

(1− s)2

2
+ s− t+

5 + 3t2

3
∑m−2

i=1 ai(1− η2i )

m−2∑
i=1

aili(s), 0 ≤ s ≤ t ≤ 1.

Note that G(t, s) ≥ 0 for all t, s ∈ [0, 1], and

1− 2K∑m−2
i=1 ai(1− η2i )

m−2∑
i=1

aili(s) ≥ 0, s ∈ [0, 1],

for every K ∈ (0, (1 + η1)/2]. We also set

K := min

{
1 + η1

2
,

1

maxt,s∈[0,1]G(t, s)

}
;

obviously K < 1.

We define

domL = X, L : domL→ Y, Lx(t) = −x′′(t),
N : X → Y, Nx(t) = f(t, x(t), x′(t), x′′(t)).

Then BVP (3.1), (3.2) can be written

Lx = Nx, x ∈ K.

It is easy to check that

KerL = {x ∈ domL : x(t) ≡ c on [0, 1], c ∈ R},

ImL =
{
y ∈ Y :

m−2∑
i=1

ai

1�

0

li(s)y(s) ds = 0
}
,

dim KerL = codim ImL = 1,

so that L is a Fredholm operator of index zero, with kernel the subspace
of constant functions in X, and range the subspace of functions with zero
mean value, so that the corresponding operators P and Q can be chosen as
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P : X → KerL, Px =

1�

0

x(s) ds,

Q : Y → Y, Qy =
2∑m−2

i=1 ai(1− η2i )
·
m−2∑
i=1

ai

1�

0

li(s)y(s) ds.

Furthermore, we define the isomorphism J : ImQ → ImP as Jy = βy,
where β > 0 is a constant. It is easy to verify that the inverse operator
L−11 : ImL → domL ∩ KerP of L|domL∩KerP : domL ∩ KerP → ImL is

(L−11 y)(t) =
	1
0 k(t, s)y(s) ds, where

k(t, s) =

{
(1− s)2/2, 0 ≤ t ≤ s ≤ 1,

(1− s)2/2 + s− t, 0 ≤ s ≤ t ≤ 1.

Theorem 3.1. Suppose

(H1) there exist R ∈ (0,∞) and k ∈ (0, 1) such that f : [0, 1] × [0, R] ×
[−R,R]×R− → R is continuous and |f(t, p, q,−s1)−f(t, p, q,−s2)|
≤ k|s1 − s2| for t ∈ [0, 1], p ∈ [0, R], q ∈ [−R,R], and s1, s2 ∈
[0, R],

(H2) f(t, p, q, s) > −Kp for (t, p, q, s) ∈ [0, 1]× [0, R]× [−R,R]× R−,
(H3) f(t, p, q,−R) < R for t ∈ [0, 1], p ∈ [0, R], and q ∈ [−R,R],
(H4) there exists r ∈ (0, R) such that f(t, p, q,−r) > r for t ∈ [0, 1],

p ∈ [0, r], and q ∈ [−r, r].

Then there exists at least one positive solution x ∈ K to problem (3.1), (3.2)
with r ≤ ‖x‖X ≤ R.

Proof. First, we note that L is Fredholm of index zero and condition
(H1) above implies that N is k-ball contractive so that L− λN is A-proper
for λ ∈ [0, 1]. Now we verify the hypotheses of Theorem 2.5.

First we show P + JQN +L−11 (I −Q)N : K → K. For the isomorphism
Jy = βy, take β = 1. For each x ∈ K, from condition (H2) and β = 1 it
follows that

(P + JQN + L−11 (I −Q)N)(x)

=

1�

0

x(s) ds+
2∑m−2

i=1 ai(1− η2i )
·
m−2∑
i=1

ai

1�

0

li(s)f(s, x(s), x′(s), x′′(s)) ds

+

1�

0

k(t, s)

[
f(s, x(s), x′(s), x′′(s))

− 2∑m−2
i=1 ai(1− η2i )

·
m−2∑
i=1

ai

1�

0

li(τ)f(τ, x(τ), x′(τ), x′′(τ)) dτ

]
ds



130 F. Zhang and F. Wang

=

1�

0

x(s)ds+

1�

0

G(t, s)f(s, x(s), x′(s), x′′(s)) ds

≥
1�

0

x(s)ds−K
1�

0

G(t, s)x(s) ds =

1�

0

(1−KG(t, s))x(s) ds ≥ 0.

Next, we show

Nx � Lx for any x ∈ K ∩ ∂BR,(3.3)

where BR = {x ∈ X : ‖x‖X ≤ R}.
In fact, if not, there exists x5 ∈ K ∩ ∂BR such that Nx5 ≥ Lx5 and

‖x5‖X = R. Then ‖Lx5‖Y = ‖−x′′5‖Y = R and there exists t1 ∈ [0, 1], such
that −x′′5(t1) = R. Thus we have t1 ∈ [0, 1], x5(t1) ∈ [0, R], x′5(t1) ∈ [−R,R],
−x′′5(t1) = R. From condition (H3) we obtain

f(t1, x5(t1), x
′
5(t1),−R) < R.

For every t ∈ [0, 1] (including t1), we have Nx5 ≥ Lx5. This would give

R = −x′′5(t1) ≤ f(t1, x5(t1), x
′
5(t1),−R) < R,

which is a contradiction. Thus (3.3) holds.

Similarly, from condition (H4), we get

Nx � Lx for any x ∈ K ∩ ∂Br,

where Br = {x ∈ X : ‖x‖X ≤ r}. Thus all conditions of Theorem 2.5 are
satisfied and there exists x ∈ K such that Lx = Nx and r ≤ ‖x‖X ≤ R.
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